Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = timber floors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2663 KiB  
Article
Integrating Noise Pollution into Life Cycle Assessment: A Comparative Framework for Concrete and Timber Floor Construction
by Rabaka Sultana, Taslima Khanam and Ahmad Rashedi
Sustainability 2025, 17(14), 6514; https://doi.org/10.3390/su17146514 - 16 Jul 2025
Viewed by 369
Abstract
Despite the well-documented health risks of noise pollution, its impact remains overlooked mainly in life cycle assessment (LCA). This study introduces a methodological innovation by integrating both traffic and construction noise into the LCA framework for concrete construction, providing a more holistic and [...] Read more.
Despite the well-documented health risks of noise pollution, its impact remains overlooked mainly in life cycle assessment (LCA). This study introduces a methodological innovation by integrating both traffic and construction noise into the LCA framework for concrete construction, providing a more holistic and realistic evaluation of environmental and health impacts. By combining building information modeling (BIM) with LCA, the method automates material quantification and assesses both environmental and noise-related health burdens. A key advancement is the inclusion of health-based indicators, such as annoyance and sleep disturbance, quantified through disability-adjusted life years (DALYs). Two scenarios are examined: (1) a comparative analysis of concrete versus timber flooring and (2) end-of-life options (reuse vs. landfill). The results reveal that concrete has up to 7.4 times greater environmental impact than timber, except in land use. When noise is included, its contribution ranges from 7–33% in low-density regions (Darwin) and 62–92% in high-density areas (NSW), underscoring the critical role of local context. Traffic noise emerged as the dominant source, while equipment-related noise was minimal (0.3–1.5% of total DALYs). Timber slightly reduced annoyance but showed similar sleep disturbance levels. Material reuse reduced midpoint environmental impacts by 67–99.78%. Sensitivity analysis confirmed that mitigation measures like double glazing can cut noise-related impacts by 2–10% in low-density settings and 31–45% in high-density settings, validating the robustness of this framework. Overall, this study establishes a foundation for integrating noise into LCA, supporting sustainable material choices, environmentally responsible construction, and health-centered policymaking, particularly in noise-sensitive urban development. Full article
Show Figures

Figure 1

21 pages, 4361 KiB  
Article
Building Sustainable Futures: Evaluating Embodied Carbon Emissions and Biogenic Carbon Storage in a Cross-Laminated Timber Wall and Floor (Honeycomb) Mass Timber Building
by Aayusha Chapagain and Paul Crovella
Sustainability 2025, 17(12), 5602; https://doi.org/10.3390/su17125602 - 18 Jun 2025
Viewed by 618
Abstract
The building sector significantly contributes to global energy consumption and carbon emissions, primarily due to the extensive use of carbon-intensive materials such as concrete and steel. Mass timber construction, particularly using cross-laminated timber (CLT), offers a promising low-carbon alternative. This study aims to [...] Read more.
The building sector significantly contributes to global energy consumption and carbon emissions, primarily due to the extensive use of carbon-intensive materials such as concrete and steel. Mass timber construction, particularly using cross-laminated timber (CLT), offers a promising low-carbon alternative. This study aims to calculate the embodied carbon emissions and biogenic carbon storage of a CLT-based affordable housing project, 340+ Dixwell in New Haven, Connecticut. This project was designed using a honeycomb structural system, where mass timber floors and roofs are supported by mass timber-bearing walls. The authors are not aware of a prior study that has evaluated the life cycle impacts of honeycomb mass timber construction while considering Timber Use Intensity (TUI). Unlike traditional post-and-beam systems, the honeycomb design uses nearly twice the amount of timber, resulting in higher carbon sequestration. This makes the study significant from a sustainability perspective. This study follows International Standard Organization (ISO) standards 14044, 21930, and 21931 and reports the results for both lifecycle stages A1–A3 and A1–A5. The analysis covers key building components, including the substructure, superstructure, and enclosure, with timber, concrete, metals, glass, and insulation as the materials assessed. Material quantities were extracted using Autodesk Revit®, and the life cycle assessment (LCA) was evaluated using One Click LCA (2015)®. The A1 to A3 stage results of this honeycomb building revealed that, compared to conventional mass timber housing structures such as Adohi Hall and Heartwood, it demonstrates the lowest embodiedf carbon emissions and the highest biogenic carbon storage per square foot. This outcome is largely influenced by its higher Timber Use Intensity (TUI). Similarly, the A1-A5 findings indicate that the embodied carbon emissions of this honeycomb construction are 40% lower than the median value for other multi-family residential buildings, as assessed using the Carbon Leadership Forum (CLF) Embodied Carbon Emissions Benchmark Study of various buildings. Moreover, the biogenic carbon storage per square foot of this building is 60% higher than the average biogenic carbon storage of reference mass timber construction types. Full article
Show Figures

