Short-Term Variability of Non-Migrating Diurnal Tides in the Stratosphere from CMAM30, ERA-Interim, and FORMOSAT-3/COSMIC
Abstract
:1. Introduction
2. Data and Methodology
2.1. CMAM30 Model and ERA-Interim Reanalysis
2.2. FORMOSAT-3/COSMIC
3. Tidal Characteristics of DS0 and DW2
3.1. Altitude–Time Variations
3.2. Altitude–Latitude Variations
3.3. Latitude-Time Variations
4. Discussion
5. Summary and Conclusions
- The tidal variability observed in the stratosphere from CMAM30 and ERA-interim temperature data are highly consistent with each other. Results from COSMIC, however, are comparable in the lower stratosphere over equatorial to mid-latitudes only. This is due to COSMIC data quality issues above 40–45 km and aliasing issues in the high-latitude stratosphere.
- Amplitudes of DS0 and DW2 in the high-latitude stratosphere are overestimated in the analysis of satellite datasets due to aliasing and should not be attributed to non-linear interactions. This result is strengthened by the fact that DS0 and DW2 are practically absent in CMAM30 and ERA data in the high latitude stratosphere.
- DS0 and DW2 show variabilities ranging from 30 to 100 days over the equator in the MLT region. Part of these variabilities are similar to SPW1 variability during winter in the high-latitude stratosphere of the Northern Hemisphere and support the argument that they could be produced due to non-linear interactions with DW1 in the equatorial MLT region. At other epochs when there is no SPW1 activity, the observed DS0 and DW2 variabilities cannot be explained through this process.
- The global structure of DS0 and DW2 tides shows that they have their source in the lower atmosphere, and the tides propagate upwards with increasing amplitudes. The vertical wavelengths of these structures are of the order of ∼25 km. The anti-symmetric nature of the vertical global structures indicates that these tides could be the result of global atmospheric oscillations proposed by the classical tidal theory.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chapman, S.; Lindzen, R.S. Atmospheric Tides: Thermal and Gravitational. Space Sci. Rev. 1970, 10, 3–188. [Google Scholar]
- Forbes, J.M.; Garrett, H.B. Theoretical Studies of AtmosphericTides. Rev. Geophys. Space Phys. 1979, 17, 1951–1981. [Google Scholar] [CrossRef]
- Forbes, J.M. Atmosphere Tides 1. Model Description and Results for the Solar Diurnal Component. J. Geophys. Res. 1982, 87, 5222–5240. [Google Scholar] [CrossRef]
- Teitelbaum, H.; Vial, F. On tidal variability induced by nonlinear interaction with planetary waves. J. Geophys. Res. 1991, 96, 14169–14178. [Google Scholar] [CrossRef]
- Mclandress, C.; Ward, W.E. Tidal Gravity-Wave Interaction on the large-scale Dynamics of the Middle Atmosphere-Model Results. J. Geophys. Res. 1994, 99, 8139–8155. [Google Scholar] [CrossRef]
- Coll, M.A.; Frobes, J.M. Nonlinear interactions in the upper atmosphere: The s = 1 and s = 3 non migrating semidiurnal tides. J. Geophys. Res. 2002, 107, SIA 3-1–SIA 3-15. [Google Scholar] [CrossRef]
- She, C.Y.; Li, T.; Collins, R.L.; Yuan, T.; Williams, B.P.; Kawahara, T.D.; Vance, J.D.; Acott, P.; Krueger, D.A.; Liu, H.L.; et al. Tidal perturbationsand variability in the mesopause region over Fort Collins, CO (41 N, 105 W): Continuous multi-day temperature and wind lidar observations Continuous multi-day temperature and wind lidar observations. Geophys. Res. Lett. 2004, 31, L24111. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; Li, T.; She, C.Y.; Oberheide, J.; Wu, Q.; Hagan, M.; Xu, J.; Roble, R.; Mlynczak, M.; Russell, J., III. Comparativestudy of short-term diurnal tidal variability. J. Geophys. Res. Atmos. 2007, 112, D18108. [Google Scholar] [CrossRef] [Green Version]
- Baumgarten, K.; Gerding, M.; Baumgarten, G.; Lubken, F.J. Temporal variability of tidal and gravity waves during a recordlong 10-day continuous lidar sounding. Atmos. Chem. Phys 2018, 18, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Baumgarten, K.; Stober, G. On the evaluation of the phase relation between temperature and wind tides based on ground-based measurements and reanalysis data in the middle atmosphere. Ann. Geophys. 2019, 37, 581–602. [Google Scholar] [CrossRef] [Green Version]
