Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = thin films power sources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3492 KiB  
Article
Deep Learning-Based Rooftop PV Detection and Techno Economic Feasibility for Sustainable Urban Energy Planning
by Ahmet Hamzaoğlu, Ali Erduman and Ali Kırçay
Sustainability 2025, 17(15), 6853; https://doi.org/10.3390/su17156853 - 28 Jul 2025
Viewed by 253
Abstract
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is [...] Read more.
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is estimated using deep learning models. In order to identify roof areas, high-resolution open-source images were manually labeled, and the training dataset was trained with DeepLabv3+ architecture. The developed model performed roof area detection with high accuracy. Model outputs are integrated with a user-friendly interface for economic analysis such as cost, profitability, and amortization period. This interface automatically detects roof regions in the bird’s-eye -view images uploaded by users, calculates the total roof area, and classifies according to the potential of the area. The system, which is applied in 81 provinces of Turkey, provides sustainable energy projections such as PV installed capacity, installation cost, annual energy production, energy sales revenue, and amortization period depending on the panel type and region selection. This integrated system consists of a deep learning model that can extract the rooftop area with high accuracy and a user interface that automatically calculates all parameters related to PV installation for energy users. The results show that the DeepLabv3+ architecture and the Adam optimization algorithm provide superior performance in roof area estimation with accuracy between 67.21% and 99.27% and loss rates between 0.6% and 0.025%. Tests on 100 different regions yielded a maximum roof estimation accuracy IoU of 84.84% and an average of 77.11%. In the economic analysis, the amortization period reaches the lowest value of 4.5 years in high-density roof regions where polycrystalline panels are used, while this period increases up to 7.8 years for thin-film panels. In conclusion, this study presents an interactive user interface integrated with a deep learning model capable of high-accuracy rooftop area detection, enabling the assessment of sustainable PV energy potential at the city scale and easy economic analysis. This approach is a valuable tool for planning and decision support systems in the integration of renewable energy sources. Full article
Show Figures

Figure 1

15 pages, 3563 KiB  
Article
Effects of Deposition Power and Annealing Temperature on Indium Zinc Oxide (IZO) Film’s Properties and Their Applications to the Source–Drain Electrodes of Amorphous Indium Gallium Zinc Oxide (a-IGZO) Thin-Film Transistors (TFTs)
by Yih-Shing Lee, Chih-Hsiang Chang, Bing-Shin Le, Vo-Truong Thao Nguyen, Tsung-Cheng Tien and Horng-Chih Lin
Nanomaterials 2025, 15(11), 780; https://doi.org/10.3390/nano15110780 - 22 May 2025
Viewed by 861
Abstract
The optical, electrical, and material properties of In–Zn–O (IZO) films were optimized by adjusting the deposition power and annealing temperature. Films deposited at 125 W and annealed at 300 °C exhibited the best performance, with the lowest resistivity (1.43 × 10−3 Ω·cm), [...] Read more.
The optical, electrical, and material properties of In–Zn–O (IZO) films were optimized by adjusting the deposition power and annealing temperature. Films deposited at 125 W and annealed at 300 °C exhibited the best performance, with the lowest resistivity (1.43 × 10−3 Ω·cm), highest mobility (11.12 cm2/V·s), and highest carrier concentration (4.61 × 1020 cm−3). The average transmittance and optical energy gap were 82.57% and 3.372 eV, respectively. The electrical characteristics of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) using IZO source-drain (S–D) electrodes with various sputtering powers and annealing temperatures were investigated. The optimal sputtering power of 125 W and annealing temperature of 300 °C for the IZO S–D electrodes resulted in the highest field-effect mobility (~12.31 cm2/V·s) and on current (~2.09 × 10−6 A). This improvement is attributed to enhanced carrier concentration and mobility, which result from the high In/Zn ratio, the larger grain size, and low RMS roughness in the IZO films. The parasitic contact resistance (RSD) and channel resistance (RCH) were analyzed using the total resistance method. RSD decreased with increasing IZO S–D sputtering power, while RCH reached a minimum at 125 W. Both resistances decreased significantly as the annealing temperature increased from 200 °C to 300 °C. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor Material, Device and System Integration)
Show Figures