Figure 1

23 pages, 3907 KiB  
Article
Woodot: An AI-Driven Mobile Robotic System for Sustainable Defect Repair in Custom Glulam Beams
by Pierpaolo Ruttico, Federico Bordoni and Matteo Deval
Sustainability 2025, 17(12), 5574; https://doi.org/10.3390/su17125574 - 17 Jun 2025
Viewed by 451
Abstract
Defect repair on custom-curved glulam beams is still performed manually because knots are irregular, numerous, and located on elements that cannot pass through linear production lines, limiting the scalability of timber-based architecture. This study presents Woodot, an autonomous mobile robotic platform that combines [...] Read more.
Defect repair on custom-curved glulam beams is still performed manually because knots are irregular, numerous, and located on elements that cannot pass through linear production lines, limiting the scalability of timber-based architecture. This study presents Woodot, an autonomous mobile robotic platform that combines an omnidirectional rover, a six-dof collaborative arm, and a fine-tuned Segment Anything computer vision pipeline to identify, mill, and plug surface knots on geometrically variable beams. The perception model was trained on a purpose-built micro-dataset and reached an F1 score of 0.69 on independent test images, while the integrated system located defects with a 4.3 mm mean positional error. Full repair cycles averaged 74 s per knot, reducing processing time by more than 60% compared with skilled manual operations, and achieved flush plug placement in 87% of trials. These outcomes demonstrate that a lightweight AI model coupled with mobile manipulation can deliver reliable, shop-floor automation for low-volume, high-variation timber production. By shortening cycle times and lowering worker exposure to repetitive tasks, Woodot offers a viable pathway to enhance the environmental, economic, and social sustainability of digital timber construction. Nevertheless, some limitations remain, such as dependency on stable lighting conditions for optimal vision performance and the need for tool calibration checks. Full article
Show Figures

Figure 1

17 pages, 3044 KiB  
Article
Re-Resinated Wood Strand Panels: Enhancing Performance Through Waste Recycling
by Avishek Chanda, Muhammad Khusairy Bin Bakri, Rajan Adhikari and Vikram Yadama
Sustainability 2025, 17(10), 4596; https://doi.org/10.3390/su17104596 - 17 May 2025
Viewed by 554
Abstract
The construction sector’s increasing eco-consciousness is driving the need for higher-performance wood-based engineered products from underutilized timber resources, such as small-diameter trees from hazardous fuel treatments of our forests. Strand-based products, including oriented strand board (OSB) and lumber (OSL), are widely used. However, [...] Read more.
The construction sector’s increasing eco-consciousness is driving the need for higher-performance wood-based engineered products from underutilized timber resources, such as small-diameter trees from hazardous fuel treatments of our forests. Strand-based products, including oriented strand board (OSB) and lumber (OSL), are widely used. However, hot-pressing during their manufacturing generates approximately 10% waste, which includes a substantial amount of resinated strands that are landfilled. The huge potential of using strand-based products has led to many studies and growing interest in strand-based three-dimensional sandwich panels that can be used as wall, floor, or roofing panels. As the market grows, understanding the recyclability of these resinated strands becomes crucial. This study investigates the feasibility of using re-resinated waste strands that were collected during lab-scale production of strand-based panels. Results demonstrate significant improvements in dimensional stability, mechanical properties, and fire resistance. Specifically, recycling increased internal bond strength, flexural strength, time to ignition, time to flameout, mass loss, and time to peak heat release rate by 107%, 44%, 58%, 35%, 51%, and 27%, respectively, and helped decrease water absorption and thickness swell by 51% and 58%, respectively. Full article
(This article belongs to the Special Issue Sustainable Materials: Recycled Materials Toward Smart Future)
Show Figures

