Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = thermosphere–ionosphere system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12319 KB  
Article
The Poleward Shift of the Equatorial Ionization Anomaly During the Main Phase of the Superstorm on 10 May 2024
by Di Bai, Yijun Fu, Chunyong Yang, Kedeng Zhang and Yongqiang Cui
Remote Sens. 2025, 17(15), 2616; https://doi.org/10.3390/rs17152616 - 28 Jul 2025
Cited by 1 | Viewed by 974
Abstract
On 10 May 2024, a super geomagnetic storm with a minimum Dst index of less than −400 nT occurred. It has attracted a significant amount of attention in the literature. Using total electron content (TEC) observations from a global navigation satellite system (GNSS), [...] Read more.
On 10 May 2024, a super geomagnetic storm with a minimum Dst index of less than −400 nT occurred. It has attracted a significant amount of attention in the literature. Using total electron content (TEC) observations from a global navigation satellite system (GNSS), in situ electron density data from the Swarm satellite, and corresponding simulations from the thermosphere–ionosphere–electrodynamics general circulation model (TIEGCM), the dynamic poleward shift of the equatorial ionization anomaly (EIA) during the main phase of the super geomagnetic storm has been explored. The results show that the EIA crests moved poleward from ±15° magnetic latitude (MLat) to ±20° MLat at around 19.6 UT, to ±25° MLat at 21.2 UT, and to ±31° MLat at 22.7 UT. This poleward shift was primarily driven by the enhanced eastward electric field, neutral winds, and ambipolar diffusion. Storm-induced meridional winds can move ionospheric plasma upward/downward along geomagnetic field lines, causing the poleward movement of EIA crests, with minor contributions from zonal winds. Ambipolar diffusion contributes/prevents the formation of EIA crests at most EIA latitudes/the equatorward edge. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

28 pages, 48949 KB  
Article
Effects of the October 2024 Storm over the Global Ionosphere
by Krishnendu Sekhar Paul, Haris Haralambous, Mefe Moses and Sharad C. Tripathi
Remote Sens. 2025, 17(13), 2329; https://doi.org/10.3390/rs17132329 - 7 Jul 2025
Cited by 4 | Viewed by 3786
Abstract
The present study analyzes the global ionospheric response to the intense geomagnetic storm of 10–11 October 2024 (SYM—H minimum of −346 nT), using observations from COSMIC—2 and Swarm satellites, GNSS TEC, and Digisondes. Significant uplift of the F-region was observed across both Hemispheres [...] Read more.
The present study analyzes the global ionospheric response to the intense geomagnetic storm of 10–11 October 2024 (SYM—H minimum of −346 nT), using observations from COSMIC—2 and Swarm satellites, GNSS TEC, and Digisondes. Significant uplift of the F-region was observed across both Hemispheres on the dayside, primarily driven by equatorward thermospheric winds and prompt penetration electric fields (PPEFs). However, this uplift did not correspond with increases in foF2 due to enhanced molecular nitrogen-promoting recombination in sunlit regions and the F2 peak rising beyond the COSMIC—2 detection range. In contrast, in the Southern Hemisphere nightside ionosphere exhibited pronounced Ne depletion and low hmF2 values, attributed to G-conditions and thermospheric composition changes caused by storm-time circulation. Strong vertical plasma drifts exceeding 100 m/s were observed during both the main and recovery phases, particularly over Ascension Island, driven initially by southward IMF—Bz-induced PPEFs and later by disturbance dynamo electric fields (DDEFs) as IMF—Bz turned northward. Swarm data revealed a poleward expansion of the Equatorial Ionization Anomaly (EIA), with more pronounced effects in the Southern Hemisphere due to seasonal and longitudinal variations in ionospheric conductivity. Additionally, the storm excited Large-Scale Travelling Ionospheric Disturbances (LSTIDs), triggered by thermospheric perturbations and electrodynamic drivers, including PPEFs and DDEFs. These disturbances, along with enhanced westward thermospheric wind and altered zonal electric fields, modulated ionospheric irregularity intensity and distribution. The emergence of anti-Sq current systems further disrupted quiet-time electrodynamics, promoting global LSTID activity. Furthermore, storm-induced equatorial plasma bubbles (EPBs) were observed over Southeast Asia, initiated by enhanced PPEFs during the main phase and suppressed during recovery, consistent with super EPB development mechanisms. Full article
Show Figures

