Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (175)

Search Parameters:
Keywords = thin disk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2441 KiB  
Article
Chemical Stability of PFSA Membranes in Heavy-Duty Fuel Cells: Fluoride Emission Rate Model
by Luke R. Johnson, Xiaohua Wang, Calita Quesada, Xiaojing Wang, Rangachary Mukundan and Rajesh Ahluwalia
Electrochem 2025, 6(3), 25; https://doi.org/10.3390/electrochem6030025 - 4 Jul 2025
Viewed by 210
Abstract
Laboratory data from in-cell tests at and near open circuit potentials (OCV) and ex-situ H2O2 vapor exposure tests are used to develop a fluoride emission rate (FER) model for a state-of-the-art 12-µm thin, low equivalent weight, long-chain perfluorosulfonic acid (PFSA) [...] Read more.
Laboratory data from in-cell tests at and near open circuit potentials (OCV) and ex-situ H2O2 vapor exposure tests are used to develop a fluoride emission rate (FER) model for a state-of-the-art 12-µm thin, low equivalent weight, long-chain perfluorosulfonic acid (PFSA) ionomer membrane that is mechanically reinforced with expanded PTFE and chemically stabilized with 2 mol% cerium as an anti-oxidant. The anode FER at OCV linearly correlates with O2 crossover from the cathode and the high yield of H2O2 at anode potentials, as observed in rotating ring disk electrode (RRDE) studies. The cathode FER may be linked to the energetic formation of reactive hydroxyl radicals (·OH) from the decomposition of H2O2 produced as an intermediate in the two-electron ORR pathway at high cathode potentials. Both anode and cathode FERs are significantly enhanced at low relative humidity and high temperatures. The modeled FER is strongly influenced by the gradients in water activity and cerium concentration that develops in operating fuel cells. Membrane stability maps are constructed to illustrate the relationship between the cell voltage, temperature, and relative humidity for FER thresholds that define H2 crossover failure by chemical degradation over a specified lifetime. Full article
Show Figures

Figure 1

19 pages, 4423 KiB  
Review
Laser Active Optical Systems (LAOSs) for Material Processing
by Vladimir Chvykov
Micromachines 2025, 16(7), 792; https://doi.org/10.3390/mi16070792 - 2 Jul 2025
Viewed by 369
Abstract
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser [...] Read more.
The output energy of Laser Active Optical Systems (LAOSs), in which image brightness is amplified within the laser-active medium, is always higher than the input energy. This contrasts with conventional optical systems (OSs). As a result, a LAOS enables the creation of laser beams with tailored energy distribution across the aperture, making them ideal for material processing applications. This concept was first successfully implemented using metal vapor lasers as the gain medium. In these systems, material processing was achieved by using a laser beam that either carried the required energy profile or the image of the object itself. Later, other laser media were utilized for LAOSs, including barium vapor, strontium vapor, excimer XeCl lasers, and solid-state media. Additionally, during the development of these systems, several modifications were introduced. For example, Space-Time Light Modulators (STLMs) and CCD cameras were incorporated, along with the use of multipass amplifiers, disk-shaped or thin-disk (TD) solid-state laser amplifiers, and other advancements. These techniques have significantly expanded the range of power, energy, pulse durations, and operating wavelengths. Currently, TD laser amplifiers and STLMs based on Digital Light Processor (DLP) technology or Digital Micromirror Devices (DMDs) enhance the potential to develop LAOS devices for Subtractive and Additive Technologies (ST, AT), applicable in both macromachining (cutting, welding, drilling) and micro-nano processing. This review presents comparable characteristics and requirements for these various LAOS applications. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

7 pages, 462 KiB  
Communication
Strength Ratios of Diffuse Interstellar Bands in Slightly Reddened Objects
by Jacek Krełowski and Arkadii Bondar
Universe 2025, 11(6), 181; https://doi.org/10.3390/universe11060181 - 6 Jun 2025
Viewed by 432
Abstract
The disk of the Milky Way fills the interstellar medium in the form of discrete clouds, many (∼30) light-years across. The average density of this medium is 1 hydrogen atom per cm3 (Oort limit), in the clouds—several dozen atoms, and between the [...] Read more.
The disk of the Milky Way fills the interstellar medium in the form of discrete clouds, many (∼30) light-years across. The average density of this medium is 1 hydrogen atom per cm3 (Oort limit), in the clouds—several dozen atoms, and between the clouds about 0.01 atoms per cm3. It is well documented that physical properties of individual interstellar clouds are evidently different using high-resolution spectroscopic observations of slightly reddened stars. We prove here that the 5780/5797 strength ratio is nearly constant for all slightly reddened targets. The reason for this phenomenon remains unknown. All optically thin clouds are apparently of σ-type. The question of at which value of color excess one may expect a ζ-type cloud remains unanswered. For some (unknown) reason ζ-type clouds are always relatively opaque and contain a lot of molecular species. In all slightly reddened objects we always observe σ-type intervening clouds, almost free of simple molecules. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