Figure 1

26 pages, 7040 KiB  
Article
Experimental Investigation of Vibration Control in Timber–Concrete Composite (TCC) Floors Using Tuned Mass Damper
by Huifeng Yang, Xuhui Lu, Hao Sun, Yuxin Pan, Benkai Shi, Yifei Li and Haoyu Huang
Buildings 2025, 15(10), 1642; https://doi.org/10.3390/buildings15101642 - 13 May 2025
Viewed by 729
Abstract
Timber–concrete composite (TCC) floors are gaining popularity in sustainable construction due to their enhanced stiffness and structural efficiency. However, excessive vibrations, particularly those induced by human activity, pose significant challenges to occupant comfort and structural integrity. This study investigates the application of Tuned [...] Read more.
Timber–concrete composite (TCC) floors are gaining popularity in sustainable construction due to their enhanced stiffness and structural efficiency. However, excessive vibrations, particularly those induced by human activity, pose significant challenges to occupant comfort and structural integrity. This study investigates the application of Tuned Mass Dampers (TMDs) to mitigate vibrations in TCC floors, with a focus on enhancing damping performance through the incorporation of pre-strained Shape Memory Alloys (SMAs) (Kellogg’s Research Labs, New Boston, NH, USA). A novel pre-strained SMA–TMD system was designed and experimentally tested to evaluate its effectiveness in vibration control under various loading conditions. The results demonstrate that pre-straining significantly increases the damping ratio of the SMA–TMD, improving its vibration mitigation capability. Compared to non-pre-strained SMA–TMD, the pre-strained SMA–TMD system exhibited superior adaptability and robustness in reducing floor vibrations, achieving a peak acceleration reduction of up to 49.91%. These findings provide valuable knowledge into the development of advanced damping solutions for timber floors, contributing to the broader application of vibration control strategies in sustainable and high-performance building systems. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
Show Figures

Figure 1

29 pages, 10636 KiB  
Article
Development of an Environmentally Friendly Steel Structural Framework: Evaluation of Bending Stiffness and Yield Bending Moment of Cross-Laminated Timber Slab–H-Shaped Steel Composite Beams for Component Reuse
by Sachi Furukawa, Ryohei Iwami and Yoshihiro Kimura
Sustainability 2025, 17(5), 2073; https://doi.org/10.3390/su17052073 - 27 Feb 2025
Cited by 2 | Viewed by 1039
Abstract
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as [...] Read more.
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as a sustainable alternative. CLT, known for its carbon sequestration properties, offers an environmentally friendly replacement for reinforced-concrete slabs, particularly when paired with steel structures to enhance material reuse and reduce lifecycle impacts. This study focuses on hybrid systems combining H-shaped steel beams and CLT floor panels connected using high-strength friction bolts. A four-point bending test, simulating a secondary beam, was conducted, demonstrating that the composite effect significantly enhances flexural stiffness and strength. Additionally, a simplified method for evaluating the flexural stiffness and yielding strength of these composite beams, based on material and joint properties, was shown to successfully evaluate the test results. Full article
(This article belongs to the Section Green Building)
Show Figures