Figure 1

13 pages, 5072 KB  
Article
Regional Total Electron Content Disturbance During a Meteorological Storm
by Olga P. Borchevkina, Aleksandr V. Timchenko, Fedor S. Bessarab, Yuliya A. Kurdyaeva, Ivan V. Karpov, Galina A. Yakimova, Maxim G. Golubkov, Ilya G. Stepanov, Sudipta Sasmal and Alexei V. Dmitriev
Atmosphere 2025, 16(6), 690; https://doi.org/10.3390/atmos16060690 - 6 Jun 2025
Viewed by 721
Abstract
This study presents a comprehensive analysis of the impact of Storm Laura, which was observed over Europe and the Baltic Sea on 12 March 2020, on the thermosphere–ionosphere system. The investigation of ionospheric disturbances caused by the meteorological storm was carried out using [...] Read more.
This study presents a comprehensive analysis of the impact of Storm Laura, which was observed over Europe and the Baltic Sea on 12 March 2020, on the thermosphere–ionosphere system. The investigation of ionospheric disturbances caused by the meteorological storm was carried out using a combined modeling approach, incorporating the regional AtmoSym and the global GSM TIP models. This allowed for the consideration of acoustic and internal gravity waves (AWs and IGWs) generated by tropospheric convective sources and the investigation of wave-induced effects in both the neutral atmosphere and ionosphere. The simulation results show that, three hours after the activation of the additional heat source, an area of increased temperature exceeding 100 K above the background level formed over the meteorological storm region. This temperature change had a significant impact on the meridional component of the thermospheric wind and total electron content (TEC) variations. For example, meridional wind changes reached 80 m/s compared a the meteorologically quiet day, while TEC variations reached 1 TECu. Good agreement was obtained with experimental TEC maps from CODE (Center for Orbit Determination in Europe), MOSGIM (Moscow Global Ionospheric Map), and WD IZMIRAN (West Department of Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation Russian Academy of Sciences), which revealed a negative TEC value effect over the meteorological storm region. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

13 pages, 11868 KB  
Communication
Comparison of the Heights of Sporadic E Layers and Vertical Ion Convergence Parameters
by Yan Yu, Tao Yu, Lihui Qiu, Xiangxiang Yan, Jin Wang, Yu Liang, Shuo Liu and Yifan Qi
Remote Sens. 2023, 15(24), 5674; https://doi.org/10.3390/rs15245674 - 8 Dec 2023
Cited by 5 | Viewed by 2487
Abstract
Sporadic E (Es) layers are thin layers of enhanced electron density that commonly appear at altitudes of 90–130 km, often impacting radio communications and navigation systems. The wind shear theory posits that the vertical ion drift, influenced by atmospheric neutral winds and the [...] Read more.
Sporadic E (Es) layers are thin layers of enhanced electron density that commonly appear at altitudes of 90–130 km, often impacting radio communications and navigation systems. The wind shear theory posits that the vertical ion drift, influenced by atmospheric neutral winds and the magnetic field, serves as a significant dynamic driver for the formation and movement of Es layers. In current studies, both the heights of ion vertical velocity null (IVN) and the maximum vertical ion convergence (VICmax) have been proposed as the potential height of Es layer occurrence. In this study, utilizing the neutral atmospheric wind data derived from the WACCM-X (The Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension), we computed and compared these two parameters with the observed Es layer heights recorded by the FORMOSAT-3/COSMIC (FORMOsa SATellite-3/Constellation Observing System for Meteorology, Ionosphere, and Climate) radio occultation (RO) observations. The comparative analysis suggests that IVN is a more likely node for Es layer occurrence than VICmax. Subsequently, we examined the height–time distributions of IVN and Es layers, as well as their respective descent rates at different latitudes. These results demonstrated a notable agreement in height variations between IVN and Es layers. The collective results presented in this paper provide strong support that the ion vertical velocity null plays a crucial role in determining the height of Es layers. Full article
Show Figures