Figure 1

13 pages, 18986 KiB  
Article
Thermal Modelling of Metals and Alloys Irradiated by Pulsed Electron Beam: Focus on Rough, Heterogeneous and Multilayered Materials
by Andrea Lucchini Huspek, Valentina Mataloni, Ali Mohtashamifar, Luca Paterlini and Massimiliano Bestetti
J. Manuf. Mater. Process. 2025, 9(4), 130; https://doi.org/10.3390/jmmp9040130 - 15 Apr 2025
Viewed by 620
Abstract
Low-Energy High-Current Electron Beam (LEHCEB) is an innovative vacuum technology employed for the surface modification of conductive materials. Surface treatments by means of LEHCEB allow the melting and rapid solidification of a thin layer (up to ~10 μm) of material. The short duration [...] Read more.
Low-Energy High-Current Electron Beam (LEHCEB) is an innovative vacuum technology employed for the surface modification of conductive materials. Surface treatments by means of LEHCEB allow the melting and rapid solidification of a thin layer (up to ~10 μm) of material. The short duration of each pulse (2.5 μs) allows for the generation of high thermal rates, up to 109 K/s. Due to the peculiar features of LEHCEB source, in situ temperature monitoring inside the vacuum chamber is unfeasible, even with the most rapid IR pyrometers available on the market. Therefore, multiphysics simulations serve as a tool for predicting and assessing the thermal effects induced by electron beam irradiation. COMSOL Multiphysics was employed to study the thermal behaviour of metals and alloys at the sub-microsecond time scale by implementing both experimental power time profiles and semi-empirical electron penetration functions. Three case studies were considered: (a) 17-4 PH steel produced by Binder Jetting, (b) biphasic Al-Si13 alloy, and (c) Magnetron Sputtering Nb films on Ti substrate. The influence on the thermal effects of electron accelerating voltage and number of pulses was investigated, as well as the role of the physicochemical properties of the materials. Full article
(This article belongs to the Special Issue New Trends in Precision Machining Processes)
Show Figures

Figure 1

12 pages, 2851 KiB  
Article
Low Saturation Voltage and High Stability in Dual-Mode Schottky Barrier TFTs Using Bilayer IGZO
by Yi Huang, Xiaoci Liang, Li Zhang, Mengye Wang, Tianyue Wang and Chuan Liu
Electronics 2025, 14(7), 1380; https://doi.org/10.3390/electronics14071380 - 29 Mar 2025
Viewed by 553
Abstract
Schottky barrier thin-film transistors (SBTFTs) are promising for low-power electronics due to advantages such as low saturation voltage and high stability. In this study, we developed a high-performance bilayer IGZO SBTFT by combining a 4.7 nm atomic layer deposition (ALD) IGZO layer with [...] Read more.
Schottky barrier thin-film transistors (SBTFTs) are promising for low-power electronics due to advantages such as low saturation voltage and high stability. In this study, we developed a high-performance bilayer IGZO SBTFT by combining a 4.7 nm atomic layer deposition (ALD) IGZO layer with an 11.8 nm sputtering IGZO layer, using platinum (Pt) and molybdenum (Mo) electrodes. The device exhibits dual-mode operation. In Schottky barrier TFT (SB-TFT) mode (Pt as source), the bilayer structure reduces defect density, achieving a very low saturation voltage (~0.4 V), high field-effect mobility (up to 20 cm2/V·s), and enhanced stability under stress conditions, including positive/negative bias and negative illumination. In quasi-Ohmic TFT (QO-TFT) mode (Pt as drain), the device retains conventional saturation behavior in output characteristics while delivering similar mobility and robust stability. This work provides a novel bilayer SBTFT design with dual functionality, enabling a higher current drive, improved stability, and flexibility for energy-efficient applications. Full article
(This article belongs to the Special Issue Feature Papers in Semiconductor Devices)
Show Figures