- Hagan, M.E. Comparative effects of migrating solar sources on tidal signature in middle and upper atmosphere. J. Geophys. Res.-Atmos. 1996, 101, 21213–21222. [Google Scholar] [CrossRef]
- Hagan, M.E. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 2002, 107, 4754. [Google Scholar] [CrossRef]
- Sakazaki, T.; Fujiwara, M.; Zhang, X.; Hagan, M.E.; Frobes, J.M. Diurnal tides from the troposphere to the lower mesosphere as deduced from TIMED/ SABER satellite datas and six global reanalysis data sets. J. Geophys. Res. 2012, 117, D13108. [Google Scholar] [CrossRef] [Green Version]
- Das, U.; Ward, W.E.; Pan, C.J.; Das, S.K. Migrating and non-migrating tides observed in the stratosphere from FORMOSAT-3/COSMIC temperature retrievals. Ann. Geophys. 2020, 38, 421–435. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Killeen, T.L.; Ortland, D.A.; Solomon, S.C.; Gablehouse, R.D.; Johnson, R.M.; Skinner, W.R.; Niciejewski, R.J.; Franke, S.J. TIMED Doppler interferometer (TIDI) observations of migrating diurnal and semidiurnal tides. J. Atmos. Sol. Terr. Phys. 2006, 68, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Forbes, J.M.; Wu, D. Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. J. Atmos. Sci. 2006, 63, 1776–1797. [Google Scholar] [CrossRef]
- Du, J.; Ward, W.E. Terdiurnal tide in the extended Canadian Middle Atmosphere Model (CMAM). J. Geophys. Res. Atmos. 2010, 115, D24106. [Google Scholar] [CrossRef]
- Gan, Q.; Du, J.; Ward, W.E.; Beagley, S.R.; Fomichev, V.I.; Zhang, S. Climatology of the diurnal tides from eCMAM30 (1979 to 2010) and its comparison with SABER. Earth Planets Space 2014, 66, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Du, J.; Zhu, X. Statistic on Nonmigrating Diurnal Tides Generated by Tide-Planetary Wave interaction and their Relationship to Sudden Stratospheric Warming. Atmosphere 2018, 9, 416. [Google Scholar] [CrossRef] [Green Version]
- Sakazaki, T.; Fujiwara, M.; Shiotani, M. Representation of solar tides in the stratosphere and lower mesosphere in state-of-the-art reanalyses and in satellite observations. Atmos. Chem. Phys. 2018, 18, 1437–1456. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, T.; Murayama, Y.; Wiryosumarto, H.; Harijono, S.W.B.; Kato, S. Radiosonde observations of equatorial atmospheric dynamics over Indonesia 1. Equatorial waves and diurnal tides. J. Geophys. Res. 1994, 99, 10491–10505. [Google Scholar] [CrossRef]
- Kursinski, E.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Zhang, X.; Forbes, J.M.; Hagan, M.E.; Russell, J.M.; Palo, S.E.; Mertens, C.J.; Mlynczak, M.G. Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Xu, J. Evidence for nonmigrating tides produced by the interaction between tides and stationary planetary waves in stratosphere and lower mesosphere. J. Geophys. Res. 2014, 119, 471–489. [Google Scholar] [CrossRef]
- Hays, P.B.; Wu, D.L. Observation of diurnal tide from Space. J. Atmos. Sci. 1994, 51, 3077–3093. [Google Scholar] [CrossRef]
- Remsberg, E.; Lingenfelser, G.; Harvey, V.L.; Grose, W.; Russell, J.I.; Mlynczak, M.; Gordley, L.; Marshall, B.T. On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with MetOffice assimilated analyses. J. Geophys. Res. 2003, 108, 4628. [Google Scholar] [CrossRef]
- Remsberg, E.E.; Marshall, B.T.; Garciacomas, M.; Krueger, D.; Lingenfelser, G.S.; MartinTorres, J.; Mlynczak, M.G.; Russell, J.M.; Smith, A.K.; Zhao, Y.; et al. Assessment of the quality of the Version1.07 temperature versus pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res. 2008, 113, D17101. [Google Scholar] [CrossRef]
- Mukhtarov, P.; Pancheva, D.; Andonov, B. Global structure and seasonal and interannual variability of the migrating diurnal tide seen in the SABER/TIMED temperature between 20 and 120 km. J. Geophys. Res. 2009, 114, A02309. [Google Scholar] [CrossRef] [Green Version]
- Ward, W.E.; Fomichev, V.I.; Beagley, S. Nonmigrating tides in equinox temperature fields from the Extended Canadian Middle Atmosphere Model (CMAM). Geophys. Res. Lett. 2005, 32, L03803. [Google Scholar] [CrossRef]
- Forbes, J.M.; Hagan, M.E.; Miyahara, S.; Miyoshi, Y.; Zhang, X. Diurnal nonmigrating tides in the tropical lower thermosphere. Earth Planets Space 2003, 55, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Pancheva, D.; Mukhtarov, P.; Mitchell, N.J. A comparative study of winds and tidal variability in the mesosphere/lower-thermosphere region over Bulgaria and the UK. Ann. Geophys. 2000, 18, 1304–1315. [Google Scholar] [CrossRef]
