Magnetic Signatures of Large-Scale Electric Currents in the Earth’s Environment at Middle and Low Latitudes
Abstract
:1. Introduction
2. Dynamos in the Earth–Sun System: Physics
2.1. The Solar Dynamo (Solar Physics)
2.2. The Terrestrial Dynamo (Internal Geophysics)
2.3. Connections between the Sun and the Earth
2.4. The Solar Wind Magnetosphere Dynamo (Solar Wind and Magnetosphere Physics)
2.5. The Ionospheric Dynamo (External Geophysics)
3. The Electric Currents and the Equivalent Electric Currents
4. Estimation of the Magnetic Disturbance Ddyn Due to the Disturbance of Thermospheric Winds
4.1. The Different Sources of Electrical Currents in the Earth’s Environment, [28]
4.2. Electrical Currents Related to External Sources
4.3. Variations in the Earth’s Magnetic Field at Low Latitudes
4.4. Estimation of Ddyn
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lilensten, J.; Belehaki, A. Developping the scientific basis for monitoring, modeling and predicting space weather. Acta Geoph. 2009, 57, 1. [Google Scholar] [CrossRef]
- Paterno, L. History of solar cycle. In Historical Events and People; Schröder, W., Ed.; Science Edition: Bremen/Postdam, Germany, 2005; pp. 261–275. [Google Scholar]
- Akasofu, S.V. Magnetospheric substorms: A newly emerging model. Planet Space Sci. 1981, 29, 1069–1078. [Google Scholar] [CrossRef]
- Stewart, B. Terrestrial magnetism. In Encyclopedia Britannica, 9th ed.; Adam and Charles Black: London, UK, 1882; Volume 16, pp. 159–184. [Google Scholar]
- Hulot, G.; Lhuilier, F.; Aubert, J. Earth’s dynamo limit and predictability. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A.D. The ionospheric disturbance Dynamo. J. Geophys. Res. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Mazaudier, C.; Venkateswaran, S.V. Delayed ionospheric effects of March 22, 1979 studied by the sixth Coordinated Data Analysis Workshop (CDAW-6). Ann. Geophys. 1990, 8, 511. [Google Scholar]
- Le Huy, M.; Amory-Mazaudier, C. Magnetic signature of the Ionospheric disturbance dynamo at equatorial latitudes: “Ddyn”. J. Geophys. Res. 2005, 110, A10301. [Google Scholar] [CrossRef]
- Duncan, R.C.; Thompson, C. Formation of Very Strongly Magnetized Neutron Stars: Implications for Gamma-Ray Bursts. Astrophys. J. 1992, 392, L9–L13. [Google Scholar] [CrossRef]
- Zhu, C.; Gao, Z.F.; Li, X.D.; Wang, N.; Yuan, J.P.; Peng, Q.H. Modified Fermi energy of electrons in a superhigh magnetic field. Mod. Phys. Lett. A 2016, 31, 1650070. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.F.; Li, X.-D.; Wang, N.; Yuan, J.P.; Wang, P.; Peng, Q.H.; Du, Y.J. Constraining the braking indices of magnetars. Mon. Not. R. Astron. Soc. 2016, 456, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.-F.; Shan, H.; Wang, H. The dissipation of toroidal magnetic fields and spin down evolution of young and strongly magnetized pulsars. Astron. Nachr. 2021, 342, 369–376. [Google Scholar] [CrossRef]
- Simon, P.A.; Legrand, J.P. Solar cycle and geomagnetic activity: A review for geophysicists Part II. The Solar sources of the geomagnetic activity and their links with sunspot cycle activity. Ann. Geophys. 1989, 7, 579–594. [Google Scholar]
- Lyu, L.H. Presentation during the Workshop in Taïwan. Available online: http://www.ss.ncu.edu.tw/~lyu/lecture_files/IntroSpace_notes_exam/SpaceSolar_Fig/Fig_5.html (accessed on 28 August 2022).
- USGS FAQs—Geomagnetism—How Does the Earth’s Core Generate a Magnetic Field? Available online: https://web.archive.org/web/20150118213104/http://www.usgs.gov/faq/?q=categories%2F9782%2F2738 (accessed on 28 August 2022).
