Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = tight pulse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1686 KB  
Article
The Influence of Ultrashort Laser Pulse Duration on Shock Wave Generation in Water Under Tight Focusing Conditions
by Nikita Rishkov, Nika Asharchuk, Vladimir Yusupov and Evgenii Mareev
Photonics 2025, 12(11), 1067; https://doi.org/10.3390/photonics12111067 - 28 Oct 2025
Viewed by 322
Abstract
The control of mechanical effects, such as shock waves, induced by ultrashort laser pulses in water is crucial for applications in biomedicine and material processing. However, optimizing these effects requires a detailed understanding of how laser parameters, particularly pulse duration, influence the underlying [...] Read more.
The control of mechanical effects, such as shock waves, induced by ultrashort laser pulses in water is crucial for applications in biomedicine and material processing. However, optimizing these effects requires a detailed understanding of how laser parameters, particularly pulse duration, influence the underlying energy deposition mechanisms. This study systematically investigates the dependence of shock wave amplitude on fluence (up to 10 J/cm2) and pulse duration (200 fs to 10 ps) of near-infrared laser pulses under tight focusing conditions (Numerical aperture NA = 0.42), using a combined experimental and numerical approach based on the dynamical rate equation model. Our key finding is that the shock wave amplitude is governed by the total kinetic energy of the electrons in the laser-induced plasma, leading to a distinct maximum at approximately 5 ps (confidence interval: 4.5–5.5 ps) and saturation at fluences ~7 J/cm2. This optimum arises from a balance between the increasing effectiveness of avalanche ionization for longer pulses and the competing effects of electron recombination and reduced photoionization efficiency. Consequently, these results identify a practical parameter window—pulse durations of 4–6 ps at moderate fluences—for optimizing laser-induced mechanical effects in applications such as laser surgery in aqueous media. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

35 pages, 5219 KB  
Review
Pulsed Power Plasma Stimulation: A Comprehensive Review and Field Insights
by Son T. Nguyen, Mohamed E.-S. El-Tayeb, Mohamed Adel Gabry and Mohamed Y. Soliman
Energies 2025, 18(13), 3334; https://doi.org/10.3390/en18133334 - 25 Jun 2025
Viewed by 2002
Abstract
Pulsed Power Plasma Stimulation (3PS) represents a promising and environmentally favorable alternative to conventional well stimulation techniques for enhancing subsurface permeability. This comprehensive review tracks the evolution of plasma-based rock stimulation, offering insights from key laboratory, numerical, and field-scale studies. The review begins [...] Read more.
Pulsed Power Plasma Stimulation (3PS) represents a promising and environmentally favorable alternative to conventional well stimulation techniques for enhancing subsurface permeability. This comprehensive review tracks the evolution of plasma-based rock stimulation, offering insights from key laboratory, numerical, and field-scale studies. The review begins with foundational electrohydraulic discharge concepts and progresses through the evolution of Pulsed Arc Electrohydraulic Discharge (PAED) and the more advanced 3PS systems. High-voltage, ultrafast plasma discharges generate mechanical shockwaves and localized thermal effects that result in complex fracture networks, particularly in tight and crystalline formations. Compared to conventional well stimulation techniques, 3PS reduces water use, avoids chemical additives, and minimizes induced seismicity. Laboratory studies demonstrate significant improvements in permeability, porosity, and fracture intensity, while field trials show an increase in production from oil, gas, and geothermal wells. However, 3PS faces some limitations such as short stimulation radii and logistical constraints in wireline-based delivery systems. Emerging technologies like plasma-assisted drilling and hybrid PDC–plasma tools offer promising integration pathways. Overall, 3PS provides a practical, scalable, low-impact stimulation approach with broad applicability across energy sectors, especially in environmentally sensitive or water-scarce regions. Full article
(This article belongs to the Special Issue Pulsed Power Science and High Voltage Discharge)
Show Figures

