Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = thermophilic biogas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 785 KiB  
Article
Selective Lactic Acid Production via Thermophilic Anaerobic Fermentation
by Claudia Chao-Reyes, Rudolphus Antonius Timmers, Ahmed Mahdy, Silvia Greses and Cristina González-Fernández
Water 2025, 17(15), 2183; https://doi.org/10.3390/w17152183 - 22 Jul 2025
Viewed by 294
Abstract
The combined effect of temperature-adapted inocula and anaerobic fermentation (AF) settings (pH 5.1 and 50 °C) were assessed to produce short-chain carboxylates (SCCs). In this study, the AF of carrot pulp was investigated using inocula adapted at different temperatures (25, 35, and 55 [...] Read more.
The combined effect of temperature-adapted inocula and anaerobic fermentation (AF) settings (pH 5.1 and 50 °C) were assessed to produce short-chain carboxylates (SCCs). In this study, the AF of carrot pulp was investigated using inocula adapted at different temperatures (25, 35, and 55 °C) with the aim of shifting the microbiome activity from biogas to SCC production. The highest SCC content (17.2 g COD L−1), and bioconversion (26.1%) and acidification efficiency (56.3%) were achieved with 35 °C-adapted inoculum. Lactic acid production prevailed in all reactors, demonstrating a high selectivity in SCC production. Both the microbial richness and diversity sharply diminished in the 35 °C and 55 °C operated reactors, with Firmicutes phylum identified as key players of the lactic acid production in AF. The results demonstrated that the operating temperature played a key role in shaping the microbial structure of inocula, leading to different process performances and highlighting thermophilic AF as a feasible process to produce lactic acid. Full article
(This article belongs to the Special Issue Innovations in Anaerobic Digestion Technology)
Show Figures

Figure 1

21 pages, 1897 KiB  
Article
Simulation of Conventional WWTPs Acting as Mediators in H2/CO2 Conversion into Methane
by Rubén González and Xiomar Gómez
Environments 2025, 12(7), 245; https://doi.org/10.3390/environments12070245 - 16 Jul 2025
Viewed by 509
Abstract
CO2-biomethanation was studied in the present manuscript by considering the direct injection of hydrogen into a conventional anaerobic digester treating sewage sludge within a simulated wastewater treatment plant (WWTP). The plant was simulated using the Python 3.12.4 software, and a Monte [...] Read more.
CO2-biomethanation was studied in the present manuscript by considering the direct injection of hydrogen into a conventional anaerobic digester treating sewage sludge within a simulated wastewater treatment plant (WWTP). The plant was simulated using the Python 3.12.4 software, and a Monte Carlo simulation was conducted to account for the high variability in the organic content of the wastewater and the methane potential of the sludge. Two modes of operation were studied. The first mode involves the use of an anaerobic digester to upgrade biogas, and the second mode considers using the digester as a CO2 utilization unit, transforming captured CO2. Upgrading biogas and utilizing the extra methane to generate electricity within the same plant leads to a negative economic balance (first scenario). A hydrogen injection of 1 L of H2/Lr d (volumetric H2 injection per liter of reactor per day) was required to transform the CO2 present in the biogas into methane. The benefits associated with this approach resulted in lower savings regarding heat recovery from the electrolyzer, increased electricity production, and an additional oxygen supply for the waste-activated sludge treatment system. Increasing the injection rate to values of 5 and 30 L of H2/Lr d was also studied by considering the operation of the digester under thermophilic conditions. The latter assumptions benefited from the better economy of scale associated with larger installations. They allowed for enough savings to be obtained in terms of the fuel demand for sludge drying, in addition to the previous categories analyzed in the biogas upgrading case. However, the current electricity price makes the proposal unfeasible unless a lower price is set for hydrogen generation. A standard electricity price of 7.6 c€/kWh was assumed for the analysis, but the specific operation of producing hydrogen required a price below 3.0 c€/kWh to achieve profitability. Full article
Show Figures

Figure 1

13 pages, 2459 KiB  
Article
Optimization of Biogas and Biomethane Yield from Anaerobic Conversion of Pepper Waste Using Response Surface Methodology
by Chaima Bensegueni, Bani Kheireddine, Amel Khalfaoui, Zahra Amrouci, Maya Ouissem Bouznada and Kerroum Derbal
Sustainability 2025, 17(6), 2688; https://doi.org/10.3390/su17062688 - 18 Mar 2025
Cited by 1 | Viewed by 635
Abstract
Anaerobic digestion is a critical method for producing bioenergy from organic waste; however, its efficiency is highly influenced by several factors. This study aimed to enhance the AD process using the removed solid phase generated by the canning plant Amor Benamor (CAB) during [...] Read more.
Anaerobic digestion is a critical method for producing bioenergy from organic waste; however, its efficiency is highly influenced by several factors. This study aimed to enhance the AD process using the removed solid phase generated by the canning plant Amor Benamor (CAB) during the production of harissa. This research sought to identify the optimum pH conditions and inoculum/substrate ratio (I/S) for achieving the maximum biogas production while ensuring a high methane yield, using response surface methodology (RSM) and numerical optimization. The batch anaerobic digestion of pepper waste as a substrate and sewage sludge as an inoculum was conducted. The 11 experimental runs generated by Design Expert Software were conducted in reactors with a capacity of 150 mL and a working volume of 90 mL, under thermophilic conditions. The effects of pH in the range of 7 to 8 and an I/S ratio in the range of 0.167 to 0.5, and their interaction in terms of biogas and methane yield (mL/g VS), were evaluated using a central composite design (CCD). The findings highlighted that a pH of around 7.5 and an I/S ratio of 0.48 could give the highest predicted yield of 884.35 mL/g VS for biogas and 422.828 mL/g VS for methane. These predicted values were confirmed with an experimental validation run which exhibited a deviation of less than 5%. These results offer new opportunities for enhanced biogas production from accumulated waste, contributing to the growth of sustainable energy alternatives. Full article
Show Figures