31 pages, 4470 KiB  
Article
RHADaMAnTe: An Astro Code to Estimate the Spectral Energy Distribution of a Curved Wall of a Gap Opened by a Forming Planet in a Protoplanetary Disk
by Francisco Rendón
Math. Comput. Appl. 2025, 30(3), 48; https://doi.org/10.3390/mca30030048 - 30 Apr 2025
Viewed by 389
Abstract
When a star is born, a protoplanetary disk made of gas and dust surrounds the star. The disk can show gaps opened by different astrophysical mechanisms. The gap has a wall emitting radiation, which contributes to the spectral energy distribution (SED) of the [...] Read more.
When a star is born, a protoplanetary disk made of gas and dust surrounds the star. The disk can show gaps opened by different astrophysical mechanisms. The gap has a wall emitting radiation, which contributes to the spectral energy distribution (SED) of the whole system (star, disk and planet) in the IR band. As these newborn stars are far away from us, it is difficult to know whether the gap is opened by a forming planet. I have developed RHADaMAnTe, a computational astro code based on the geometry of the wall of a gap coming from hydrodynamics 3D simulations of protoplanetary disks. With this code, it is possible to make models of disks to estimate the synthetic SEDs of the wall and prove whether the gap was opened by a forming planet. An implementation of this code was used to study the stellar system LkCa 15. It was found that a planet of 10 Jupiter masses is capable of opening a gap with a curved wall with a height of 12.9 AU. However, the synthetic SED does not fit to Spitzer IRS SED (χ2∼4.5) from 5μm to 35μm. This implies that there is an optically thin region inside the gap. Full article
Show Figures

Graphical abstract

11 pages, 9181 KiB  
Article
Extraplanar [C II] and Hα in the Edge-On Galaxy NGC 5775
by William T. Reach, Dario Fadda, Richard J. Rand and Gordon J. Stacey
Universe 2025, 11(4), 127; https://doi.org/10.3390/universe11040127 - 9 Apr 2025
Viewed by 324
Abstract
Spiral galaxies are thin and susceptible to being disrupted vertically. The largest star clusters, and nuclear starbursts, generate enough energy from winds and supernovae to send disk material to the halo. Observations of edge-on galaxies allow for the clearest view of vertical disruptions. [...] Read more.
Spiral galaxies are thin and susceptible to being disrupted vertically. The largest star clusters, and nuclear starbursts, generate enough energy from winds and supernovae to send disk material to the halo. Observations of edge-on galaxies allow for the clearest view of vertical disruptions. We present new observations of the nearby, edge-on galaxy NGC 5775 with SOFIA in [C II] 157.7 μm and archival images from Hubble in Hα to search for extraplanar gas. The extraplanar [C II] extends 2 kpc from the midplane over much of the star-forming disk. The extraplanar [C II] at 2 kpc from the midplane approximately follows the rotation of the disk, with a lag of approximately 40 km s1; this lag is similar to what has been previously reported in Hα. Significant vertical extensions (to 3 kpc) are seen on the northeast side of the galaxy, potentially due to super star clusters in the NGC 5775 disk combined with gravitational interaction with the companion galaxy NGC 5774. The Hα narrow-band image reveals a narrow plume that extends 7 kpc from the nucleus and is almost exactly perpendicular to the disk. The plume shape is similar to that seen from the comparable galaxy NGC 3628 and may arise from the nuclear starburst. Alternatively, the Hα plume could be a relic of past activity. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024—"Galaxies and Clusters")
Show Figures