Figure 1

15 pages, 6315 KiB  
Article
Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film
by Sangkwon Park and Hafiz Muhammad Abid Yaseen
Nanomaterials 2025, 15(5), 403; https://doi.org/10.3390/nano15050403 - 6 Mar 2025
Viewed by 986
Abstract
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low [...] Read more.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO2), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix. The nanocomposite films were prepared by depositing molecularly thin films of P(VDF-TrFE) and nanofiller nanoparticles (NPs) spread at the air/water interface onto the indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrate, and they were characterized by measuring their microstructures, crystallinity, β-phase contents, and piezoelectric coefficients (d33) using SEM, FT-IR, XRD, and quasi-static meter, respectively. Multiple PENGs incorporating various nanofillers within the polymer matrix were developed by assembling thin film-coated substrates into a sandwich-like structure. Their piezoelectric properties, such as open-circuit output voltage (VOC) and short-circuit current (ISC), were analyzed. As a result, the PENG containing 4 wt% PZT, which was named P-PZT-4, showed the best performance of VOC of 68.5 V with the d33 value of 78.2 pC/N and β-phase content of 97%. The order of the maximum VOC values for the PENGs of nanocomposite thin films containing various nanofillers was PZT (68.5 V) > rGO (64.0 V) > ZnO (50.9 V) > TiO2 (48.1 V). When the best optimum PENG was integrated into a simple circuit comprising rectifiers and a capacitor, it demonstrated an excellent two-dimensional power density of 20.6 μW/cm2 and an energy storage capacity of 531.4 μJ within 3 min. This piezoelectric performance of PENG with the optimized nanofiller type and content was found to be superior when it was compared with those in the literature. This PENG comprising nanocomposite thin film with optimized nanofiller type and content shows a potential application for a power source for low-powered electronics such as wearable devices. Full article
Show Figures

Figure 1

17 pages, 10427 KiB  
Article
Analysis of Electrochemical Properties of LT-SOFCs According to Thickness of PrOx Cathode Interlayer
by Ji-Woong Jeon, Jun-Geon Park, Geon-Hyeop Kim, Seung-Heon Lee, Jeong-Woo Shin and Gu-Young Cho
Sustainability 2025, 17(4), 1403; https://doi.org/10.3390/su17041403 - 8 Feb 2025
Viewed by 1631
Abstract
Solid oxide fuel cells (SOFCs) are attracting attention as an eco-friendly power source because they show high power density. However, SOFC requires a high-temperature environment of 800 °C or higher, and accordingly, the problem of thermal stability of the material constituting SOFC has [...] Read more.
Solid oxide fuel cells (SOFCs) are attracting attention as an eco-friendly power source because they show high power density. However, SOFC requires a high-temperature environment of 800 °C or higher, and accordingly, the problem of thermal stability of the material constituting SOFC has been raised. On the other hand, low-temperature solid oxide fuel cells (LT-SOFCs) research is steadily progressing to improve the electrochemical performance at low temperatures by improving the oxygen reduction reaction of the cathode by applying a cathode interlayer of various materials. In this study, LT-SOFCs were manufactured and electrochemically evaluated using praseodymium oxide (PrOx) as a cathode interlayer. Scandium Stabilized Zirconia (ScSZ) pellets were used as electrolyte support for LT-SOFC, and PrOx was deposited by various thicknesses as a cathode interlayer on ScSZ pellets by a sputtering process. Pt and Ni were deposited under the same process conditions for the cathode and anode, respectively. To analyze the thin-film characteristics of the PrOx cathode interlayer, SEM (Scanning Electron Microscopy), X-ray Diffraction (XRD), and XPS (X-ray Photoelectron Spectroscopy) were analyzed. The electrochemical characteristics of LT-SOFCs were evaluated by electrochemical impedance spectroscopy (EIS). Hydrogen was supplied to the anode at the flow rate of 50 sccm, and the performance of LT-SOFC was evaluated at 500 °C by exposing the cathode to the atmosphere. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

12 pages, 2804 KiB  
Article
Output Characteristics of Carbon Nanotube Thermoelectric Generator with Slitted Kirigami Structure
by Shingo Terashima, Yuki Iwasa, Naoki Tanaka, Tsuyohiko Fujigaya and Eiji Iwase
Materials 2025, 18(3), 656; https://doi.org/10.3390/ma18030656 - 2 Feb 2025
Cited by 1 | Viewed by 919
Abstract
The objective of our research is to improve the power generation of a thermoelectric generator (TEG) using a single-walled carbon nanotube (SWCNT) sheet by applying the out-of-plane deformation of a slitted kirigami structure. In order to obtain a large amount of power from [...] Read more.
The objective of our research is to improve the power generation of a thermoelectric generator (TEG) using a single-walled carbon nanotube (SWCNT) sheet by applying the out-of-plane deformation of a slitted kirigami structure. In order to obtain a large amount of power from a TEG using a thin-film thermoelectric (TE) element such as a SWCNT sheet, it is necessary to generate a large temperature difference in the in-plane direction of the thin-film TE element. However, it is difficult to realize a large temperature difference when the thin-film TE element is in contact with a heat source due to the need for a layer with high heat insulation. In this research, we proposed and fabricated a TEG with the out-of-plane deformation of a kirigami structure with slits using a p-n patterned SWCNT sheet as the thin-film TE material and evaluated the open circuit voltage with respect to the out-of-plane deformation and the number of TE elements. As a result, the output performance of SWCNT TEG was clarified when the out-of-plane deformation and the number of TE element pairs were varied. Full article
(This article belongs to the Special Issue Advanced Thermoelectric Materials, Devices and Systems)
Show Figures