Graphical abstract

19 pages, 6509 KiB  
Article
Use of Smartphone-Based Experimental Data for the Calibration of Biodynamic Spring-Mass-Damper (SMD) Pedestrian Models
by Chiara Bedon, Martina Sciomenta and Alessandro Mazelli
Sensors 2025, 25(5), 1387; https://doi.org/10.3390/s25051387 - 24 Feb 2025
Cited by 2 | Viewed by 599
Abstract
In practice, the structural analysis and design of pedestrian systems subjected to human-induced vibrations is often based on simplified biodynamic models that can be used in place of even more complex computational strategies to describe Human-Structure Interaction (HSI) phenomena. Among various walking features, [...] Read more.
In practice, the structural analysis and design of pedestrian systems subjected to human-induced vibrations is often based on simplified biodynamic models that can be used in place of even more complex computational strategies to describe Human-Structure Interaction (HSI) phenomena. Among various walking features, the vertical reaction force that a pedestrian transfers to the supporting structure during motion is a key input for design, but results from the combination of multiple influencing parameters and dynamic interactions. Robust and practical strategies to support a realistic HSI description and analysis have hence been the object of several studies. Following earlier research efforts, this paper focuses on the optimised calibration of the input parameters for the consolidated Spring-Mass-Damper (SMD) biodynamic model, which reduces a single pedestrian to an equivalent SDOF (with body mass m, spring stiffness k, and viscous damping coefficient c) and is often used for vibration serviceability purposes. In the present study, this calibration process is carried out with smartphone-based acquisitions and experimental records from the Centre of Mass (CoM) of each pedestrian to possibly replace more complex laboratory configurations and devices. To verify the potential and accuracy of such a smartphone-based approach, different pedestrians/volunteers and substructures (i.e., a rigid concrete slab or a timber floor prototype) are taken into account, and a total of 145 original gaits are post-processed for SMD modelling purposes. The analysis of the experimental results shows a rather close match with previous findings in terms of key pedestrian parameters. This outcome poses the basis for a more generalised application of the smartphone-based strategy to a multitude of similar applications and configurations of practical interest. The validity of calibration output and its possible sensitivity are further assessed in terms of expected effects on substructures, with a critical discussion of the most important results. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 4228 KiB  
Article
Evaluation of Energy Demands and Performance of Multi-Storey Cross-Laminated Timber Buildings
by Timothy O. Adekunle
Energies 2025, 18(4), 933; https://doi.org/10.3390/en18040933 - 15 Feb 2025
Viewed by 738
Abstract
The overarching goal of this research is to evaluate the energy demands and performance of multi-storey cross-laminated timber (CLT) buildings. The research examines the various energy demands influencing the performance of multi-storey CLT buildings. The study addresses the following research question: Can different [...] Read more.
The overarching goal of this research is to evaluate the energy demands and performance of multi-storey cross-laminated timber (CLT) buildings. The research examines the various energy demands influencing the performance of multi-storey CLT buildings. The study addresses the following research question: Can different energy demands influence the performance of CLT buildings? The investigation explores building modeling and simulation under two different weather scenarios to assess these issues. The study considers London Islington and St Albans (Test Reference Year—TRY), due to the proximity of the actual case studies to the reference locations of the weather files. The investigation captures energy demands and performance in the warm season (i.e., May–August). The findings show that the Stadt building (STB) temperatures under the two weather scenarios are warmer by 1.2 °C and 1.6 °C than those of Brid building (BDH) under the same weather conditions. Outdoor dry-bulb temperatures have a lesser impact on radiant temperatures than indoor air temperatures and operative temperatures in the buildings. Solar gains for external windows are influenced by design variables (e.g., building shapes, heights, floor areas, orientations, opening sizes, etc.). The indoor environmental conditions of the buildings under different weather conditions are comfortable, except for BDH St Albans TRY. Occupancy is a major driver influencing domestic hot water (DHW) usage profiles, regardless of the energy sources in the buildings. DHW is a significant parameter determining the overall energy usage in buildings. Other energy usage profiles, such as room electricity, computers and equipment, general lighting, and lighting, can also impact energy usage in buildings. The research outcomes can enhance our understanding of energy usage profiles and possible improvements to enhance the overall performance of CLT buildings. Full article
Show Figures