Figure 1

15 pages, 2009 KiB  
Article
Numerical Model for Simulation of the Laser Thermal Forming Process
by Yaroslav Zhuk, Mykola Melnichenko, Arash Soleiman Fallah and Vitalii Husak
Axioms 2025, 14(4), 255; https://doi.org/10.3390/axioms14040255 - 28 Mar 2025
Viewed by 351
Abstract
A numerical model to simulate the laser thermoforming process (LTF) is proposed. It is developed on the basis of the thermodynamically consistent theory of coupled thermo-viscoplasticity and is suitable for modeling the LTF for thin-walled metal structural elements. In the frame of this [...] Read more.
A numerical model to simulate the laser thermoforming process (LTF) is proposed. It is developed on the basis of the thermodynamically consistent theory of coupled thermo-viscoplasticity and is suitable for modeling the LTF for thin-walled metal structural elements. In the frame of this model, the problem statement consists of the Cauchy relation, equations of motion, and the energy balance equation, which is reduced to the heat conduction equation, along with mechanical and thermal boundary conditions, as well as initial conditions. To describe the behavior of the material, a generalized model of physically nonlinear temperature-dependent thermo-viscoplasticity is used. Spatial discretization of the axisymmetric problem of laser pulse loading of the disk is performed by the FEM. The unsteady LTF process of the deformed disk configuration is simulated. The final profile of the disk is obtained as a result of a thermally induced residual stress–strain state caused by the rapid heating and subsequent gradual cooling of the material under the laser-irradiated area. Full article
Show Figures

Figure 1

13 pages, 4091 KiB  
Article
Evaluating the Tribological Properties and Residual Stress of TiCrN Thin Films Deposited by Cathodic-Arc Physical Vapor Deposition Technique
by Sudipta Mohapatra and Min-Suk Oh
Appl. Sci. 2025, 15(5), 2466; https://doi.org/10.3390/app15052466 - 25 Feb 2025
Cited by 2 | Viewed by 601
Abstract
The present study reports the tribological properties and residual stress of titanium chromium nitride (TiCrN) coatings. Thin films of TiCrN were deposited on tungsten carbide substrates at 400 °C in a vacuum of 5 × 10−6 mbar using the cathodic-arc physical vapor [...] Read more.
The present study reports the tribological properties and residual stress of titanium chromium nitride (TiCrN) coatings. Thin films of TiCrN were deposited on tungsten carbide substrates at 400 °C in a vacuum of 5 × 10−6 mbar using the cathodic-arc physical vapor deposition technique with chromium variation. X-ray diffraction (XRD) spectroscopy was employed to probe the structures of the deposited thin films. The phase constituent was found to gradually shift from cubic TiN to cubic CrN. Both the hardness and elastic modulus of the sheet changed from 29.7 to 30.9 GPa and 446 to 495 GPa, respectively. The biaxial compressive residual stress after an initial absolute scan in the range of 30–100° was determined using XRD (d-sin2ψ method). These mechanical and tribological properties of films were investigated with the help of instrumented nanoindentation and a ball-on-disk tribometer wear test. The wear test indicates that the TiCrN thin film, featuring a Cr/Ti ratio of 0.587, exhibits superior wear resistance and maximum compressive residual stress in comparison to other thin films. Full article
(This article belongs to the Special Issue Applications of Thin Films and Their Physical Properties)
Show Figures

Figure 1

19 pages, 605 KiB  
Systematic Review
Retinal and Choroidal Alterations in Thyroid-Associated Ophthalmopathy: A Systematic Review
by Alexandra Magdalena Ioana, Diana Andrei, Daniela Iacob and Sorin Lucian Bolintineanu
Life 2025, 15(2), 293; https://doi.org/10.3390/life15020293 - 13 Feb 2025
Cited by 2 | Viewed by 924
Abstract
Thyroid-associated ophthalmopathy (TAO), or Graves’ orbitopathy (GO), is a complex autoimmune disorder affecting orbital tissues, often leading to vision-threatening complications such as dysthyroid optic neuropathy (DON). In this systematic review, conducted following PRISMA guidelines, 22 studies were evaluated to investigate the role of [...] Read more.
Thyroid-associated ophthalmopathy (TAO), or Graves’ orbitopathy (GO), is a complex autoimmune disorder affecting orbital tissues, often leading to vision-threatening complications such as dysthyroid optic neuropathy (DON). In this systematic review, conducted following PRISMA guidelines, 22 studies were evaluated to investigate the role of optical coherence tomography (OCT) in assessing retinal and choroidal changes in TAO. Parameters such as the retinal nerve fiber layer (RNFL), ganglion cell complex (GCC), ganglion cell layer (GCL), and choroidal thickness were analyzed. RNFL changes varied by disease severity, with significant thinning in DON due to nerve fiber loss and thickening in early DON due to optic disk edema. Subfoveal choroidal thickness (SFCT) was consistently higher in active TAO, correlating positively with the clinical activity score (CAS) and proptosis, suggesting its role as a marker of disease activity. Subgroup analysis revealed that spectral-domain OCT (SD-OCT) was the most sensitive for detecting retinal changes. The findings highlight the effectiveness of OCT in detecting minor retinal and choroidal alterations in TAO. However, the variability of study designs, as well as the lack of longitudinal data, limits the ability to draw broad conclusions. Further standardized, long-term investigations are required to properly understand OCT’s diagnostic and prognostic value in TAO. Full article
(This article belongs to the Special Issue Eye Diseases: Diagnosis and Treatment, 3rd Edition)
Show Figures