- Stauning, P. The Polar Cap PC indices: Relations to solar wind and Global disturbances. In Exploring the Solar Wind; Lazar, M., Ed.; IntechOpen: London, UK, 2012; ISBN 978-953-51-0339. [Google Scholar]
- Axford, H.; Hines, C.O. A unifying theory of high latitudes geophysical phenomena and geomagnetic storms. Can. J. Phys. 1961, 39, 1433. [Google Scholar] [CrossRef]
- Dungey, T.W. Interplanetary magnetic field and the auroral zonez. Phys. Rev. Lett. 1961, 6, 47. [Google Scholar] [CrossRef]
- Chapman, S.; Ferraro, V.S. A new theory of Magnetic storms. Terr. Magn. Atmos. Electr. 1931, 36, 77. [Google Scholar] [CrossRef]
- Egeland, A.; Burke, W.J. A ring current: A short biography. Hist. Geo. Space Sci. 2012, 3, 131–142. [Google Scholar] [CrossRef]
- Akasofu, S.I. Magnetospheric substorms: A model. In Solar Terrestrial Physics, Part III; Dyer, E.R., Ed.; D. Reidel Publ. Co.: Dordrecht, The Netherlands, 1972. [Google Scholar]
- Egeland, A.; Leer, E. Professor Kr Birkeland: His life and his work. IEEE Trans. Plasma Sci. 1986, 14, 666–677. [Google Scholar] [CrossRef]
- Lazar, M. (Ed.) Exploring the Solar Wind; IntechOpen: London, UK, 2012; ISBN 978-953-51-0339-4. [Google Scholar]
- Rishbeth, H.; Gariott, O.K. Introduction to Ionospheric Physics; Academic Press Inc.: New York, NY, USA, 1969. [Google Scholar]
- Chapman, S.; Bartels, J. Geomagnetism; Oxford University Press: New York, NY, USA, 1940. [Google Scholar]
- Chapman, S. Equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere. Arch. Meteorol. Geophys. 1951, 4, 368–390. [Google Scholar] [CrossRef]
- Amory-Mazaudier, C. Contribution à L’etude des Courants Electriques, des Champs Electriques et des Vents Neutres Ionosphériques des Moyennes Latitudes, Variation Régulière et Variations Perturbées, Vol. 1. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 12 September 1983. [Google Scholar]
- Amory-Mazaudier, C. Electric Current Systems in the Earth’s Environment. Niger. J. Space Res. 2010, 8, 178–255. [Google Scholar]
- Rostoker, G. Classification of Polar Magnetic disturbances. J. Geophys. Res. 1969, 74, 5161–5168. [Google Scholar] [CrossRef]
- Nishida, A. Coherence of geomagnetic DP2 fluctuations with interplanetary magnetic variations. J. Gophys. Res. 1968, 73, 5549. [Google Scholar] [CrossRef] [Green Version]
- Troshichev, O.; Janzhura, A. Space Weather Monitoring by Graound-Based Mean: PC Index; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Nagata, T.; Kokubun, S. From these data we can firmly conclude that at a lower geomagnetic latitude, such as Wakkanai and Toyokawa, the occurrence of whistlers in correlates. Rep. Ionos. Space Res. Jpn. 1962, 16, 69. [Google Scholar]
- Vasyliunas, V.H. Mathematical model of magnetospheric convection and its coupling to the ionosphere. In Particles and Fields in the Magnetosphere; Mc Cormac, B.M., Ed.; D. Reidel Publ. Co.: Dordrecht, The Netherlands, 1970. [Google Scholar]
- Kamide, Y.; Brekke, A. Auroral electrojet current density from the Chatanika radar and from the Alaska meridian chain of magnetic observations. J. Geophys. Res. 1975, 80, 587. [Google Scholar] [CrossRef]
- Cole, K.D. Magnetic storms and associated phenomena. Space Sci. Rev. 1966, 5, 699–770. [Google Scholar] [CrossRef]
- Menvielle, M.; Marchaudon, A. Geomagnetic indices. In Solar-Terrestrial Physics and Space Weather in Space Weather; Lilensten, J., Ed.; Springer: Berlin, Germany, 2008; pp. 277–288. [Google Scholar]