Figure 1

49 pages, 19242 KB  
Article
Study of Corner and Shape Accuracies in Wire Electro-Discharge Machining of Fin and Gear Profiles and Taper Cutting
by Joshua Adjei-Yeboah and Muhammad Pervej Jahan
Micromachines 2025, 16(5), 547; https://doi.org/10.3390/mi16050547 - 30 Apr 2025
Cited by 3 | Viewed by 1250
Abstract
Wire electrical discharge machining (WEDM) enables the production of complex parts with tight tolerances, although maintaining dimensional accuracy in corners and tapers remains challenging due to wire deflection and vibration. This study optimizes WEDM parameters for achieving high accuracy in machining complex geometrical [...] Read more.
Wire electrical discharge machining (WEDM) enables the production of complex parts with tight tolerances, although maintaining dimensional accuracy in corners and tapers remains challenging due to wire deflection and vibration. This study optimizes WEDM parameters for achieving high accuracy in machining complex geometrical parts and taper cuts in 6061 aluminum alloy using an Excetek W350G WEDM machine with a copper wire electrode. Parameters including wire tension, pulse on-time, pulse off-time, wire feed rate, open circuit voltage, and flushing pressure were varied using a L18 Taguchi orthogonal array and the response graph method to identify optimal cutting conditions. Experimental results indicated that feature-specific optimization is crucial, as different geometrical features (rectangular fins, triangular fins, gears) exhibited varying critical parameters. Key findings highlighted the importance of wire tension and pulse on-time in maintaining cutting accuracy, although at varying levels for specific features. Response graphs demonstrated the effects of major WEDM parameters on corner and profile accuracies, whereas Taguchi analysis provided the optimum settings of parameters for each feature and taper cutting. These findings will help enhance precision, efficiency, and versatility of the WEDM process in machining complex profiles and corners, contributing to precision manufacturing. Full article
(This article belongs to the Special Issue Recent Developments in Electrical Discharge Machining Technology)
Show Figures

Figure 1

14 pages, 3836 KB  
Article
The Impact of Laser Amplitude on the Radiation Characteristics of the Cross-Collision Between the Relativistic Electron and the Tightly Focused Linearly Polarized Laser
by Junze Shi, Junyuan Xu, Yizhang Li, Gang Yan and Youwei Tian
Appl. Sci. 2025, 15(9), 4974; https://doi.org/10.3390/app15094974 - 30 Apr 2025
Viewed by 570
Abstract
Within the framework of classical dynamics, the impact of laser amplitude on the cross-collision between a linearly polarized intense laser pulse and a relativistic electron under tight focusing conditions was investigated via numerical simulation. As the laser amplitude intensifies, the z-axis oscillation trajectory [...] Read more.
Within the framework of classical dynamics, the impact of laser amplitude on the cross-collision between a linearly polarized intense laser pulse and a relativistic electron under tight focusing conditions was investigated via numerical simulation. As the laser amplitude intensifies, the z-axis oscillation trajectory of the electron elongates. The spatial radiation angular distribution of the electron transforms from a “hill shape” to a “comet shape”, and the radiation peak shifts toward the direction of smaller polar angle, with the radiation concentrating in the forward position. The time spectrum is symmetrical; the number of peaks is reduced from multiple peaks to three peaks; and the relative height of the main peak and secondary peaks increases, with the time distribution gradually concentrating, which can be regarded as an ultrashort attosecond single pulse. The spectrum exhibits a multi-peak distribution trend. When the laser amplitude is relatively strong, radiation with a more concentrated frequency range and better quality can be output. The above research findings are beneficial for generating X-rays of higher quality and can be applied in fields such as biomedicine and atomic physics. Full article
Show Figures