Figure 1

12 pages, 784 KiB  
Article
Thermal Profile of Accretion Disk Around Black Hole in 4D Einstein–Gauss–Bonnet Gravity
by Odilbek Kholmuminov, Bakhtiyor Narzilloev and Bobomurat Ahmedov
Universe 2025, 11(2), 38; https://doi.org/10.3390/universe11020038 - 26 Jan 2025
Viewed by 806
Abstract
In this study, we investigate the properties of a thin accretion disk around a static spherically symmetric black hole in 4D Einstein–Gauss–Bonnet gravity, with an additional coupling constant, α, appearing in the spacetime metric. Using the Novikov–Thorne accretion disk model, we examine [...] Read more.
In this study, we investigate the properties of a thin accretion disk around a static spherically symmetric black hole in 4D Einstein–Gauss–Bonnet gravity, with an additional coupling constant, α, appearing in the spacetime metric. Using the Novikov–Thorne accretion disk model, we examine the thermal properties of the disk, finding that increasing α reduces the energy, angular momentum, and effective potential of a test particle orbiting the black hole. We demonstrate that α can mimic the spin of a Kerr black hole in general relativity up to a 0.23 M for the maximum value of α. Our analysis of the thermal radiation flux shows that larger α values increase the flux and shift its maximum towards the central black hole, while far from the black hole, the solution recovers the Schwarzschild limit. The impact of α on the radiative efficiency of the disk is weak but can slightly alter it. Assuming black-body radiation, we observe that the disk’s temperature peaks near its inner edge and is higher for larger α values. Lastly, the electromagnetic spectra reveal that the disk’s luminosity is lower in Einstein–Gauss–Bonnet gravity compared to general relativity, with the peak luminosity shifting toward higher frequencies, corresponding to the soft X-ray band as α increases. Full article
Show Figures

Figure 1

40 pages, 2476 KiB  
Tutorial
A Tutorial on the Strong Gravity Effects in Black Hole X-Ray Spectra
by Cosimo Bambi
Universe 2024, 10(12), 451; https://doi.org/10.3390/universe10120451 - 8 Dec 2024
Cited by 1 | Viewed by 982
Abstract
This is a tutorial on the strong gravity effects (motion of massive and massless particles in a curved spacetime, evaluation of redshift factors, estimate of physical quantities in different reference frames, etc.) necessary to calculate the electromagnetic spectra of geometrically thin and optically [...] Read more.
This is a tutorial on the strong gravity effects (motion of massive and massless particles in a curved spacetime, evaluation of redshift factors, estimate of physical quantities in different reference frames, etc.) necessary to calculate the electromagnetic spectra of geometrically thin and optically thick accretion disks around black holes. The presentation is intentionally pedagogical, and most calculations are reported step by step. In the disk–corona model, the spectrum of a source has three components: a thermal component from the disk, a Comptonized component from the corona, and a reflection component from the disk. This tutorial reviews only the strong gravity effects, which can be decoupled from the physical processes involving the interaction between matter and radiation. The formulas presented here are valid for stationary, axisymmetric, asymptotically flat, circular spacetimes, so they can be potentially used for a large class of black hole solutions. Full article
(This article belongs to the Special Issue Recent Advances in Gravitational Lensing and Galactic Dynamics)
Show Figures

