Thermospheric NO Cooling during an Unusual Geomagnetic Storm of 21–22 January 2005: A Comparative Study between TIMED/SABER Measurements and TIEGCM Simulations
Abstract
:1. Introduction
2. Data Acquisition and Analysis
2.1. Nitric Oxide Radiative Emission
2.1.1. TIMED-SABER Satellite Observations
2.1.2. TIEGCM Simulation
2.2. DMSP Observations of Particle Flux
2.3. NOAA Satellite Observation of Hemispheric Power
2.4. GUVI Observations of O/N2 Ratio
3. Results
3.1. Orbital Variation of Cooling Flux
3.2. Latitude–Longitude Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsurutani, B.T.; Gonzalez, W.D. The causes of geomagnetic storms during solar maximum. Eos Trans. AGU 1994, 75, 49–53. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D.; Tang, F.; Akasofu, S.I.; Smith, E.J. Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J. Geophys. Res. 1988, 93, 8519–8531. [Google Scholar] [CrossRef]
- Du, A.M.; Tsurutani, B.T.; Sun, W. Anomalous geomagnetic storm of 21–22 January 2005: A storm main phase during northward IMFs. J. Geophys. Res. 2008, 113, A10214. [Google Scholar] [CrossRef] [Green Version]
- Kozyra, J.U.; Liemohn, M.W.; Cattell, C.; De Zeeuw, D.; Escoubet, C.P.; Evans, D.S.; Fang, X.; Fok, M.C.; Frey, H.U.; Gonzalez, W.D.; et al. Solar filament impact on 21 January 2005: Geospace consequences. J. Geophys. Res. Space Phys. 2014, 119, 5401–5448. [Google Scholar] [CrossRef] [Green Version]
- Sahai, Y.; Fagundes, P.R.; De Jesus, R.; De Abreu, A.J.; Crowley, G.; Kikuchi, T.; Huang, C.S.; Pillat, V.G.; Guarnieri, F.L.; Abalde, J.R.; et al. Studies of ionospheric F-region response in the Latin American sector during the geomagnetic storm of 21–22 January 2005. Ann. Geophys. 2011, 29, 919–929. [Google Scholar] [CrossRef] [Green Version]
- Manchester, W.B., IV; Kozyra, J.U.; Lepri, S.T.; Lavraud, B. Simulation of magnetic cloud erosion during propagation. J. Geophys. Res. Space Phys. 2014, 119, 5449–5464. [Google Scholar] [CrossRef] [Green Version]
- Manchester, W.B., IV; Ridley, A.J.; Gombosi, T.I.; Dezeeuw, D.L. Modeling the Sun-to-Earth propagation of a very fast CME. Adv. Space Res. 2006, 38, 253–262. [Google Scholar] [CrossRef]
- D’Uston, C.; Bosqued, J.M.; Cambou, F.; Temny, V.V.; Zastenker, G.N.; Vaisberg, O.L.; Eroshenko, E.G. Energetic properties of interplanetary plasma at the Earth’s orbit following the August 4, 1972 flare. Sol. Phys. 1977, 51, 217. [Google Scholar] [CrossRef]
- Kockarts, G. Nitric oxide cooling in the terrestrial thermosphere. Geophys. Res. Lett. 1980, 7, 137–140. [Google Scholar] [CrossRef]
- Mlynczak, M.; Martin-Torres, F.J.; Russell, J.M., III; Beaumont, K.; Jacobson, S.; Kozyra, J.; Lopez-Puertas, M.; Funke, B.; Mertens, C.; Gordley, L.; et al. The natural thermostat of nitric oxide emission at 5.3 µm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Barth, C.A. Nitric oxide in the lower thermosphere. Planet. Space Sci. 1992, 40, 315–336. [Google Scholar] [CrossRef]
- Gardner, J.L.; López-Puertas, M.; Funke, B.; Miller, S.M.; Lipson, S.J.; Sharma, R.D. Rotational and Spin-orbit distributions of NO observed by MIPAS/ENVISAT during the solar storm of October/November 2003. J. Geophys. Res. 2005, 110, A09S34. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.G. On the increases in nitric oxide density at midlatitudes during ionospheric storms. J. Geophys. Res. 2004, 109, A06304. [Google Scholar] [CrossRef]