Figure 1

15 pages, 6282 KB  
Article
Pulsed Laser Deposition Method Used to Grow SiC Nanostructure on Porous Silicon Substrate: Synthesis and Optical Investigation for UV-Vis Photodetector Fabrication
by Reem Alzubaidi, Makram A. Fakhri and László Pohl
Thermo 2025, 5(2), 13; https://doi.org/10.3390/thermo5020013 - 11 Apr 2025
Cited by 3 | Viewed by 1606
Abstract
In this study, a thin film of silicon carbide (SiC) was deposited on a porous silicon (P-Si) substrate using pulsed laser deposition (PLD). The photo–electrochemical etching method with an Nd: YAG laser at 1064 nm wavelength and 900 mJ pulse energy and at [...] Read more.
In this study, a thin film of silicon carbide (SiC) was deposited on a porous silicon (P-Si) substrate using pulsed laser deposition (PLD). The photo–electrochemical etching method with an Nd: YAG laser at 1064 nm wavelength and 900 mJ pulse energy and at a vacuum of 10−2 mbar P-Si was utilized to create a sufficiently high amount of surface area for SiC film deposition to achieve efficient SiC film growth on the P-Si substrate. X-ray diffraction (XRD) analysis was performed on the crystalline structure of SiC and showed high-intensity peaks at the (111) and (220) planes, indicating that the substrate–film interaction is substantial. Surface roughness particle topography was examined via atomic force microscopy (AFM), and a mean diameter equal to 72.83 nm was found. Field emission scanning electron microscopy (FESEM) was used to analyze surface morphology, and the pictures show spherical nanoparticles and a mud-sponge-like shape demonstrating significant nanoscale features. Photoluminescence and UV-Vis spectroscopy were utilized to investigate the optical properties, and two emission peaks were observed for the SiC and P-Si substrates, at 590 nm and 780 nm. The SiC/P-Si heterojunction photodetector exhibited rectification behavior in its dark I–V characteristics, indicating high junction quality. The spectral responsivity of the SiC/P-Si observed a peak responsivity of 0.0096 A/W at 365 nm with detectivity of 24.5 A/W Jones, and external quantum efficiency reached 340%. The response time indicates a rise time of 0.48 s and a fall time of 0.26 s. Repeatability was assured by the tight clustering of the data points, indicating the good reproducibility and stability of the SiC/P-Si deposition process. Linearity at low light levels verifies efficient photocarrier generation and separation, whereas a reverse saturation current at high intensities points to the maximum carrier generation capability of the device. Moreover, Raman spectroscopy and energy dispersive spectroscopy (EDS) analysis confirmed the structural quality and elemental composition of the SiC/P-Si film, further attesting to the uniformity and quality of the material produced. This hybrid material’s improved optoelectronic properties, achieved by combining the stability of SiC with the quantum confinement effects of P-Si, make it useful in advanced optoelectronic applications such as UV-Vis photodetectors. Full article
Show Figures

Figure 1

12 pages, 1447 KB  
Article
Proximity Proteomics Reveals USP44 Forms a Complex with BRCA2 in Neuroblastoma Cells and Is Required to Prevent Chromosome Breakage
by Asma Ali, Sajjad Hussain, Tibor Bedekovics, Raymond H. Jeon, Danielle G. May, Kyle J. Roux and Paul J. Galardy
Biomedicines 2024, 12(12), 2901; https://doi.org/10.3390/biomedicines12122901 - 20 Dec 2024
Viewed by 1380
Abstract
Background/Objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its [...] Read more.
Background/Objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44. Methods: We expressed a fusion protein that linked USP44 and mutant Escherichia coli biotin ligase BioID in SH-SY5Y neuroblastoma cells. Control experiments were performed using BioID alone. In duplicate experiments, cells were pulsed with biotin and biotinylated proteins were isolated under denaturing conditions and the proteins were identified by mass spectrometry. The resulting list of proteins were analyzed using Enrichr and cross-referenced with the COSMIC Cancer Gene Census. We validated the association with BRCA2 using immunoprecipitation. The role of USP44 in the Fanconi anemia DNA repair pathway was investigated using chromosome analysis of wild-type or Usp44-knockout cells after exposure to mitomycin C. Results: We identified 146 proteins that were selectively retrieved by the USP44 construct and compared with cells expressing the BioID ligase alone, including 15 gene products encoded by genes on tier 1 of the COSMIC Cancer Gene Census, including BRCA2. The association between USP44 and BRCA2 was validated through immunoprecipitation. We tested the functional role of USP44 in the Fanconi anemia DNA repair pathway through chromosome breakage analysis and found that cells lacking USP44 had a significant increase in chromosome breaks and radial chromosomes. We found that high BRCA2 transcript was correlated with poor survival in neuroblastoma, likely due to its tight association with proliferation in these tumors. Conclusions: Our results identified novel potential binding partners and potential substrates for USP44, including several with direct roles in cancer pathogenesis. Our results identified a novel association between BRCA2 and USP44, and a previously unknown role for USP44 in the Fanconi anemia DNA repair pathway that may contribute to its role in cancer. Full article
(This article belongs to the Special Issue Ubiquitylation and Deubiquitylation in Health and Diseases)
Show Figures