Graphical abstract

14 pages, 5195 KB  
Technical Note
The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers
by Lifang Du, Haoran Zheng, Chunlei Xiao, Xuewu Cheng, Fang Wu, Jing Jiao, Yuchang Xun, Zhishan Chen, Jiqin Wang and Guotao Yang
Remote Sens. 2023, 15(18), 4566; https://doi.org/10.3390/rs15184566 - 16 Sep 2023
Cited by 9 | Viewed by 2949
Abstract
We report an all-solid-state narrowband lidar system for the simultaneous detection of Ca and Ca+ layers over Yanqing (40.41°N, 116.01°E). The uniqueness of this lidar lies in its transmitter, which is based on optical parametric oscillation (OPO) and optical parametric amplification (OPA) [...] Read more.
We report an all-solid-state narrowband lidar system for the simultaneous detection of Ca and Ca+ layers over Yanqing (40.41°N, 116.01°E). The uniqueness of this lidar lies in its transmitter, which is based on optical parametric oscillation (OPO) and optical parametric amplification (OPA) techniques. The injection seeded OPO and the OPA are pumped by the second harmonic of an injection-seeded Nd:YAG laser, which can generate coherent light at the wavelength of 786 nm or 846 nm lasers, whose second harmonics in turn generate the 393 nm or 423 nm pulses, respectively, for the detection of thermospheric and ionospheric Ca+ and Ca layers. Compared to the conventional dye-based system, this lidar transmitter is a narrowband system (bandwidth < 200 MHz), which has produced a factor of two more output power with higher stability and reliability. The lidar system in Yingqing demonstrated Ca+ detection sensitivity of 0.1 atoms-cm−3 for long-term observation and reached a height of ~300 km. Potential applications and further improvements in this lidar technique are also discussed in this paper. Full article
Show Figures

Figure 1

12 pages, 4864 KB  
Communication
Ionospheric 14.5 Day Periodic Oscillation during the 2019 Antarctic SSW Event
by Jinze Li, Qiong Tang, Yiyun Wu, Chen Zhou and Yi Liu
Atmosphere 2023, 14(5), 796; https://doi.org/10.3390/atmos14050796 - 27 Apr 2023
Cited by 1 | Viewed by 2118
Abstract
The International Global Navigation Satellite Systems Service (IGS) ionospheric total electron content (TEC) data are used to study the periodic perturbation in the ionosphere during the 2019 Antarctic sudden stratospheric warming (SSW) event, a rare Southern Hemisphere minor SSW event in the last [...] Read more.
The International Global Navigation Satellite Systems Service (IGS) ionospheric total electron content (TEC) data are used to study the periodic perturbation in the ionosphere during the 2019 Antarctic sudden stratospheric warming (SSW) event, a rare Southern Hemisphere minor SSW event in the last 40 years. A 14.5 day periodic signal with a zonal wavenumber of 0 is observed in the mesosphere and the lower thermosphere (MLT) region and the ionosphere during this SSW period, which could be related to the lunar tide. The 14.5 day periodic disturbance in the IGS TEC exhibits local time dependence and latitudinal variation, with the maximum amplitude appearing between 1000 and 1600 LT in the equatorial ionization anomaly (EIA) crest regions. Additionally, the 14.5 day periodic oscillation shows an obvious longitudinal variability, with the weakest amplitude appearing in the longitudinal region of 30° W–60° E. Full article
(This article belongs to the Special Issue Recent Advances in Ionosphere Observation and Investigation)
Show Figures