Figure 1

28 pages, 10407 KiB  
Article
On the Viscous Ringed Disk Evolution in the Kerr Black Hole Spacetime
by Daniela Pugliese, Zdenek Stuchlík and Vladimir Karas
Universe 2024, 10(12), 435; https://doi.org/10.3390/universe10120435 - 22 Nov 2024
Cited by 1 | Viewed by 829
Abstract
Supermassive black holes (SMBHs) are observed in active galactic nuclei interacting with their environments, where chaotical, discontinuous accretion episodes may leave matter remnants orbiting the central attractor in the form of sequences of orbiting toroidal structures, with strongly different features as different rotation [...] Read more.
Supermassive black holes (SMBHs) are observed in active galactic nuclei interacting with their environments, where chaotical, discontinuous accretion episodes may leave matter remnants orbiting the central attractor in the form of sequences of orbiting toroidal structures, with strongly different features as different rotation orientations with respect to the central Kerr BH. Such ringed structures can be characterized by peculiar internal dynamics, where co-rotating and counter-rotating accretion stages can be mixed and distinguished by tori interaction, drying–feeding processes, screening effects, and inter-disk jet emission. A ringed accretion disk (RAD) is a full general relativistic model of a cluster of toroidal disks, an aggregate of axi-symmetric co-rotating and counter-rotating disks orbiting in the equatorial plane of a single central Kerr SMBH. In this work, we discuss the time evolution of a ringed disk. Our analysis is a detailed numerical study of the evolving RAD properties formed by relativistic thin disks, using a thin disk model and solving a diffusion-like evolution equation for an RAD in the Kerr spacetime, adopting an initial wavy (ringed) density profile. The RAD reaches a single-disk phase, building accretion to the inner edge regulated by the inner edge boundary conditions. The mass flux, the radial drift, and the disk mass of the ringed disk are evaluated and compared to each of its disk components. During early inter-disk interaction, the ring components spread, destroying the internal ringed structure and quickly forming a single disk with timescales governed by ring viscosity prescriptions. Different viscosities and boundary conditions have been tested. We propose that a system of viscously spreading accretion rings can originate as a product of tidal disruption of a multiple stellar system that comes too close to an SMBH. Full article
Show Figures

Figure 1

22 pages, 3167 KiB  
Article
The Composite Spectral Energy Distribution of Quasars Is Surprisingly Universal Since Cosmic Noon
by Zhenyi Cai
Universe 2024, 10(11), 431; https://doi.org/10.3390/universe10110431 - 19 Nov 2024
Cited by 1 | Viewed by 1101
Abstract
Leveraging the photometric data of the Sloan Digital Sky Survey and the Galaxy Evolution Explorer (GALEX), we construct mean/median spectral energy distributions (SEDs) for unique bright quasars in redshift bins of 0.2 and up to z3, after taking the GALEX [...] Read more.
Leveraging the photometric data of the Sloan Digital Sky Survey and the Galaxy Evolution Explorer (GALEX), we construct mean/median spectral energy distributions (SEDs) for unique bright quasars in redshift bins of 0.2 and up to z3, after taking the GALEX non-detection into account. Further correcting for the absorption of the intergalactic medium, these mean/median quasar SEDs constitute a surprisingly redshift-independent mean/median composite SED from the rest-frame optical down to ≃500 A˚ for quasars with bolometric luminosity brighter than 1045.5ergs1. Moreover, the mean/median composite quasar SED is plausibly also independent of black hole mass and Eddington ratio, and suggests similar properties of dust and gas in the quasar host galaxies since cosmic noon. Both the mean and median composite SEDs are nicely consistent with previous mean composite quasar spectra at wavelengths beyond ≃1000 A˚, but at shorter wavelengths, are redder, indicating, on average, less ionizing radiation than previously expected. Through comparing the model-predicted to the observed composite quasar SEDs, we favor a simply truncated disk model, rather than a standard thin disk model, for the quasar central engine, though we request more sophisticated disk models. Future deep ultraviolet facilities, such as the China Space Station Telescope and the Ultraviolet Explorer, would prompt revolutions in many aspects, including the quasar central engine, production of the broad emission lines in quasars, and cosmic reionization. Full article
Show Figures

Figure 1

5 pages, 600 KiB  
Communication
Stellar Ages of TESS Stars, Adopting Spectroscopic Data from Gaia GSP-Spec
by Elisa Denis, Patrick de Laverny, Andrea Miglio, Alejandra Recio-Blanco, Pedro Alonso Palicio, Josefina Montalban and Carlos Abia
Galaxies 2024, 12(6), 76; https://doi.org/10.3390/galaxies12060076 - 14 Nov 2024
Viewed by 781
Abstract
The Gaia DR3 GSP-spec/TESS (GST) catalog combines asteroseismic data from NASA’s TESS mission with spectroscopic data from ESA’s Gaia mission, and contains about 116,000 Red Clump and Red Giant Branch stars, surpassing previous datasets in size and precision. The Bayesian [...] Read more.
The Gaia DR3 GSP-spec/TESS (GST) catalog combines asteroseismic data from NASA’s TESS mission with spectroscopic data from ESA’s Gaia mission, and contains about 116,000 Red Clump and Red Giant Branch stars, surpassing previous datasets in size and precision. The Bayesian tool PARAM is used to estimate stellar ages using MESA models for, currently, 30,297 stars. This GST catalog, which includes kinematics and chemical information, is adopted for studying the Milky Way’s structure and evolution, in particular its thin and thick disk components. Full article
Show Figures