Figure 1

8 pages, 1124 KB  
Proceeding Paper
A Fog Computing-Based Cost-Effective Smart Health Monitoring Device for Infectious Disease Applications
by Saranya Govindakumar, Vijayalakshmi Sankaran, Paramasivam Alagumariappan, Bhaskar Kosuru Bojji Raju and Daniel Ford
Eng. Proc. 2024, 73(1), 6; https://doi.org/10.3390/engproc2024073006 - 17 Oct 2024
Viewed by 1056
Abstract
The COVID-19 epidemic has raised awareness of exactly how crucial it is to continuously observe issues and diagnose respiratory problems early. Although the respiratory system is the primary objective of the disease’s acute phase, subsequent complications of SARS-CoV-2 infection might trigger enduring respiratory [...] Read more.
The COVID-19 epidemic has raised awareness of exactly how crucial it is to continuously observe issues and diagnose respiratory problems early. Although the respiratory system is the primary objective of the disease’s acute phase, subsequent complications of SARS-CoV-2 infection might trigger enduring respiratory problems and symptoms, according to new research. These signs and symptoms, which collectively inflict considerable strain on healthcare systems and people’s quality of life, comprise, but are not restricted to, congestion, shortage of breath, tightness in the chest, and a decrease in lung function. Wearable technology offers a promising remedy to this persistent issue by offering continuous respiratory parameter monitoring, facilitating the early control and intervention of post-COVID-19 issues with respiration. In an effort to enhance patient outcomes and reduce expenses related to healthcare, this paper examines the possibility of using wearable technology to provide remote surveillance and the early diagnosis of respiratory problems in individuals suffering from COVID-19. In this work, a fog computing-based cost-effective smart health monitoring device is proposed for infectious disease applications. Further, the proposed device consists of three different biosensor modules, namely a MAX90614 infrared temperature sensor, a MAX30100 pulse oximeter, and a microphone sensor. All these sensor modules are connected to a fog computing device, namely a Raspberry PI microcontroller. Also, three different sensor modules were integrated with the Raspberry PI microcontroller and individuals’ physiological parameters, such as oxygen saturation (SPO2), heartbeat rate, and cough sounds, were recorded by the computing device. Additionally, a convolutional neural network (CNN)-based deep learning algorithm was coded inside the Raspberry PI and was trained with normal and COVID-19 cough sounds from the KAGGLE database. This work appears to be of high clinical significance since the developed fog computing-based smart health monitoring device is capable of identifying the presence of infectious disease through individual physiological parameters. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
Show Figures