Figure 1

12 pages, 5249 KiB  
Article
Highly Productive Laser Annealing Manufacturing Method Using Continuous Blue WBC (Wavelength Beam Combining) Technique
by Mitsuoki Hishida, Naohiko Kobata, Kentaro Miyano, Masaki Nobuoka, Tatsuya Okada and Takashi Noguchi
Materials 2024, 17(22), 5399; https://doi.org/10.3390/ma17225399 - 5 Nov 2024
Cited by 2 | Viewed by 1312
Abstract
Blue laser annealing can be used to obtain a high-mobility thin-film transistor (TFT) through a laser annealing (i.e., LTPS: low-temperature Poly-Si) process. However, the laser annealing process’s low productivity (as well as high cost) is an issue because the high output power of [...] Read more.
Blue laser annealing can be used to obtain a high-mobility thin-film transistor (TFT) through a laser annealing (i.e., LTPS: low-temperature Poly-Si) process. However, the laser annealing process’s low productivity (as well as high cost) is an issue because the high output power of blue lasers still needs to be addressed. Therefore, productivity can be improved if blue laser energy is efficiently supplied during the laser annealing process using a continuous wave laser instead of a conventional pulsed excimer laser. We developed a blue laser light source (440 ± 10 nm) using the wavelength beam combining (WBC) method, which can achieve a laser power density of 73.7 kW/cm2. In this semiconductor laser, when the power was increased s by 2.9 times, the laser scanning speed was increased by 5.0 times, achieving twice the productivity of conventional lasers. After laser annealing, the size of the crystal grains varied between 2 and 15 μm, resulting in a crystallization rate of 100% by Raman scattering rsult and low resistivity of 0.04 Ωcm. This increase in production capacity is not an arithmetic increase with increased power but a geometric production progression. Full article
Show Figures

Figure 1

10 pages, 2306 KiB  
Article
Optimization of Thermoelectric Performance of Ag2Te Films via a Co-Sputtering Method
by Hanwen Xu, Zhongzhao Zha, Fu Li, Guangxing Liang, Jingting Luo, Zhuanghao Zheng and Yue-Xing Chen
Nanomaterials 2024, 14(21), 1762; https://doi.org/10.3390/nano14211762 - 3 Nov 2024
Cited by 1 | Viewed by 1583
Abstract
Providing self-powered energy for wearable electronic devices is currently an important research direction in the field of thermoelectric (TE) thin films. In this study, a simple dual-source magnetron sputtering method was used to prepare Ag2Te thin films, which exhibit good TE [...] Read more.
Providing self-powered energy for wearable electronic devices is currently an important research direction in the field of thermoelectric (TE) thin films. In this study, a simple dual-source magnetron sputtering method was used to prepare Ag2Te thin films, which exhibit good TE properties at room temperature, and the growth temperature and subsequent annealing process were optimized to obtain high-quality films. The experimental results show that films grown at a substrate temperature of 280 °C exhibit a high power factor (PF) of ~3.95 μW/cm·K2 at room temperature, which is further improved to 4.79 μW/cm·K2 after optimal annealing treatment, and a highest PF of ~7.85 μW/cm·K2 was observed at 200 °C. Appropriate annealing temperature effectively increases the carrier mobility of the Ag2Te films and adjusts the Ag/Te ratio to make the composition closer to the stoichiometric ratio, thus promoting the enhancement of electrical transport properties. A TE device with five legs was assembled using as-fabricated Ag2Te thin films. With a temperature difference of 40 K, the device was able to generate an output voltage of approximately 14.43 mV and a corresponding power of about 50.52 nW. This work not only prepared a high-performance Ag2Te film but also demonstrated its application prospects in the field of self-powered electronic devices. Full article
Show Figures