Figure 1

13 pages, 4586 KB  
Article
Thermospheric NO Cooling during an Unusual Geomagnetic Storm of 21–22 January 2005: A Comparative Study between TIMED/SABER Measurements and TIEGCM Simulations
by Tikemani Bag, Diptiranjan Rout, Yasunobu Ogawa and Vir Singh
Atmosphere 2023, 14(3), 556; https://doi.org/10.3390/atmos14030556 - 14 Mar 2023
Cited by 9 | Viewed by 2588
Abstract
The geomagnetic storm is the manifestation of the solar wind–magnetosphere interaction. It deposits huge amount of the solar energy into the magnetosphere–ionosphere–thermosphere (MIT) system. This energy creates global perturbations in the chemistry, dynamics, and energetics of the MIT system. The high latitude energy [...] Read more.
The geomagnetic storm is the manifestation of the solar wind–magnetosphere interaction. It deposits huge amount of the solar energy into the magnetosphere–ionosphere–thermosphere (MIT) system. This energy creates global perturbations in the chemistry, dynamics, and energetics of the MIT system. The high latitude energy deposition results in the Joule and particle heating that subsequently increases the thermospheric temperature. The thermospheric temperature is effectively regulated by the process of thermospheric cooling emission by nitric oxide via 5.3 µm. A peculiar, intense geomagnetic storm (Dst = −105 nT) occurred during 21–22 January 2005, where the main phase developed during the northward orientation of the z-component of interplanetary magnetic field. We utilized the nitric oxide 5.3 µm infrared emission from the NCAR’s Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIEGCM) simulation and the Sounding of Atmosphere using Broadband Emission Radiometry (SABER) onboard the thermosphere–ionosphere–mesosphere energetic and dynamics satellite to investigate its response to this anomalous geomagnetic storm. We compared the model results with the observations on both the local and global scales. It is observed that the model results agree very well with the observations during quiet times. However, the model severely underestimates the cooling emission by one-fourth of the observations, although it predicts an enhancement in the thermospheric temperature and densities of atomic oxygen and nitric oxide during the geomagnetic storm. Full article
(This article belongs to the Special Issue Structure and Dynamics of Mesosphere and Lower Thermosphere)
Show Figures

Figure 1

19 pages, 24371 KB  
Article
Short-Term Variability of Non-Migrating Diurnal Tides in the Stratosphere from CMAM30, ERA-Interim, and FORMOSAT-3/COSMIC
by Subhajit Debnath and Uma Das
Atmosphere 2023, 14(2), 265; https://doi.org/10.3390/atmos14020265 - 28 Jan 2023
Cited by 1 | Viewed by 2021
Abstract
The variability of non-migrating tides in the stratosphere is investigated using temperature data from Canadian Middle Atmosphere Model (CMAM30), ERA-interim reanalysis and Formosa Satellite-3 and Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) from 2006 to 2010 using a ±10-day window. CMAM30 [...] Read more.
The variability of non-migrating tides in the stratosphere is investigated using temperature data from Canadian Middle Atmosphere Model (CMAM30), ERA-interim reanalysis and Formosa Satellite-3 and Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) from 2006 to 2010 using a ±10-day window. CMAM30 and ERA results show that the amplitudes of non-migrating tides, DS0 and DW2, are negligible in the mid and high-latitude stratosphere, and the results from satellite datasets are significantly affected by aliasing in this region, in spite of using a smaller window size for analysis (±10 days). Significant short term variability ranging from 30 to 100 days is observed in DS0 and DW2 over the equatorial and tropical latitudes. These tides are seen as two prominent bands around the equator with DS0 maximising during boreal summers and DW2 maximising during boreal winters. These variabilities are compared with the variability in amplitude of the stationary planetary wave with wavenumber one (SPW1) in the high-latitude stratosphere using the continuous wavelet transform (CWT). It is found that during boreal winters, the variability of SPW1 at 10 hPa over 65° N is similar to that of DS0 and DW2 over the equator at 0.0007 hPa. This provides evidence that SPW1 from the high-altitude stratosphere moving upward and equator-ward could be interacting with the migrating diurnal tide and generating the non-migrating tides in the equatorial mesosphere and lower thermosphere (MLT). The variabilities, however, are not comparable during summers, with SPW1 being absent in the Northern Hemisphere. It is thus concluded that non-linear interactions could be a source of non-migrating tidal variability in the equatorial MLT region during boreal winters, but during summers, the tidal variabilities have other sources in the lower atmosphere. The anti-symmetric nature of the vertical global structures indicates that these tides could be the result of global atmospheric oscillations proposed by the classical tidal theory. Full article
(This article belongs to the Special Issue Waves and Variability in Terrestrial and Planetary Atmospheres)
Show Figures