- Jones, M., Jr.; Forbes, J.M.; Hagan, M.E. Solar cycle variability in mean thermospheric composition and temperature induced by atmospheric tides. J. Geophys. Res. Space Phys. 2016, 121, 5837–5855. [Google Scholar] [CrossRef] [Green Version]
- Mlynczak, M. A comparison of space-based observations of the energy budgets of the mesosphere and troposphere. J. Atmos. Sol. Terr. Phys. 2002, 64, 877–887. [Google Scholar] [CrossRef]
- Yee, J.H.; Talaat, E.R.; Christensen, A.B.; Killeen, T.L.; Russell, J.M., III; Woods, T.N. TIMED instruments. Johns Hopkins APL Tech. Dig. 2003, 24, 156–164. [Google Scholar]
- Mertens, C.J.; Russell, J.M., III; Mlynczak, M.G.; She, C.Y.; Schmidlin, F.J.; Goldberg, R.A.; López-Puertas, M.; Wintersteiner, P.P.; Picard, R.H.; Winick, J.R.; et al. Kinetic temperature and carbon dioxide from broadband infrared limb emission measurements taken from the TIMED/SABER instrument. Adv. Space Res. 2009, 43, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Mlynczak, M.G.; Hunt, L.A.; Marshall, B.T.; Martin-Torres, F.J.; Mertens, C.J.; Russell, J.M., III; Remsberg, E.E.; López-Puertas, M.; Picard, R.; Winick, J.; et al. Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument. J. Geophys. Res. 2010, 115, A03309. [Google Scholar] [CrossRef]
- Hunt, L.A.; Mlynczak, M.G.; Marshall, B.T.; Mertens, C.J.; Mast, J.C.; Thompson, R.E.; Gordley, L.L.; Russell, J.M., III. Infrared radiation in the thermosphere at the onset of solar cycle 24. Geophys. Res. Lett. 2011, 38, L15802. [Google Scholar] [CrossRef]
- Roble, R.G.; Ridley, E.C.; Richmond, A.D.; Dickinson, R.E. A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 1988, 15, 1325–1328. [Google Scholar] [CrossRef]
- Richmond, A.D.; Ridley, E.C.; Roble, R.G. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 1999, 19, 601–604. [Google Scholar] [CrossRef]
- Heelis, R.A.; Lowell, J.K.; Spiro, R.W. A model of the high-latitude ionospheric convection pattern. J. Geophys. Res. Space Phys. 1982, 87, 6339–6345. [Google Scholar] [CrossRef]
- Weimer, D. Predicting surface geomagnetic variations using ionospheric electrodynamic models. J. Geophys. Res. 2005, 110, A12307. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating tides in the middle and upper atmosphere excited by latent heat releases. J. Geophys. Res. 2002, 107, 4754. [Google Scholar] [CrossRef]
- Hwang, E.S.; Castle, K.J.; Dodd, J.A. Variational relaxation of NO(𝜈 = 1) by oxygen atoms between 295 and 825 K. J. Geophys. Res. 2003, 108, 1109. [Google Scholar] [CrossRef]
- Murphy, R.E.; Lee, E.T.P.; Hart, A.M. Quenching of vibrationally excited nitric oxide by molecular oxygen and nitrogen. J. Chem. Phys. 1975, 63, 2919. [Google Scholar] [CrossRef]
- Bag, T. Diurnal Variation of Height Distributed Nitric Oxide Radiative Emission During November 2004 Super-Storm. J. Geophys. Res. Space Phys. 2018, 123, 6727–6736. [Google Scholar] [CrossRef]
- Bag, T.; Li, Z.; Rout, D. SABER observation of storm-time hemispheric asymmetry in nitric oxide radiative emission. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028849. [Google Scholar] [CrossRef]