Figure 1

25 pages, 8621 KiB  
Article
Assessment of In-Plane Timber Floor Stiffness as Structural Diaphragms: A Numerical Approach to Lateral Load Response
by Jelena Vilotijević and Miroslav Premrov
Forests 2025, 16(1), 56; https://doi.org/10.3390/f16010056 - 31 Dec 2024
Viewed by 1036
Abstract
The behaviour of horizontal floor diaphragms plays a crucial role in ensuring the overall response of a building during earthquakes, as the stiffness of these diaphragms determines whether the structure will act as an integrated system. If the diaphragms do not exhibit sufficient [...] Read more.
The behaviour of horizontal floor diaphragms plays a crucial role in ensuring the overall response of a building during earthquakes, as the stiffness of these diaphragms determines whether the structure will act as an integrated system. If the diaphragms do not exhibit sufficient stiffness, differences in the redistribution of forces on wall elements arise, increasing the risk of significant deformations and even local damage, which is commonly observed in earthquake-affected areas. Additionally, flexible diaphragms heighten the risk of torsional effects. Due to these factors, more attention should be given to the response of buildings with flexible diaphragms. Eurocode standard specifies general requirements under which diaphragms should be considered rigid within their plane, depending on the maximum diaphragm moment. However, specific guidelines regarding the geometric and material properties of elements that significantly impact seismic behaviour are not included in the existing European standards. This served as a basis for conducting a numerical study analysing the in-plane behaviour of floor elements made from different materials. This study, limited to a simple box-shaped structure with masonry walls, symmetrical in both orthogonal directions, evaluated and thoroughly analysed the deformations for different types of diaphragms, including prefabricated wooden frame-panel floors, CLT panels, and reinforced concrete slabs. Special emphasis was placed on wooden structural elements due to the increased demand for timber construction, as the behaviour of these elements needs to be properly studied, especially in seismic regions. The study results were obtained through FEM analysis using the SCIA Engineer software, version 22. The modelling of elements was carried out considering the orthotropy of brick wall and wooden ceiling elements, as well as simulating the appropriate shear stiffness of the connecting means. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

12 pages, 919 KiB  
Article
Vibrational Analysis of Building Structures with Irregularities
by Colin Fox and Hyuck Chung
Appl. Sci. 2024, 14(23), 11272; https://doi.org/10.3390/app142311272 - 3 Dec 2024
Viewed by 919
Abstract
This paper presents a mathematical model for predicting vibrations in lightweight, timber-based floor/ceiling structures, enhanced to account for irregularities in joist shape and stiffness, as well as floor stiffness. Building on a prior model that assumed precise geometry and homogeneous material properties, the [...] Read more.
This paper presents a mathematical model for predicting vibrations in lightweight, timber-based floor/ceiling structures, enhanced to account for irregularities in joist shape and stiffness, as well as floor stiffness. Building on a prior model that assumed precise geometry and homogeneous material properties, the study now incorporates real timber measurements via the power spectral density of irregularities to incorporate their impact on the system’s vibrational response, including mid-frequency vibrations. Existing results underscore the critical role of component connections in shaping vibration behavior, while the present paper gives new principles for building a model to assess how uncertainties in these connections or material properties affect the overall structural response. This new model maintains the property of efficient computation so that irregularities in the components may be included in the design stage to improve the mid-frequency performance of lightweight, timber-framed structures. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

26 pages, 1667 KiB  
Article
A Design Methodology Incorporating a Sound Insulation Prediction Model, Life Cycle Assessment (LCA), and Thermal Insulation: A Comparative Study of Various Cross-Laminated Timber (CLT) and Ribbed CLT-Based Floor Assemblies
by Mohamad Bader Eddin, Sylvain Ménard, Bertrand Laratte and Tingting Vogt Wu
Acoustics 2024, 6(4), 1021-1046; https://doi.org/10.3390/acoustics6040056 - 25 Nov 2024
Cited by 1 | Viewed by 2109
Abstract
Mass timber is increasingly being employed in constructing low- and mid-rise buildings. One of the primary reasons for using mass timber structures is their sustainability and ability to reduce environmental consequences in the building sector. One criticism of these structures is their lower [...] Read more.
Mass timber is increasingly being employed in constructing low- and mid-rise buildings. One of the primary reasons for using mass timber structures is their sustainability and ability to reduce environmental consequences in the building sector. One criticism of these structures is their lower subjective sound insulation quality. Therefore, acoustic treatments should be considered. However, acoustic solutions do not necessarily contribute to lower environmental impacts or improved thermal insulation performance. This paper discusses a design methodology that incorporates the development of a sound insulation prediction tool (using an artificial neural networks approach), life cycle assessment analysis, and thermal insulation study. A total of 112 sound insulation measurements (in one-third octave bands from 50 to 5000 Hz) are utilized to develop the network model and are also used for the LCA and thermal insulation study. They are lab-based measurements and are performed on 45 various CLT- and ribbed CLT-based assemblies. The acoustic model demonstrates satisfactory results with 1 dB differences in the prediction of airborne and impact sound indices (Rw and Ln,w). An acoustic sensitivity study and a statistical analysis are then conducted to validate the model’s results. Additionally, an LCA analysis is performed on the floor assemblies to calculate their environmental footprints. LCA categories are plotted against the acoustic performance of floors. No correlations are found, and the results emphasize that a wide range of sound insulation can be achieved with similar environmental impacts. Within each acoustic performance tier, the LCA results can be optimized for a floor assembly by selecting appropriate materials. The thermal insulation of floors is then calculated. Overall, a strong positive correlation is found between the total thermal resistance and heat loss against acoustic performance. Designers should be cognizant of the trade-offs between acoustic, thermal insulation, and environmental performance when choosing assemblies with favorable environmental impacts relative to acoustic and thermal insulation ratios. Full article
(This article belongs to the Special Issue Building Materials and Acoustics (2nd Edition))
Show Figures