Figure 1

22 pages, 3379 KB  
Article
Space Weather Effects Observed in the Northern Hemisphere during November 2021 Geomagnetic Storm: The Impacts on Plasmasphere, Ionosphere and Thermosphere Systems
by Mauro Regi, Loredana Perrone, Alfredo Del Corpo, Luca Spogli, Dario Sabbagh, Claudio Cesaroni, Laura Alfonsi, Paolo Bagiacchi, Lili Cafarella, Giuseppina Carnevale, Marcello De Lauretis, Domenico Di Mauro, Pierluigi Di Pietro, Patrizia Francia, Balázs Heilig, Stefania Lepidi, Carlo Marcocci, Fabrizio Masci, Adriano Nardi, Alessandro Piscini, Gianluca Redaelli, Vincenzo Romano, Umberto Sciacca and Carlo Scottoadd Show full author list remove Hide full author list
Remote Sens. 2022, 14(22), 5765; https://doi.org/10.3390/rs14225765 - 15 Nov 2022
Cited by 23 | Viewed by 5477
Abstract
On 3 November 2021, an interplanetary coronal mass ejection impacted the Earth’s magnetosphere leading to a relevant geomagnetic storm (Kp = 8-), the most intense event that occurred so far during the rising phase of solar cycle 25. This work presents the state [...] Read more.
On 3 November 2021, an interplanetary coronal mass ejection impacted the Earth’s magnetosphere leading to a relevant geomagnetic storm (Kp = 8-), the most intense event that occurred so far during the rising phase of solar cycle 25. This work presents the state of the solar wind before and during the geomagnetic storm, as well as the response of the plasmasphere–ionosphere–thermosphere system in the European sector. To investigate the longitudinal differences, the ionosphere–thermosphere response of the American sector was also analyzed. The plasmasphere dynamics was investigated through field line resonances detected at the European quasi-Meridional Magnetometer Array, while the ionosphere was investigated through the combined use of ionospheric parameters (mainly the critical frequency of the F2 layer, foF2) from ionosondes and Total Electron Content (TEC) obtained from Global Navigation Satellite System receivers at four locations in the European sector, and at three locations in the American one. An original method was used to retrieve aeronomic parameters from observed electron concentration in the ionospheric F region. During the analyzed interval, the plasmasphere, originally in a state of saturation, was eroded up to two Earth’s radii, and only partially recovered after the main phase of the storm. The possible formation of a drainage plume is also observed. We observed variations in the ionospheric parameters with negative and positive phase and reported longitudinal and latitudinal dependence of storm features in the European sector. The relative behavior between foF2 and TEC data is also discussed in order to speculate about the possible role of the topside ionosphere and plasmasphere response at the investigated European site. The American sector analysis revealed negative storm signatures in electron concentration at the F2 region. Neutral composition and temperature changes are shown to be the main reason for the observed decrease of electron concentration in the American sector. Full article
Show Figures