- Wu, D.L.; McLandress, C.; Read, W.G.; Waters, J.W.; Froidevaux, L. Equatorial diurnal variations observed in UARS Microwave Limb Sounder temperature during 1991–1994 and simulated by the Canadian Middle Atmosphere Model. J. Geophys. Res. Atmos. 1998, 103, 8909–8917. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.L.; Jiang, J.H. Interannual and seasonal variations ofdiurnal tide, gravity wave, ozone, and water vapor as observed byMLS during 1991–1994. Adv. Space Res. 2005, 35, 1999–2004. [Google Scholar] [CrossRef]
- McCormack, J.; Hoppel, K.; Kuhl, D.; de Wit, R.; Stober, G.; Espy, P.; Baker, N.; Brown, P.; Fritts, D.; Jacobi, C.; et al. Comparison of mesospheric winds from a high-altitude meteorological analysis system and meteor radar observations duringthe boreal winters of 2009–2010 and 2012–2013. J. Atmos. Sol.-Terr. Phys. 2017, 154, 132–166. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, R.S. Global observation and modeling of nonmigratring diurnal tides generated by tide-planetary wave interactions. J. Geophys. Res. Atmos. 2015, 120, 11–419. [Google Scholar] [CrossRef]
- Pancheva, D.; Mukhtarov, P.; Andonov, B. Nonmigrating tidal activity related to the sudden stratospheric warming in the arctic winter of 2003/2004. Ann. Geophys. 2009, 27, 975–987. [Google Scholar] [CrossRef] [Green Version]
- Das, U. Short-and long-term stationary planetary wave variability in the middle atmosphere in contemporaneous satellite and reanalysis data. J. Atmos. Sol. Terr. Phys. 2022, 231, 105864. [Google Scholar] [CrossRef]
- De Grandpre, J. Ozone climatology using interactive chemistry: Result from the Canadian Middle Atmosphere Model. J. Geophys. Res. Atmos. 2000, 105, 25475–26491. [Google Scholar] [CrossRef] [Green Version]
- Scinocca, J.F. Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys. 2008, 8, 7055–7074. [Google Scholar] [CrossRef] [Green Version]
- McLandress, C.; Plummer, D.A.; Shepherd, T.G. A simple procedure for removing temporal discontinuities in ERA-interim upper stratosphere temperatures for use in nudged chemistry-climate model simulation. Atmos. Chem. Phys. 2014, 14, 1547–1555. [Google Scholar] [CrossRef] [Green Version]
- Fomichev, V.I.; Ward, W.E.; Beagley, S.R.; McLandress, C.; McConnell, J.C.; McFarlane, N.A.; Shepherd, T.G. Extended Canadian Middle Atmosphere Model: Zonal-mean climatology and physical parameterizations. J. Geophys. Res. Atmos. 2002, 107, D104087. [Google Scholar] [CrossRef]
- Beagley, S.R.; Boone, C.D.; Fomichev, V.I.; Jin, J.J.; Semeniuk, K.; McConnell, J.C.; Bernath, P.F. First multi-year occultation observations of CO2 in the MLT by ACE satellite: Observatons and analysis using the extended CMAM. Atmos. Chem. Phys. 2010, 10, 1133–1153. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practicle Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Fong, C.J. FORMOSAT-3/COSMIC Spacecraft Constellation System, Mission Results, and Prospect for Follow-on Mission. Terr. Atmos. Ocean Sci. 2009, 20, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Das, U.; Pan, C.J. Validation of FORMOSAT-3/COSMIC level 2 “atmPrf” globaltemperature data in the stratosphere. Atmos. Meas. Tech. 2014, 7, 731–742. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debnath, S.; Das, U. Short-Term Variability of Non-Migrating Diurnal Tides in the Stratosphere from CMAM30, ERA-Interim, and FORMOSAT-3/COSMIC. Atmosphere 2023, 14, 265. https://doi.org/10.3390/atmos14020265
Debnath S, Das U. Short-Term Variability of Non-Migrating Diurnal Tides in the Stratosphere from CMAM30, ERA-Interim, and FORMOSAT-3/COSMIC. Atmosphere. 2023; 14(2):265. https://doi.org/10.3390/atmos14020265
Chicago/Turabian StyleDebnath, Subhajit, and Uma Das. 2023. "Short-Term Variability of Non-Migrating Diurnal Tides in the Stratosphere from CMAM30, ERA-Interim, and FORMOSAT-3/COSMIC" Atmosphere 14, no. 2: 265. https://doi.org/10.3390/atmos14020265
APA StyleDebnath, S., & Das, U. (2023). Short-Term Variability of Non-Migrating Diurnal Tides in the Stratosphere from CMAM30, ERA-Interim, and FORMOSAT-3/COSMIC. Atmosphere, 14(2), 265. https://doi.org/10.3390/atmos14020265