Figure 1

24 pages, 26404 KB  
Article
Effects of Different Surface Treatment Methods on Laser Welding of Aluminum Alloy and Glass
by Changjun Chen, Lei Li, Min Zhang and Wei Zhang
Coatings 2024, 14(10), 1318; https://doi.org/10.3390/coatings14101318 - 15 Oct 2024
Cited by 2 | Viewed by 2388
Abstract
Hermetic glass-to-metal sealing (GMTS) technology combines metal and glass and can be used to construct vacuum tubes; electric discharge tubes; semiconductor diodes; reed switches; and pressure-tight glass-to-metal windows, optical windows, and lenses in electronics or electronic systems. The hermetic and mechanically strong seals [...] Read more.
Hermetic glass-to-metal sealing (GMTS) technology combines metal and glass and can be used to construct vacuum tubes; electric discharge tubes; semiconductor diodes; reed switches; and pressure-tight glass-to-metal windows, optical windows, and lenses in electronics or electronic systems. The hermetic and mechanically strong seals engineered using GTMS are highly reliable, making them suitable for deployment in harsh environments and for applications requiring high performance. However, it has always been challenging to precisely and robustly join glass and metal due to the significant disparities in their properties. In this study, the laser transmission welding of borosilicate glass and aluminum alloy using a pulsed Nd:YAG laser to achieve hermetic glass–metal seals was experimentally investigated. This research focused on various processing parameters and the influence of surface conditions on bonding quality. Three different types of surfaces—a polished surface, a surface subjected to preoxidation, and a laser-modified surface—were compared. To evaluate the weld strength, shear-tensile separation forces were measured. The analysis of fracture and separation encompassed detailed examinations of the weld morphology, microstructure, and elemental composition. The results revealed that increasing the laser welding energy initially enhanced the weld strength until a saturation point was reached. Among the three different surface treatments tested, the laser surface modification of aluminum alloy yielded the highest weld strength. The maximum achieved bond force exceeded 35.38 N, demonstrating the feasibility of using cost-effective pulsed laser welding for glass-to-metal sealing. The results were significantly better than those from previous research in which aluminum alloy surfaces were pretreated using microarc oxidation. Full article
(This article belongs to the Special Issue Laser-Assisted Processes and Thermal Treatments of Materials)
Show Figures

Figure 1

13 pages, 955 KB  
Article
The Intrinsic Correlations between Prompt Emission and X-ray Flares of Gamma-Ray Bursts
by Xing-Ting Zhong, Si-Yuan Zhu, Li-Ming Zhuo, Zeng Zhang and Fu-Wen Zhang
Universe 2024, 10(9), 343; https://doi.org/10.3390/universe10090343 - 27 Aug 2024
Viewed by 980
Abstract
X-ray flare (XRF) is a common phenomenon in the X-ray afterglow of gamma-ray bursts (GRBs). Although it is commonly believed that XRFs may share a common origin with prompt emission, i.e., the “internal” origin, the origin of XRFs is still unknown. In this [...] Read more.
X-ray flare (XRF) is a common phenomenon in the X-ray afterglow of gamma-ray bursts (GRBs). Although it is commonly believed that XRFs may share a common origin with prompt emission, i.e., the “internal” origin, the origin of XRFs is still unknown. In this work, we compile a GRB sample containing 31 GRBs with a single XRF, a well-measured spectrum, and a redshift, and investigate the intrinsic properties and correlations between prompt emission and the XRFs of these events. We find that the distributions of main physical parameters of prompt emission and XRFs are basically log-normal. The median value of the rise time is shorter than the decay time for all flares, with a ratio of about 1:2, which is similar to the fast rise and exponential decay structure of prompt emission pulses. We also find that the prompt emission energy (Eiso) and peak luminosity (Liso) have tight correlations with XRF energy (EX,iso) and peak luminosity (LX,p), EisoEX,iso0.74 (LX,p0.62) and LisoEX,iso0.85 (LX,p0.68). However, the durations of prompt emissions are independent of the temporal properties of XRFs. Furthermore, we also analyze the three-parameter correlations between prompt emissions and XRFs, and find that there are tight correlations among the XRF peak time (Tp,z), LX,p, and Eiso/Liso, LX,pTp,z1.08Eiso0.84 and LX,pTp,z1.09Liso0.71. Interestingly, these results are very similar to the properties of an X-ray plateau in GRBs, which indicates that X-ray flares and plateaus may have the same physical origin, and strongly supports that the two emission components originate from the late-time activity of the central engine. Full article
Show Figures