Figure 1

10 pages, 1711 KB  
Technical Note
The Temporal Evolution of F-Region Equatorial Ionization Anomaly Owing to the 2022 Tonga Volcanic Eruption
by Kedeng Zhang, Hui Wang, Yunfang Zhong, Hao Xia and Chengyu Qian
Remote Sens. 2022, 14(22), 5714; https://doi.org/10.3390/rs14225714 - 11 Nov 2022
Cited by 10 | Viewed by 2307
Abstract
The dynamic evolutions of the noon ionospheric Equatorial Ionization Anomaly (EIA) owing to the 2022 Tonga volcanic eruption were investigated using the ionospheric plasma measurements from the Swarm satellite, the science experiment of the Constellation Observing Systems for Meteorology, Ionosphere, and Climate (COSMIC) [...] Read more.
The dynamic evolutions of the noon ionospheric Equatorial Ionization Anomaly (EIA) owing to the 2022 Tonga volcanic eruption were investigated using the ionospheric plasma measurements from the Swarm satellite, the science experiment of the Constellation Observing Systems for Meteorology, Ionosphere, and Climate (COSMIC) mission, and the thermospheric wind observations from the Ionospheric Connection Explorer (ICON). At 14.1 universal time (UT), the noon EIA was enhanced for the upward plasma drifts, when the F2-layer was significantly uplifted from 360 km to 410 km. At 15.6 UT, because of the downward drifts, the intensity of the EIA reduced, and hmF2 decreased to 270 km. At 17–18 UT, the EIA recovered and reformed, and hmF2 increased to 350 km. A two-peak structure in the plasma was observed at Swarm altitudes. The temporal evolution might be related to the vertical plasma drifts (both downward and upward) from the E-region electric field. Full article
Show Figures

Figure 1

21 pages, 6515 KB  
Article
Climatology of TEC Longitudinal Difference in Middle Latitudes of East Asia
by Xingxin Sun, Yuqiang Zhang, Jian Feng, Zhensen Wu, Na Xu, Tong Xu, Zhongxin Deng, Yi Liu, Fubin Zhang, Yufeng Zhou, Chen Zhou and Zhengyu Zhao
Remote Sens. 2022, 14(21), 5412; https://doi.org/10.3390/rs14215412 - 28 Oct 2022
Viewed by 2018
Abstract
In this paper, a statistical analysis of the diurnal, seasonal and solar cycle variation in the TEC longitudinal difference in midlatitudes of East Asia is presented using CODE GIMs data in 2015–2019. Moreover, the empirical neutral wind model HWM-14 and geomagnetic field model [...] Read more.
In this paper, a statistical analysis of the diurnal, seasonal and solar cycle variation in the TEC longitudinal difference in midlatitudes of East Asia is presented using CODE GIMs data in 2015–2019. Moreover, the empirical neutral wind model HWM-14 and geomagnetic field model IGRF-2020 were employed to analyze the influence of geomagnetic configuration-neutral wind mechanism on the TEC longitudinal difference, and the F2 layer peak electron density (NmF2) data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) were also used to study the role of local electron density in the TEC longitudinal difference. For the high solar activity year, the results show that east-west TEC longitudinal difference index Re/w is negative in the noon and positive at evening-night. Moreover, the longitudinal difference of daytime TEC is most evident in summer, less in autumn and least in spring and winter, while the nighttime difference is most obvious in equinox, followed by summer and winter during nighttime. The model simulation shows that the TEC longitude difference around noon is mainly caused by the zonal wind-declination mechanism, and a 4-h time delay seems to be an optimal result for the vertical drift velocity to cause the longitudinal TEC difference during pre-noon hours. At night, the uplifting electron flux, which is a product of local electron density and vertical drift velocity, shows a good correlation with Re/w, indicating that the local electron density is also an important factor affecting the TEC longitudinal difference during the nighttime. Moreover, there was about a 3-h time delay between the TEC longitudinal variations and the uplifting electron flux at night. For the low solar activity years, the western TEC is greater than eastern TEC during most of the year except in the summer nighttime. The TEC diurnal variation in the east and west suggested that the nighttime Re/w should be related to other physical process, such as the midlatitude summer nighttime anomaly (MSNA) in the east and the ionospheric nighttime enhancement (INE). The current study provides evidence for the longitudinal difference of NmF2 in East Asian midlatitudes and geomagnetic configuration-neutral wind mechanism proposed in previous studies and finds some new features which need further studying to improve our current understanding of ionospheric longitudinal difference in the low solar activity years. The results provide new insight into TEC longitudinal variations at midlatitudes, and they can contribute to understanding the ionosphere-thermosphere coupling system. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