Figure 1

22 pages, 6177 KiB  
Review
Recent Progresses on Hybrid Lithium Niobate External Cavity Semiconductor Lasers
by Min Wang, Zhiwei Fang, Haisu Zhang, Jintian Lin, Junxia Zhou, Ting Huang, Yiran Zhu, Chuntao Li, Shupeng Yu, Botao Fu, Lingling Qiao and Ya Cheng
Materials 2024, 17(18), 4453; https://doi.org/10.3390/ma17184453 - 11 Sep 2024
Cited by 1 | Viewed by 2711
Abstract
Thin film lithium niobate (TFLN) has become a promising material platform for large scale photonic integrated circuits (PICs). As an indispensable component in PICs, on-chip electrically tunable narrow-linewidth lasers have attracted widespread attention in recent years due to their significant applications in high-speed [...] Read more.
Thin film lithium niobate (TFLN) has become a promising material platform for large scale photonic integrated circuits (PICs). As an indispensable component in PICs, on-chip electrically tunable narrow-linewidth lasers have attracted widespread attention in recent years due to their significant applications in high-speed optical communication, coherent detection, precision metrology, laser cooling, coherent transmission systems, light detection and ranging (LiDAR). However, research on electrically driven, high-power, and narrow-linewidth laser sources on TFLN platforms is still in its infancy. This review summarizes the recent progress on the narrow-linewidth compact laser sources boosted by hybrid TFLN/III-V semiconductor integration techniques, which will offer an alternative solution for on-chip high performance lasers for the future TFLN PIC industry and cutting-edge sciences. The review begins with a brief introduction of the current status of compact external cavity semiconductor lasers (ECSLs) and recently developed TFLN photonics. The following section presents various ECSLs based on TFLN photonic chips with different photonic structures to construct external cavity for on-chip optical feedback. Some conclusions and future perspectives are provided. Full article
Show Figures

Figure 1

25 pages, 5931 KiB  
Review
A Review of CIGS Thin Film Semiconductor Deposition via Sputtering and Thermal Evaporation for Solar Cell Applications
by Karima Machkih, Rachid Oubaki and Mohammed Makha
Coatings 2024, 14(9), 1088; https://doi.org/10.3390/coatings14091088 - 24 Aug 2024
Cited by 11 | Viewed by 5676
Abstract
Over the last two decades, thin film solar cell technology has made notable progress, presenting a competitive alternative to silicon-based solar counterparts. CIGS (CuIn1−xGaxSe2) solar cells, leveraging the tunable optoelectronic properties of the CIGS absorber layer, currently [...] Read more.
Over the last two decades, thin film solar cell technology has made notable progress, presenting a competitive alternative to silicon-based solar counterparts. CIGS (CuIn1−xGaxSe2) solar cells, leveraging the tunable optoelectronic properties of the CIGS absorber layer, currently stand out with the highest power conversion efficiency among second-generation solar cells. Various deposition techniques, such as co-evaporation using Cu, In, Ga, and Se elemental sources, the sequential selenization/Sulfurization of sputtered metallic precursors (Cu, In, and Ga), or non-vacuum methods involving the application of specialized inks onto a substrate followed by annealing, can be employed to form CIGS films as light absorbers. While co-evaporation demonstrates exceptional qualities in CIGS thin film production, challenges persist in controlling composition and scaling up the technology. On the other hand, magnetron sputtering techniques show promise in addressing these issues, with ongoing research emphasizing the adoption of simplified and safe manufacturing processes while maintaining high-quality CIGS film production. This review delves into the evolution of CIGS thin films for solar applications, specifically examining their development through physical vapor deposition methods including thermal evaporation and magnetron sputtering. The first section elucidates the structure and characteristics of CIGS-based solar cells, followed by an exploration of the challenges associated with employing solution-based deposition techniques for CIGS fabrication. The second part of this review focuses on the intricacies of controlling the properties of CIGS-absorbing materials deposited via various processes and the subsequent impact on energy conversion performance. This analysis extends to a detailed examination of the deposition processes involved in co-evaporation and magnetron sputtering, encompassing one-stage, two-stage, three-stage, one-step, and two-step methodologies. At the end, this review discusses the prospective next-generation strategies aimed at improving the performance of CIGS-based solar cells. This paper provides an overview of the present research state of CIGS solar cells, with an emphasis on deposition techniques, allowing for a better understanding of the relationship between CIGS thin film properties and solar cell efficiency. Thus, a roadmap for selecting the most appropriate deposition technique is created. By analyzing existing research, this review can assist researchers in this field in identifying gaps, which can then be used as inspiration for future research. Full article
(This article belongs to the Special Issue Magnetron Sputtering Coatings: From Materials to Applications)
Show Figures