- Bag, T.; Rout, D.; Ogawa, Y.; Singh, V. Distinctive response of thermospheric cooling to ICME- and CIR-driven geomagnetic storms. Front. Astron. Space Sci. 2023, 10. [Google Scholar] [CrossRef]
- Li, Z.; Knipp, D.; Wang, W.; Sheng, C.; Qian, L.; Flynn, S. A comparison study of NO cooling between TIMED/SABER measurements and TIEGCM simulations. J. Geophys. Res. Space Phys. 2018, 123, 8714–8729. [Google Scholar] [CrossRef]
- Li, Z.; Knipp, D.; Wang, W. Understanding the behaviours of thermospheric nitric oxide cooling during the 15 May 2005 geomagnetic storm. J. Geophys. Res. Space Phys. 2019, 124, 2113. [Google Scholar] [CrossRef]
- Li, Z.; Sun, M.; Li, J.; Zhang, K.; Zhang, H.; Xu, X.; Zhao, X. Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015. Universe 2022, 8, 236. [Google Scholar] [CrossRef]
- Chen, X.; Lei, J. A numerical study of the thermospheric overcooling during the recovery phases of the October 2003 storms. J. Geophys. Res. Space Phys. 2018, 123, 5704. [Google Scholar] [CrossRef]
- Sheng, C.; Lu, G.; Solomon, S.C.; Wang, W.; Doornbos, E.; Hunt, L.A.; Mlynczak, M.G. Thermospheric recovery during the 5 April 2010 geomagnetic storm. J. Geophys. Res. Space Phys. 2017, 122, 4588–4599. [Google Scholar] [CrossRef] [Green Version]
- Rich, F.J.; Hardy, D.D.; Gussenhoven, M.S. Enhanced ionosphere-magnetosphere data from the DMSP satellites. EOS 1985, 66, 513. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Evans, D.S. Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS/NOAA satellite data. J. Geophys. Res. 1987, 92, 7606–7618. [Google Scholar] [CrossRef]
- Emery, B.A.; Coumans, V.; Evans, D.S.; Germany, G.A.; Greer, M.S.; Holeman, E.; Kadinsky-Cade, K.; Rich, F.J.; Xu, W. Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power. J. Geophys. Res. 2008, 113, A06311. [Google Scholar] [CrossRef] [Green Version]
- Christensen, A.B.; Paxton, L.J.; Avery, S.; Craven, J.; Crowley, G.; Humm, D.C.; Kil, H.; Meier, R.R.; Meng, C.I.; Morrison, D.; et al. Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 2003, 108, 1451. [Google Scholar] [CrossRef]
- Strickland, D.J.; Meier, R.R.; Walterscheid, R.L.; Craven, J.D.; Christensen, A.B.; Paxton, L.J.; Morrison, D.; Crowley, G. Quiet-time seasonal behaviour of the thermosphere seen in the far ultraviolet dayglow. J. Geophys. Res. 2004, 109, A01302. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.J.; Morrison, D.; Wolven, B.; Kil, H.; Meng, C.I.; Mende, S.B.; Immel, T.J. O/N2 changes during 1–4 October 2002 storms: IMAGE SI-13 and TIMED/GUVI observations. J. Geophys. Res. 2004, 109, A10308. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.J.; Morrison, D.; Marsh, D.; Kil, H. Storm-time behaviours of O/N2 and NO variations. J. Atmos. Sol. Terr. Phys. 2014, 114, 42–49. [Google Scholar] [CrossRef]
- Foullon, C.; Owen, C.J.; Dasso, S.; Green, L.M.; Dandouras, I.; Elliott, H.A.; Fazakerley, A.N.; Bogdanova, Y.V.; Crooker, N.U. Multi-spacecraft study of the 21 January 2005 ICME: Evidence of current sheet substructure near the periphery of a strongly expanding fast magnetic cloud. Sol. Phys. 2007, 244, 139–165. [Google Scholar] [CrossRef]