13 pages, 4047 KB  
Viewpoint
Magnetic Signatures of Large-Scale Electric Currents in the Earth’s Environment at Middle and Low Latitudes
by Christine Amory-Mazaudier
Atmosphere 2022, 13(10), 1699; https://doi.org/10.3390/atmos13101699 - 17 Oct 2022
Cited by 2 | Viewed by 2857
Abstract
The purpose of space weather is the systemic study of the Sun–Earth system, in order to determine the impact of solar events on the electromagnetic environment of the Earth. This article proposes a new transdisciplinary approach of the Sun–Earth system based on the [...] Read more.
The purpose of space weather is the systemic study of the Sun–Earth system, in order to determine the impact of solar events on the electromagnetic environment of the Earth. This article proposes a new transdisciplinary approach of the Sun–Earth system based on the universal physical process of the dynamo. The dynamo process is based on two important parameters of the different plasmas of the Sun–Earth system, the motion and the magnetic field. There are four permanent dynamos in the Sun–Earth system: the solar dynamo, the Earth dynamo, the solar wind-magnetosphere dynamo, and the ionospheric dynamo. These four permanent dynamos are part of different scientific disciplines. This transdisciplinary approach links all of these dynamos in order to understand the variations in the Earth’s magnetic field. During a magnetic disturbed period, other dynamos exist. We focused on the ionospheric disturbed dynamo generated by Joule energy dissipated in the high latitude ionosphere during magnetic storms. Joule heating disrupts the circulation of thermospheric winds and in turn generates disturbances in the Earth’s magnetic field. This systemic approach makes it possible to understand magnetic disturbances previously not well understood. Full article
Show Figures

Figure 1

21 pages, 9738 KB  
Article
Parallel Electrical Conductivity at Low and Middle Latitudes in the Topside Ionosphere Derived from CSES-01 Measurements
by Fabio Giannattasio, Alessio Pignalberi, Paola De Michelis, Igino Coco, Michael Pezzopane, Roberta Tozzi and Giuseppe Consolini
Remote Sens. 2022, 14(20), 5079; https://doi.org/10.3390/rs14205079 - 11 Oct 2022
Cited by 2 | Viewed by 2659
Abstract
The study of electrical currents in the topside ionosphere is of great importance, as it may allow a better understanding of the processes involved in the Sun–Earth interaction and magnetosphere–ionosphere–thermosphere coupling, two crucial aspects debated by the Space Weather scientific community. In this [...] Read more.
The study of electrical currents in the topside ionosphere is of great importance, as it may allow a better understanding of the processes involved in the Sun–Earth interaction and magnetosphere–ionosphere–thermosphere coupling, two crucial aspects debated by the Space Weather scientific community. In this context, investigating the electrical conductivity parallel to the geomagnetic field in the topside ionosphere is of primary importance because: (1) it provides information on the capability of the ionosphere to conduct currents; (2) it relates current density and electric field through Ohm’s law; (3) it can help to quantify the dissipation of currents; (4) it is generally modeled and not locally measured by in situ missions. In this work, we used in situ measurements of electron density and temperature recorded between 2019 and 2021 by the China Seismo-Electromagnetic Satellite (CSES-01) flying with an orbital inclination of 97.4° and at an altitude of about 500 km to compute the parallel electrical conductivity in the topside ionosphere at low and middle latitudes at the two fixed local times (LT) characterizing the CSES-01 mission: around 02 and 14 LT. The results, which are discussed in light of previous literature, highlight the dependence of conductivity on latitude and longitude and are compared with those obtained using values both measured by the Swarm B satellite (flying at a similar altitude) and modeled by the International Reference Ionosphere in the same time period. In particular, we found a diurnal variation in parallel electrical conductivity, with a slight hemispheric asymmetry. Daytime features are compatible with Sq and equatorial electrojet current systems, containing “anomalous” low values of conductivity in correspondence with the South Atlantic region that could be physical in nature. Full article
Show Figures