Figure 1

19 pages, 11018 KB  
Article
Experimental Study on Pulsed Plasma Stimulation and Matching with Simulation Work
by Mina Khalaf, M. Soliman, S. M. Farouq-Ali, Craig Cipolla and Ron Dusterhoft
Appl. Sci. 2024, 14(11), 4752; https://doi.org/10.3390/app14114752 - 31 May 2024
Cited by 2 | Viewed by 1817
Abstract
Plasma stimulation is a form of waterless fracturing as it requires that only the wellbore be filled with an aqueous fluid. The technique creates multiple fractures propagating in different directions around the wellbore. The intent of this paper is to present an experimental [...] Read more.
Plasma stimulation is a form of waterless fracturing as it requires that only the wellbore be filled with an aqueous fluid. The technique creates multiple fractures propagating in different directions around the wellbore. The intent of this paper is to present an experimental and numerical investigation of the degree of competitiveness of plasma stimulation with hydraulic fracturing, especially in the case of stimulating tight formation. Several cases were run experimentally. The samples included limestone and sandstone to investigate plasma fracturing in different rock types. In addition, the main goal of the experiments was to study the creation of fracture(s) under confining stresses, the type of rock, the amount of electrical energy used in the experiment, and the length of the wire to generate the plasma reaction. A laboratory plasma equipment was designed and used to accomplish the experimental work. The experiments were then numerically matched using a finite element numerical simulator, HOSS developed by LANL (Los Alamos National Lab). HOSS was developed to simulate high-strain-rate fractures such as those created by plasma stimulation. It accounts for mixed-mode fracture mechanics which are tensile and shear fractures. The simulator governing equations obey the conservation of mass and momentum in a solid-mechanics sense and account for the nonlinear deformation of rock material. The matching of the experiment allowed us to validate the HOSS simulation of the process and showed that the numerical results are in good agreement with the experimental work. Using the HOSS simulator, we also investigated the effect of higher energy levels and/or short release time on a cement rock model. The pressure profile that is developed due to the energy release can vary in the peak pressure and the release time. The results showed that the plasma fracturing technique is an effective stimulation method in sandstone and limestone. Plasma fractures were developed in the rock samples and extended from the sample wellbore to the outer boundaries. The shape of the pressure pulse has an impact on the developed fractures. Moreover, the effect of plasma stimulation on natural fractures was studied numerically. It was found that natural fractures can arrest the plasma-generated fractures that propagate from the wellbore to the outer boundaries. However, new fractures may develop in the rock starting from the natural fracture tips. Full article
Show Figures

Figure 1

16 pages, 9937 KB  
Article
Altered Sweat Composition Due to Changes in Tight Junction Expression of Sweat Glands in Cholinergic Urticaria Patients
by Denisa Daci, Sabine Altrichter, François Marie Grillet, Selma Dib, Ahmad Mouna, Sukashree Suresh Kumar, Dorothea Terhorst-Molawi, Marcus Maurer, Dorothee Günzel and Jörg Scheffel
Int. J. Mol. Sci. 2024, 25(9), 4658; https://doi.org/10.3390/ijms25094658 - 25 Apr 2024
Cited by 4 | Viewed by 3393
Abstract
In cholinergic urticaria (CholU), small, itchy wheals are induced by exercise or passive warming and reduced sweating has been reported. Despite the described reduced muscarinic receptor expression, sweat duct obstruction, or sweat allergy, the underlying pathomechanisms are not well understood. To gain further [...] Read more.
In cholinergic urticaria (CholU), small, itchy wheals are induced by exercise or passive warming and reduced sweating has been reported. Despite the described reduced muscarinic receptor expression, sweat duct obstruction, or sweat allergy, the underlying pathomechanisms are not well understood. To gain further insights, we collected skin biopsies before and after pulse-controlled ergometry and sweat after sauna provocation from CholU patients as well as healthy controls. CholU patients displayed partially severely reduced local sweating, yet total sweat volume was unaltered. However, sweat electrolyte composition was altered, with increased K+ concentration in CholU patients. Formalin-fixed, paraffin-embedded biopsies were stained to explore sweat leakage and tight junction protein expression. Dermcidin staining was not found outside the sweat glands. In the secretory coils of sweat glands, the distribution of claudin-3 and -10b as well as occludin was altered, but the zonula occludens-1 location was unchanged. In all, dermcidin and tight junction protein staining suggests an intact barrier with reduced sweat production capability in CholU patients. For future studies, an ex vivo skin model for quantification of sweat secretion was established, in which sweat secretion could be pharmacologically stimulated or blocked. This ex vivo model will be used to further investigate sweat gland function in CholU patients and decipher the underlying pathomechanism(s). Full article
(This article belongs to the Special Issue The Tight Junction and Its Proteins: From Structure to Pathologies)
Show Figures