Figure 1

14 pages, 23098 KiB  
Article
Influence of Sputtering Power on the Properties of Magnetron Sputtered Tin Selenide Films
by Krzysztof Mars, Mateusz Sałęga-Starzecki, Kinga M. Zawadzka and Elżbieta Godlewska
Materials 2024, 17(13), 3132; https://doi.org/10.3390/ma17133132 - 26 Jun 2024
Viewed by 1714
Abstract
The ecofriendly tin selenide (SnSe) is expected to find multiple applications in optoelectronic, photovoltaic, and thermoelectric systems. This work is focused on the thermoelectric properties of thin films. SnSe single crystals exhibit excellent thermoelectric properties, but it is not so in the case [...] Read more.
The ecofriendly tin selenide (SnSe) is expected to find multiple applications in optoelectronic, photovoltaic, and thermoelectric systems. This work is focused on the thermoelectric properties of thin films. SnSe single crystals exhibit excellent thermoelectric properties, but it is not so in the case of polycrystalline bulk materials. The investigations were motivated by the fact that nanostructuring may lead to an improvement in thermoelectric efficiency, which is evaluated through a dimensionless figure of merit, ZT = S2 σ T/λ, where S is the Seebeck coefficient (V/K), σ is the electrical conductivity (S/m), λ is the thermal conductivity (W/mK), and T is the absolute temperature (K). The main objective of this work was to obtain SnSe films via magnetron sputtering of a single target. Instead of common radiofrequency (RF) magnetron sputtering with a high voltage alternating current (AC) power source, a modified direct current (DC) power supply was employed. This technique in the classical version is not suitable for sputtering targets with relatively low thermal and electrical conductivity, such as SnSe. The proposed solution enabled stable sputtering of this target without detrimental cracking and arcing and resulted in high-quality polycrystalline SnSe films with unprecedented high values of ZT equal to 0.5 at a relatively low temperature of 530 K. All parameters included in ZT were measured in one setup, i.e., Linseis Thin Film Analyzer (TFA). The SnSe films were deposited at sputtering powers of 120, 140, and 170 W. They had the same orthorhombic structure, as determined by X-ray diffraction (XRD), but the thickness and microstructure examined by scanning electron microscopy (SEM) were dependent on the sputtering power. It was demonstrated that thermoelectric efficiency improved with increasing sputtering power and stable values were attained after two heating–cooling cycles. This research additionally provides further insights into the DC sputtering process and opens up new possibilities for magnetron sputtering technology. Full article
Show Figures

Figure 1

46 pages, 14490 KiB  
Review
Analysis of the Methods for Realization of Low-Power Piezoelectric Energy Harvesting Circuits for Wearable Battery-Free Power Supply Devices
by Ivaylo Pandiev, Nikolay Tomchev, Nikolay Kurtev and Mariya Aleksandrova
Appl. Sci. 2024, 14(11), 4792; https://doi.org/10.3390/app14114792 - 31 May 2024
Cited by 7 | Viewed by 5828
Abstract
This paper presents a comprehensive review of the design and implementation methods of low-power piezoelectric energy harvesting circuits, which in the last few years have gained an extremely large range of applications like the power sources of wearable electronic devices, such as biometrical [...] Read more.
This paper presents a comprehensive review of the design and implementation methods of low-power piezoelectric energy harvesting circuits, which in the last few years have gained an extremely large range of applications like the power sources of wearable electronic devices, such as biometrical sensors. Before examining the electronic circuitries of the self-supplied power devices, an overview of the structure, equivalent electrical circuits, and basic parameters of the piezoelectric generators and MEMSs as energy harvesting elements is presented. The structure of energy storage elements (parallel-plate capacitors and thin-film supercapacitors), suitable for this type of application, is also presented. The description of these components from an electrical point of view allows them to be easily workable when connected to the various power conversion electronic circuits. Based on an overview of the structure and the principles of operation, as well as some analytical expressions for energy efficiency evaluation, a comprehensive comparative analysis is presented. Depending on the advantages and disadvantages of the known circuit configurations, the basic electrical and design parameters are systematized in tabular form. Practical realizations of piezoelectric power conversion circuits are also presented in graphic form, ensuring the optimal value of energy efficiency and compactness in the construction of the devices. Full article
Show Figures