Figure 1

20 pages, 14130 KiB  
Article
Parametric Analysis of Moment-Resisting Timber Frames Combined with Cross Laminated Timber Walls and Prediction Models Using Nonlinear Regression and Artificial Neural Networks
by Osama Abdelfattah Hegeir, Haris Stamatopoulos and Kjell Arne Malo
Buildings 2024, 14(9), 2975; https://doi.org/10.3390/buildings14092975 - 20 Sep 2024
Cited by 2 | Viewed by 1525
Abstract
The light weight and moderate stiffness of multistorey timber buildings make them susceptible to increased lateral displacements and accelerations under service-level wind loading. Therefore, the fulfilment of serviceability requirements is a major challenge. In this study, linear elastic finite element analysis was used [...] Read more.
The light weight and moderate stiffness of multistorey timber buildings make them susceptible to increased lateral displacements and accelerations under service-level wind loading. Therefore, the fulfilment of serviceability requirements is a major challenge. In this study, linear elastic finite element analysis was used to perform a parametric study of moment-resisting timber frames combined with cross laminated timber walls. In the parametric study, various mechanical and geometrical parameters were varied within practical ranges. The results of the parametric study were used to derive simplified analytical expressions and to train artificial neural networks which can be used to estimate fundamental frequency, mode shape, top floor displacement, maximum inter-storey drift, and wind-induced acceleration. The analytical expressions and the artificial neural networks can be used for the preliminary assessment of serviceability performance of moment-resisting timber frames with and without cross laminated timber walls, under service-level wind loading. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 7023 KiB  
Article
Integrating Design for Adaptability, Disassembly, and Reuse into Architectural Design Practice
by St John Walsh and Elizabeth Shotton
Sustainability 2024, 16(17), 7771; https://doi.org/10.3390/su16177771 - 6 Sep 2024
Cited by 4 | Viewed by 2955
Abstract
Increased timber construction is putting pressure on Ireland’s limited structural-grade timber stock, while recovered timber is currently downcycled or incinerated. Design for Adaptability, disassembly and reuse (DfADR) has emerged as a response to this wasteful linear process, which can increase the life span [...] Read more.
Increased timber construction is putting pressure on Ireland’s limited structural-grade timber stock, while recovered timber is currently downcycled or incinerated. Design for Adaptability, disassembly and reuse (DfADR) has emerged as a response to this wasteful linear process, which can increase the life span of structures, the ease of disassembly during and after use, and improve the quality of recovered material. However, while many DfADR strategies have been identified, uptake in architectural practice is lacking. Impediments to DfADR were identified through an analysis of an existing timber-framed structure and a modified design developed based on the ISO 20887:2020 principles to illustrate practical solutions. In tandem, a decision tool was developed that organised the plethora of identified strategies by the ISO principles and the work stages used by designers to facilitate integration into practice. Modest reconfigurations of the space and roof structure increased adaptability, access to services for replacement and repair, and expansion potential to increase service life, while rationalized timber sizes improved reuse potential. Using wood nails in stud and joist framing, with screws replacing nails elsewhere, and omitting adhesives from the floor panels increased the ease of disassembly. These relatively minor changes resulted in nearly 3 times the amount of solid timber with a high reuse potential (≥2348 mm) recovered over the original design, highlighting the impact DfADR can have on the recoverability and reusability of timber. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