- McKenna-Lawlor, S.; Li, L.; Dandouras, I.; Brandt, P.; Zheng, Y.; Barabash, S.; Bucik, R.; Kudela, K.; Balaz, J.; Strharsky, I. Moderate geomagnetic storm (21–22 January 2005) triggered by an outstanding coronal mass ejection viewed via energetic neutral atoms. J. Geophys. Res. 2010, 115, A08213. [Google Scholar] [CrossRef] [Green Version]
- Knipp, D.J.; Tobiska, W.K.; Emery, B.A. Direct and indirect thermospheric heating sources for solar cycles 21–23. Sol. Phys. 2004, 224, 495–505. [Google Scholar] [CrossRef]
- Duff, J.W.; Dothe, H.; Sharma, R.D. On the rate coefficient of the N(2D)+O2→NO+O reaction in the terrestrial thermosphere. Geophys. Res. Lett. 2003, 30, 1259. [Google Scholar] [CrossRef]
- Barth, C.A.; Mankoff, K.D.; Bailey, S.M.; Solomon, S.C. Global observations of nitric oxide in the thermosphere. J. Geophys. Res. 2003, 108, 1027. [Google Scholar] [CrossRef]
- Bailey, S.M.; Barth, C.A.; Solomon, S.C. A model of nitric oxide in the lower thermosphere. J. Geophys. Res. 2002, 107, A8. [Google Scholar] [CrossRef]
- Fang, X.; Randall, C.E.; Lummerzheim, D.; Wang, W.; Lu, G.; Solomon, S.C.; Frahm, R.A. Parameterization of mono energetic electron impact ionization. Geophys. Res. Lett. 2010, 37, L22106. [Google Scholar] [CrossRef]
- Fang, X.; Lummerzheim, D.; Jackman, C.H. Proton impact ionization and a fast calculation method. J. Geophys. Res. Space Phys. 2013, 118, 5369–5378. [Google Scholar] [CrossRef]
- Galand, M.; Roble, R.G.; Lummerzheim, D. Ionization by energetic protons in Thermosphere-Ionosphere Electrodynamics General Circulation Model. J. Geophys. Res. 1999, 104, 27973–27989. [Google Scholar] [CrossRef]
- Knipp, D.; Kilcommons, L.; Hunt, L.; Mlynczak, M.; Pilipenko, V.; Bowman, B.; Deng, Y.; Drake, K. Thermospheric damping response to sheath-enhanced geospace storms. Geophys. Res. Lett. 2013, 40, 1263–1267. [Google Scholar] [CrossRef]
- Lin, C.Y.; Deng, Y.; Knipp, D.J.; Kilcommons, L.M.; Fang, X. Effects of energetic electron and proton precipitations on thermospheric nitric oxide cooling during shock-led interplanetary coronal mass ejections. J. Geophys. Res. Space Phys. 2019, 124, 8125–8137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bag, T.; Rout, D.; Ogawa, Y.; Singh, V. Thermospheric NO Cooling during an Unusual Geomagnetic Storm of 21–22 January 2005: A Comparative Study between TIMED/SABER Measurements and TIEGCM Simulations. Atmosphere 2023, 14, 556. https://doi.org/10.3390/atmos14030556
Bag T, Rout D, Ogawa Y, Singh V. Thermospheric NO Cooling during an Unusual Geomagnetic Storm of 21–22 January 2005: A Comparative Study between TIMED/SABER Measurements and TIEGCM Simulations. Atmosphere. 2023; 14(3):556. https://doi.org/10.3390/atmos14030556
Chicago/Turabian StyleBag, Tikemani, Diptiranjan Rout, Yasunobu Ogawa, and Vir Singh. 2023. "Thermospheric NO Cooling during an Unusual Geomagnetic Storm of 21–22 January 2005: A Comparative Study between TIMED/SABER Measurements and TIEGCM Simulations" Atmosphere 14, no. 3: 556. https://doi.org/10.3390/atmos14030556
APA StyleBag, T., Rout, D., Ogawa, Y., & Singh, V. (2023). Thermospheric NO Cooling during an Unusual Geomagnetic Storm of 21–22 January 2005: A Comparative Study between TIMED/SABER Measurements and TIEGCM Simulations. Atmosphere, 14(3), 556. https://doi.org/10.3390/atmos14030556