Figure 1

14 pages, 2643 KiB  
Article
Recycled or Bio-Based Solvents for the Synthesis of ZnO Nanoparticles: Characterization and Validation in Organic Solar Cells
by Cristiano Albonetti, Riva Alkarsifi, Virginie El Qacemi, Benjamin Dhuiege, Giampiero Ruani and Mirko Seri
Materials 2024, 17(6), 1332; https://doi.org/10.3390/ma17061332 - 14 Mar 2024
Viewed by 1643
Abstract
Among solution-processable metal oxides, zinc oxide (ZnO) nanoparticle inks are widely used in inverted organic solar cells for the preparation, at relatively low temperatures (<120 °C), of highly efficient electron-transporting layers. There is, however, a recent interest to develop more sustainable and less [...] Read more.
Among solution-processable metal oxides, zinc oxide (ZnO) nanoparticle inks are widely used in inverted organic solar cells for the preparation, at relatively low temperatures (<120 °C), of highly efficient electron-transporting layers. There is, however, a recent interest to develop more sustainable and less impacting methods/strategies for the preparation of ZnO NPs with controlled properties and improved performance. To this end, we report here the synthesis and characterization of ZnO NPs obtained using alternative reaction solvents derived from renewable or recycled sources. In detail, we use (i) recycled methanol (r-MeOH) to close the loop and minimize wastes or (ii) bioethanol (b-EtOH) to prove the effectiveness of a bio-based solvent. The effect of r-MeOH and b-EtOH on the optical, morphological, and electronic properties of the resulting ZnO NPs, both in solution and thin-films, is investigated, discussed, and compared to an analogous reference material. Moreover, to validate the properties of the resulting materials, we have prepared PTB7:PC71BM-based solar cells containing the different ZnO NPs as a cathode interlayer. Power conversion efficiencies comparable to the reference system (≈7%) were obtained, validating the proposed alternative and more sustainable approach. Full article
Show Figures

Figure 1

15 pages, 8498 KiB  
Article
Micron-Smooth, Robust Hydrophobic Coating for Photovoltaic Panel Surfaces in Arid and Dusty Areas
by Rongrong Guo, Yuanhao Wang, Hao Lu, Shifeng Wang, Bohan Wang and Qiyu Zhang
Coatings 2024, 14(2), 239; https://doi.org/10.3390/coatings14020239 - 18 Feb 2024
Cited by 2 | Viewed by 3228
Abstract
Photovoltaic (PV) power generation is a clean energy source, and the accumulation of ash on the surface of PV panels can lead to power loss. For polycrystalline PV panels, self-cleaning film is an economical and excellent solution. However, the main reasons why self-cleaning [...] Read more.
Photovoltaic (PV) power generation is a clean energy source, and the accumulation of ash on the surface of PV panels can lead to power loss. For polycrystalline PV panels, self-cleaning film is an economical and excellent solution. However, the main reasons why self-cleaning coatings are currently difficult to use on a large scale are poor durability and low transparency. It is a challenge to improve the durability and transparency of self-cleaning thin films for PV panel surface against ash accumulation. Therefore, in this paper, a resin composite film containing modified silica components was designed and synthesized, mainly by the organic/inorganic composite method. A transparent hydrophobic coating with nano-micro planar structures was constructed, which primarily relies on the hydrophobic properties of the compound itself to build the hydrophobic oleophobic coating. The layer has a micrometer-scale smooth surface structure and high transparency, with a 0.69% increase in light transmittance compared with uncoated glass, and the durability is good. It is mainly applied to the surface of photovoltaic devices, which can alleviate the dust accumulation problem of photovoltaic panels in arid, high-temperature, and dusty areas and reduce the maintenance cost of them. Full article
(This article belongs to the Special Issue Recent Advances in Hydrophobic Surface and Materials)
Show Figures

Figure 1

Back to TopTop