16 pages, 14765 KiB  
Article
Analysis of Seismic Responses and Vibration Serviceability in a High-Rise Timber–Concrete Hybrid Building
by Chao Zong, Jiajun Zhai, Xiaoluan Sun, Xingxing Liu, Xiaowu Cheng and Shenshan Wang
Buildings 2024, 14(9), 2614; https://doi.org/10.3390/buildings14092614 - 23 Aug 2024
Cited by 3 | Viewed by 1309
Abstract
Timber–concrete hybrid structures are commonly employed in multi-story timber buildings; however, further research is necessary to fully understand the seismic performance of these structures as well as the dynamic properties of the floor. The two dynamic concerns, seismic effects and the vibration of [...] Read more.
Timber–concrete hybrid structures are commonly employed in multi-story timber buildings; however, further research is necessary to fully understand the seismic performance of these structures as well as the dynamic properties of the floor. The two dynamic concerns, seismic effects and the vibration of floors in hybrid structures, are key issues, in view of which this study aimed to investigate the small-seismic-response spectra and elastic time histories in a high-rise timber hybrid building, specifically the medical technology building of Jiangsu Provincial Rehabilitation Hospital in China. The dynamic characteristics of a localized cross-laminated timber (CLT) floor were tested in situ, and the impacts of human-induced vibration were quantified. Comprehensive theoretical analysis results reveal that the basic vibration pattern of the structure was mainly translational in nature and that the period ratio, inter-story displacement angle, and shear-to-weight ratio all met the demands of the Chinese timber building design code. The experimental test results show that the vertical natural frequency of the CLT floor was about 15.96 Hz and thus met appropriate requirements with respect to natural frequency. However, peak floor acceleration was found to be high under the conditions of a single person walking quickly, a single person trotting, and multiple persons walking randomly. In light of these findings, the floor should be paved with a fine-grained concrete building surface, according to design requirements, so that its serviceability might be improved. Overall, the relevant analytical methods presented in this paper provide guidance and practical reference for the seismic analysis of timber hybrid structures, as well as vibration serviceability analysis for CLT floors. Full article
(This article belongs to the Special Issue Performance Analysis of Timber Composite Structures)
Show Figures

Figure 1

17 pages, 7921 KiB  
Article
New Acoustic Design for the Piscina Mirabilis Located nearby the Port of Misenum
by Antonella Bevilacqua, Gino Iannace, Emanuele Navarra, Nicola Manzo and Luis Gomez-Agustina
Heritage 2024, 7(8), 4423-4439; https://doi.org/10.3390/heritage7080208 - 17 Aug 2024
Viewed by 1245
Abstract
Many heritage buildings from ancient Rome are being refurbished based on their original plan’s structure. One of them is the piscina mirabilis located nearby in Naples, which was a cistern used by the Romans to collect drinkable water for the navy waiting in [...] Read more.
Many heritage buildings from ancient Rome are being refurbished based on their original plan’s structure. One of them is the piscina mirabilis located nearby in Naples, which was a cistern used by the Romans to collect drinkable water for the navy waiting in the port of Misenum. The piscina mirabilis has similar architectural characteristics to a “cathedral”; however, its current precarious architectural state is the result of high levels of humidity that have caused the proliferation of mold on its vertical and horizontal surfaces over the centuries. Acoustic measurements were conducted inside the piscina mirabilis, highlighting an existing condition of the room being very reverberant, not suitable for occasional speech and conversations. The design proposed by the authors involves some mitigation solutions for the acoustics, mainly focused on controlling the low–medium frequencies and the realization of a restoration project consisting of a raised timber-floored walkway that runs along the perimeter walls, with the addition of water covering the existing floor as a natural element dominating the room volume, which represents the primary function of the building in antiquity. A waterfall was designed to be on the northern side wall. Acoustic studies were an important part of the refurbishment strategy, and a mitigation solution was devised to control medium–low frequencies by using inflated balloons of different sizes that were suspended from the ceiling vaults instead of widely used acoustic panels. The proposed strategy lowered the reverberation time by 3–4 s to accommodate a minimal level of conversational understanding. Such a solution is appropriate for this heritage building as well as other future conservation projects. Full article
(This article belongs to the Special Issue Acoustical Heritage: Characteristics and Preservation)
Show Figures

Figure 1

Back to TopTop