- Menvielle, M.; Iyemori, T.; Marchaudon, A.; Nose, M. Geomagnetic indices. In Geomagnetic Observations and Models; IAGA Special Sopron Book Series, 5; Mandea, M., Korte, M., Eds.; Springer: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Fathy, I.; Amory-Mazaudier, C.; Fathy, A.; Mahrous, A.M.; Yumoto, K.; Ghamry, E. Ionospheric disturbance dynamo associated to a coronal hole: Case study 5–10 April 2010. J. Geophys. Res. 2014, 119, 4120–4133. [Google Scholar] [CrossRef] [Green Version]
- Zaourar, N.; Amory-Mazaudier, C.; Fleury, R. Hemispheric asymmetries in the ionosphere response observed during the high-speed solar wind streams of the 24–28 August 2010. Adv. Space Res. 2017, 59, 2229–2247. [Google Scholar] [CrossRef] [Green Version]
- Younas, W.; Amory-Mazaudier, C.; Khan, M.; le Huy, M. Magnetic signatures of ionospheric disturbance dynamo for CME and HSSWs generated storms. Earth Space Sci. 2021, 9, e2021SW002825. [Google Scholar] [CrossRef]
- Fejer, B.G.; Blanc, M.; Richmond, R. Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects. Space Sci. Rev. 2016, 206, 407–429. [Google Scholar] [CrossRef]
- Amory-Mazaudier, C.; Bolaji, S.; Doumbia, V. On the historical origins of the CEJ, DP2 and Ddyn current systems and their roles in the predictions of ionospheric responses to geomagnetic storms at equatorial latitudes. J. Geophys. Res. 2017, 122, 7827–7833. [Google Scholar] [CrossRef]
Permanent Dynamo | Motions—V | Magnetic Field B | Order of Magnitude of V and B |
---|---|---|---|
Sun | 2 motions: rotation and convection | The two components of the sun magnetic field Dipolar Toroïdal <= > sunspot | Rotational speed of the Sun at the equator: ~7008 km/h Dipolar component: ~5 10−3 T Toroidal component: ~0.3 to 0.5 T |
Solar wind Magnetosphere | Solar wind | Bi (IMF) Interplanetary magnetic field | Solar wind speed ~ [300 to 2000 km/s] Bi (IMF) ~ qq 10 nT |
Atmospheric wind Ionosphere | Atmosphere | Terrestrial magnetic field: Bt | Atmospheric wind speed ~100 m/s Bt ~ qq 10,000 nT ~30,000 nT at the pole ~60,000 nT at the equator |
Earth’s Dynamo inside the Earth | Metallic core | Terrestrial magnetic field: Bt | Indirect measurements deduced from the Earth’s planetary magnetic field and the secular variation Velocity ~ qq km/year Bt ~ qq 10,000 nT |
Dynamos | Electric Currents | Magnetic Indices Equivalent Electric Current |
---|---|---|
SUN poloidal/toroidal | ||
MAGNETOSPHERE Solar wind IMF | MAGNETOSPHERE Chapman Ferraro DCF Ring current DR Tail current DT | Dst, SYM-H, ASYM-H (all the magnetospheric electric currents) |
MAGNETOSPHERE IONOSPHERE | Field-Aligned Electric current | |
IONOSPHERE Earth’s magnetic field Neutral wind | IONOSPHERE Auroral electrojets Middle latitudes currents Equatorial electrojet | Aa, Kp, Ap, Km, Am AU, AL (auroral electrojet) Equivalent currents SR < Sq >, SqP, EEJ (magnetic quiet time) DP2,Ddyn (disturbed magnetic time) |
EARTH Motions of the core |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amory-Mazaudier, C. Magnetic Signatures of Large-Scale Electric Currents in the Earth’s Environment at Middle and Low Latitudes. Atmosphere 2022, 13, 1699. https://doi.org/10.3390/atmos13101699
Amory-Mazaudier C. Magnetic Signatures of Large-Scale Electric Currents in the Earth’s Environment at Middle and Low Latitudes. Atmosphere. 2022; 13(10):1699. https://doi.org/10.3390/atmos13101699
Chicago/Turabian StyleAmory-Mazaudier, Christine. 2022. "Magnetic Signatures of Large-Scale Electric Currents in the Earth’s Environment at Middle and Low Latitudes" Atmosphere 13, no. 10: 1699. https://doi.org/10.3390/atmos13101699
APA StyleAmory-Mazaudier, C. (2022). Magnetic Signatures of Large-Scale Electric Currents in the Earth’s Environment at Middle and Low Latitudes. Atmosphere, 13(10), 1699. https://doi.org/10.3390/atmos13101699