Figure 1

10 pages, 1538 KB  
Article
Visualizing a Cold Stress-Specific Pulse Wave in Traditional Pulse Diagnosis (‘Tight Pulse’) Correlated with Vascular Changes in the Radial Artery Induced by a Cold Pressor Trial
by Jichung Song, Jae Young Choi, Byung-Wook Lee, Dongmyung Eom and Chang-Hyun Song
Sensors 2024, 24(7), 2086; https://doi.org/10.3390/s24072086 - 25 Mar 2024
Cited by 1 | Viewed by 2083
Abstract
Radial pulse diagnosis is the most common method to examine the human health state in Traditional East Asian Medicine (TEAM). A cold stress-related suboptimal health state (subhealth) is often undetectable during routine medical examinations, however, it can be detected through the palpation of [...] Read more.
Radial pulse diagnosis is the most common method to examine the human health state in Traditional East Asian Medicine (TEAM). A cold stress-related suboptimal health state (subhealth) is often undetectable during routine medical examinations, however, it can be detected through the palpation of specific pulse waves, particularly a ‘tight pulse’, in TEAM. Therefore, this study examined a correlation between ‘tight pulse’ and vascular changes in the radial artery (RA) induced by a cold pressor trial (CPT). Twenty healthy subjects underwent sequentially control trial and CPT with room-temperature and ice-cold water, respectively, on the right forearm. The radial pulse and vascular changes were then examined on the left arm. The radial pulse scores for frequencies of ‘tight pulse’ with strong arterial tension increased after the CPT compared with the control trial. The pulse scores were reversely correlated with the RA thickness and volumes in ultrasonography, but not with changes in the systolic/diastolic blood pressure. The RA thickness-based vascular surface and three-dimensional images visualized a ‘tight pulse’ showing the vasoconstriction and bumpy-/rope-shaped vascular changes in the radial pulse diagnostic region after the CPT. These findings provide valuable insights into the potential integration of clinical radial pulse diagnosis with ultrasonography for cold-related subhealth. Full article
(This article belongs to the Special Issue Biosignal Sensing and Processing for Clinical Diagnosis II)
Show Figures

Figure 1

23 pages, 14400 KB  
Article
Exploring the Mechanism of Pulse Hydraulic Fracturing in Tight Reservoirs
by Zhihui Ren, Suling Wang, Kangxing Dong, Weiqiang Yu and Lu Lu
Processes 2023, 11(12), 3398; https://doi.org/10.3390/pr11123398 - 10 Dec 2023
Cited by 5 | Viewed by 2440
Abstract
Pulse hydraulic fracturing is capable of creating intricate seam networks for improved reservoir recovery, but its dynamic damage mechanism remains unclear, limiting its scientific guidance for fracturing construction. This study combined the statistical damage and viscoelastic models according to the D-P criterion and [...] Read more.
Pulse hydraulic fracturing is capable of creating intricate seam networks for improved reservoir recovery, but its dynamic damage mechanism remains unclear, limiting its scientific guidance for fracturing construction. This study combined the statistical damage and viscoelastic models according to the D-P criterion and fluid flow continuity equation to establish a mathematical model of the fluid–solid coupling under pulsed hydraulic pressure. The finite element approach was used to investigate the dynamic response and damage accumulation law of tight reservoirs under various pulse parameters. The model’s correctness was verified with indoor triaxial pulse hydraulic fracturing studies, and the Changqing oilfield’s pulse hydraulic fracturing parameters were optimized. The results showed that the rock body around the borehole sustained dynamic damage when exposed to pulsed fluid pressure. The impact force increases with frequency; however, when the frequency is too high, the dynamic pore pressure cannot be stabilized. Consequently, the damage to the rock mass starts to increase and then progressively decreases with higher pulse frequencies. The ideal frequency was found to be 1 Hz. The rock body steadily accumulates damage as the number of pulses rises, increasing the damage value gradually. At the same frequency, the damage is higher for larger pulse amplitudes and ground stress differences, as well as a smaller modulus of elasticity. Pulse cycling reduces the rupture pressure by up to 26% compared to conventional hydraulic fracturing. Moreover, the Sine wave is 4–20% better than the triangle wave. The pulse damage mechanism and parameter optimization in this paper provide theoretical support for improving the effect of hydraulic fracture modification. Full article
Show Figures