Figure 1

17 pages, 5128 KiB  
Article
A Compact Ultra-Wideband Millimeter-Wave Four-Port Multiple-Input Multiple-Output Antenna for 5G Internet of Things Applications
by Ashutosh Sharma, Sanjeev Sharma, Vikas Sharma, Girish Wadhwa and Rajeev Kumar
Sensors 2024, 24(22), 7153; https://doi.org/10.3390/s24227153 - 7 Nov 2024
Cited by 2 | Viewed by 1400
Abstract
This paper presents a compact design for a four-element multiple-input multiple-output (MIMO) antenna for millimeter-wave (mmWave) communications covering the bands of n257/n258/n261. The MIMO design covers the frequency range of 24.25–29.5 GHz, with a wide bandwidth of 5.25 GHz. The element of the [...] Read more.
This paper presents a compact design for a four-element multiple-input multiple-output (MIMO) antenna for millimeter-wave (mmWave) communications covering the bands of n257/n258/n261. The MIMO design covers the frequency range of 24.25–29.5 GHz, with a wide bandwidth of 5.25 GHz. The element of the MIMO antenna structure uses a single circular patch with an inset feed, and, in order to improve the reflection coefficient (S11), a half-disk parasitic patch is positioned on top of the circular patch. Moreover, to fine-tune the antenna’s characteristics, two vertical stubs on the extreme ends of the ground plane are introduced. For this design, a Rogers RT/Duroid 5880 substrate with ultra-thin thickness is used. After the optimization of the design, the four-port MIMO antenna attained a tiny size, with the dimensions 16.2 mm × 16.2 mm × 0.254 mm. In terms of the MIMO parameters, the ECC (Envelop Correlation coefficient) is less than 0.002 and the DG (Diversity Gain) is greater than 9.99 dB in the mentioned band, which are within the tolerance limits. Also, in spite of the very small size and the four-port configuration, the achieved isolation between the neighboring MIMO elements is less than −23.5 dB. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

12 pages, 1995 KiB  
Review
Various Configurations for Improving the Efficiency of Metallic and Superconducting Photocathodes Prepared by Pulsed Laser Deposition: A Comparative Review
by Alessio Perrone, Muhammad Rizwan Aziz and Francisco Gontad
Materials 2024, 17(21), 5257; https://doi.org/10.3390/ma17215257 - 29 Oct 2024
Cited by 4 | Viewed by 1056
Abstract
This paper presents an innovative exploration of advanced configurations for enhancing the efficiency of metallic and superconducting photocathodes (MPs and SCPs) produced via pulsed laser deposition (PLD). These photocathodes are critical for driving next-generation free-electron lasers (FELs) and plasma-based accelerators, both of which [...] Read more.
This paper presents an innovative exploration of advanced configurations for enhancing the efficiency of metallic and superconducting photocathodes (MPs and SCPs) produced via pulsed laser deposition (PLD). These photocathodes are critical for driving next-generation free-electron lasers (FELs) and plasma-based accelerators, both of which demand electron sources with improved quantum efficiency (QE) and electrical properties. Our approach compares three distinct photocathode configurations, namely: conventional, hybrid, and non-conventional, focusing on recent innovations. Hybrid MPs integrate a thin, high-performance, photo-emissive film, often yttrium or magnesium, positioned centrally on the copper flange of the photo-injector. For hybrid SCPs, a thin film of lead is used, offering a higher quantum efficiency than niobium bulk. This study also introduces non-conventional configurations, such as yttrium and lead disks partially coated with copper and niobium films, respectively. These designs utilize the unique properties of each material to achieve enhanced photoemission and long-term stability. The novelty of this approach lies in leveraging the advantages of bulk photoemission materials like yttrium and lead, while maintaining the electrical compatibility and durability required for integration into RF cavities. The findings highlight the potential of these configurations to significantly outperform traditional photocathodes, offering higher QE and extended operational lifetimes. This comparative analysis provides new insights into the fabrication of high-efficiency photocathodes, setting the foundation for future advancements in electron source technologies. Full article
(This article belongs to the Special Issue Metal Additive Manufacturing: Design, Performance, and Applications)
Show Figures

Figure 1

Back to TopTop