Figure 1

24 pages, 11753 KB  
Article
Investigating the Role of Gravity Waves on Equatorial Ionospheric Irregularities Using TIMED/SABER and C/NOFS Satellite Observations
by Melessew Nigussie, Mark Moldwin and Endawoke Yizengaw
Atmosphere 2022, 13(9), 1414; https://doi.org/10.3390/atmos13091414 - 1 Sep 2022
Cited by 10 | Viewed by 3172
Abstract
In this paper, for the first time, simultaneous atmospheric temperature perturbation profiles obtained from the TIMED/SABER satellite and equatorial ion density and vertical plasma drift velocity observations with and without ESF activity obtained from the C/NOFS satellite are used to investigate the effect [...] Read more.
In this paper, for the first time, simultaneous atmospheric temperature perturbation profiles obtained from the TIMED/SABER satellite and equatorial ion density and vertical plasma drift velocity observations with and without ESF activity obtained from the C/NOFS satellite are used to investigate the effect of gravity waves (GW) on ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs are estimated by applying wavelet analysis techniques. In addition, vertically propagating GWs that dissipate energy in the ionosphere-thermosphere system are investigated using the spectral analysis technique. We find that the vertical wavelength of GW, corresponding to dominant wavelet power, ranges from 12 to 31 km regardless of the conditions of the ionosphere; however, GWs with vertical wavelengths between about 1 to 13 km are found every day, saturated between 90 and 110 km at different longitudinal sectors. Filtering out vertical wavelengths above 13 km from temperature perturbations, ranges of zonal wavelengths of GW (i.e., from about 290 to 950 km) are found corresponding to irregular and non-irregular ionosphere. Similarly, corresponding to dominant oscillations, the zonal wavelength of ion density perturbations is found within 16 to 1520 km. Moreover, we find an excellent agreement among the median zonal wavelengths of GW for the cases of irregular and non-irregular ionosphere and ion density perturbations that are 518, 495, and 491 km, respectively. The results imply that seed perturbations due to GW with a vertical wavelength from about 1 to 13 km evolve to ion density irregularity and may be amplified due to post-sunset vertical upward drift velocity. Full article
Show Figures

Figure 1

17 pages, 4326 KB  
Article
Local Persistent Ionospheric Positive Responses to the Geomagnetic Storm in August 2018 Using BDS-GEO Satellites over Low-Latitude Regions in Eastern Hemisphere
by Jun Tang, Xin Gao, Dengpan Yang, Zhengyu Zhong, Xingliang Huo and Xuequn Wu
Remote Sens. 2022, 14(9), 2272; https://doi.org/10.3390/rs14092272 - 8 May 2022
Cited by 14 | Viewed by 3226
Abstract
We present the ionospheric disturbance responses over low-latitude regions by using total electron content from Geostationary Earth Orbit (GEO) satellites of the BeiDou Navigation Satellite System (BDS), ionosonde data and Swarm satellite data, during the geomagnetic storm in August 2018. The results show [...] Read more.
We present the ionospheric disturbance responses over low-latitude regions by using total electron content from Geostationary Earth Orbit (GEO) satellites of the BeiDou Navigation Satellite System (BDS), ionosonde data and Swarm satellite data, during the geomagnetic storm in August 2018. The results show that a prominent total electron content (TEC) enhancement over low-latitude regions is observed during the main phase of the storm. There is a persistent TEC increase lasting for about 1–2 days and a moderately positive disturbance response during the recovery phase on 27–28 August, which distinguishes from the general performance of ionospheric TEC in the previous storms. We also find that this phenomenon is a unique local-area disturbance of the ionosphere during the recovery phase of the storm. The enhanced foF2 and hmF2 of the ionospheric F2 layer is observed by SANYA and LEARMONTH ionosonde stations during the recovery phase. The electron density from Swarm satellites shows a strong equatorial ionization anomaly (EIA) crest over the low-latitude area during the main phase of storm, which is simultaneous with the uplift of the ionospheric F2 layer from the SANYA ionosonde. Meanwhile, the thermosphere O/N2 ratio shows a local increase on 27–28 August over low-latitude regions. From the above results, this study suggests that the uplift of F layer height and the enhanced O/N2 ratio are possibly main factors causing the local-area positive disturbance responses during the recovery phase of the storm in August 2018. Full article
Show Figures

Figure 1

Back to TopTop