Figure 1

11 pages, 2671 KB  
Article
Numerical Aperture-Dependent Spatial Scaling of Plasma Channels in HPHT Diamond
by Yulia Gulina, Jiaqi Zhu, George Krasin, Evgeny Kuzmin and Sergey Kudryashov
Photonics 2023, 10(10), 1177; https://doi.org/10.3390/photonics10101177 - 23 Oct 2023
Cited by 4 | Viewed by 1619
Abstract
The investigation of plasma channels induced by focused ultra-short 1030-nm laser pulses in bulk of synthetic High Pressure High Temperature (HPHT) diamond revealed strong dependence of their spatial parameters on the used numerical aperture of the lens (NA = 0.15–0.45). It was shown [...] Read more.
The investigation of plasma channels induced by focused ultra-short 1030-nm laser pulses in bulk of synthetic High Pressure High Temperature (HPHT) diamond revealed strong dependence of their spatial parameters on the used numerical aperture of the lens (NA = 0.15–0.45). It was shown that at weak focusing conditions it is possible to significantly increase the length of the plasma channel with a slight increase in pulse power, while tight focusing allows one to obtain more compact structures in the same range of used powers. Such a dependence paves the way to new possibilities in 3D processing of transparent dielectrics, allowing one, for example, to vary the spatial parameters of modified regions without changing the setup, but only by controlling the lens aperture, which seems very promising for industrial applications. Full article
Show Figures

Figure 1

31 pages, 22717 KB  
Review
Trabecular Meshwork Movement Controls Distal Valves and Chambers: New Glaucoma Medical and Surgical Targets
by Murray Johnstone, Chen Xin, Elizabeth Martin and Ruikang Wang
J. Clin. Med. 2023, 12(20), 6599; https://doi.org/10.3390/jcm12206599 - 18 Oct 2023
Cited by 7 | Viewed by 4002
Abstract
Herein, we provide evidence that human regulation of aqueous outflow is by a pump-conduit system similar to that of the lymphatics. Direct observation documents pulsatile aqueous flow into Schlemm’s canal and from the canal into collector channels, intrascleral channels, aqueous veins, and episcleral [...] Read more.
Herein, we provide evidence that human regulation of aqueous outflow is by a pump-conduit system similar to that of the lymphatics. Direct observation documents pulsatile aqueous flow into Schlemm’s canal and from the canal into collector channels, intrascleral channels, aqueous veins, and episcleral veins. Pulsatile flow in vessels requires a driving force, a chamber with mobile walls and valves. We demonstrate that the trabecular meshwork acts as a deformable, mobile wall of a chamber: Schlemm’s canal. A tight linkage between the driving force of intraocular pressure and meshwork deformation causes tissue responses in milliseconds. The link provides a sensory-motor baroreceptor-like function, providing maintenance of a homeostatic setpoint. The ocular pulse causes meshwork motion oscillations around the setpoint. We document valves entering and exiting the canal using real-time direct observation with a microscope and multiple additional modalities. Our laboratory-based high-resolution SD-OCT platform quantifies valve lumen opening and closing within milliseconds synchronously with meshwork motion; meshwork tissue stiffens, and movement slows in glaucoma tissue. Our novel PhS-OCT system measures nanometer-level motion synchronous with the ocular pulse in human subjects. Movement decreases in glaucoma patients. Our model is robust because it anchors laboratory studies to direct observation of physical reality in humans with glaucoma. Full article
(This article belongs to the Special Issue Advances in Glaucoma Management and Intraocular Pressure Physiology)
Show Figures

Figure 1

Back to TopTop