Graphical abstract

18 pages, 3626 KiB  
Article
Effect of Organic Nitrogen Supply on the Kinetics and Quality of Anaerobic Digestion of Less Nitrogenous Substrates: Case of Anaerobic Co-Digestion (AcoD) of Cassava Effluent and Chicken Droppings as a Nitrogen Source
by Haro Kayaba, Nourou Abdel Anziph Sergel Khalid, Sandwidi Sayouba, Compaore Abdoulaye, Palm Sie Auguste, Sessouma Oumou, Ouedraogo Ibrahim Kourita, Sinon Souleymane, Tubreoumya Guy Christian, Bere Antoine, Daho Tizane and Sanogo Oumar
Fuels 2025, 6(1), 2; https://doi.org/10.3390/fuels6010002 - 30 Dec 2024
Viewed by 1042
Abstract
This study aims to explore anaerobic co-digestion (AcoD) of cassava (EUM) and poultry (FP) effluents using one inoculum/substrate ratio (30%) and three EUM vs. FP substrate composition ratios (25:75, 50:50, and 75:25). The AcoD process was therefore designed for 20 L batch digesters, [...] Read more.
This study aims to explore anaerobic co-digestion (AcoD) of cassava (EUM) and poultry (FP) effluents using one inoculum/substrate ratio (30%) and three EUM vs. FP substrate composition ratios (25:75, 50:50, and 75:25). The AcoD process was therefore designed for 20 L batch digesters, under mesophilic conditions, with less than 5% total solids for 66 days. The results showed that EUMs were highly resistant to degradation, while FPs were the most easily degradable. Kinetic analysis indicated specific organic matter (MO) reduction rates of 0.28% per day for EUM and 0.76% per day for FP. EUM alone produced 45.47 mL/g MO, while the 50:50 substrate produced 1184.60 mL/g MOV. The main factors contributing to EUM inefficiency were the inability to tame acidic conditions and the accumulation of volatile fatty acids. AcoD produced 23 to 50 times more methane than EUM alone, 2 to 5 times more than FP alone, and 2 to 4 times more than inoculum. As a result, the AcoD of both types of waste had a qualitative and quantitative effect on biogas production. CH4 content increased from around 2 to 75%, depending on the amount of organic nitrogen added. The addition of nitrogen by AcoD, even under mesophilic conditions, improves the kinetics and quality of anaerobic digestion of low-nitrogen substrates. Its impact on thermophilic and psychrophilic conditions needs to be verified. Full article
(This article belongs to the Special Issue Biomass Conversion to Biofuels)
Show Figures

Figure 1

14 pages, 1896 KiB  
Article
Efficient Two-Stage Meso- and Thermophilic Anaerobic Digestion of Food Waste from a Microbial Perspective
by Katsuaki Ohdoi, Yoshihiro Okamoto, Tomonori Koga, Haruka Takahashi, Mugihito Oshiro, Toshihito Morimitsu, Hideki Muraoka, Yukihiro Tashiro and Kenji Sakai
Fermentation 2024, 10(12), 607; https://doi.org/10.3390/fermentation10120607 - 28 Nov 2024
Cited by 2 | Viewed by 1694
Abstract
Two-stage meso- and thermophilic anaerobic digestion (TSMTAD) of food waste was examined and its microbiological structure was investigated. The first stage was designed for the primary storage of perishable food waste and the second stage for central biogas production. Mesophilic storage with initial [...] Read more.
Two-stage meso- and thermophilic anaerobic digestion (TSMTAD) of food waste was examined and its microbiological structure was investigated. The first stage was designed for the primary storage of perishable food waste and the second stage for central biogas production. Mesophilic storage with initial neutralization and inoculation of lactic acid bacteria (LAB) resulted in an accumulation of lactic acid (21–23 g/L) with a decreased pH, in which bacterial members in facultative hetero-fermentation-type LAB dominated. Repeated fed-batch storage showed stable accumulation of lactic acid, retaining 89.3% (av.) carbon and preventing the growth of exogenous food pathogens. When the second stage of TSMTAD was compared with direct single-stage anaerobic digestion (SSAD) at 55 °C, the amount of methane accumulated was 1.48-fold higher (896 NmL/g-vs.). The methane yield of the original food refuse was 6.9% higher in the case of TSMTAD. The microbial community structures of both cases were similar, consisting of a sole thermophilic hydrogen-assimilating methanogen, Methanothermobacter thermautotrophicus. However, the abundance of bacteria belonging to two functional groups, H2 CO2 and acetic acid producer, and syntrophic acetate-oxidizing bacteria increased in TSMTAD. This may change the metabolic pathway, contributing to the stimulation of methane productivity. Full article
(This article belongs to the Special Issue Anaerobic Digestion: Waste to Energy: 2nd Edition)
Show Figures

Figure 1

13 pages, 1880 KiB  
Article
Investigating the Influence of Organic Loading Rate, Temperature and Stirring Speed on Biogas Production Using Agricultural Waste in South Africa
by Ephodia Sihlangu, Primrose Magama, Idan Chiyanzu, Thierry Regnier, Dibungi Luseba and Khathutshelo Agree Nephawe
Agriculture 2024, 14(11), 2091; https://doi.org/10.3390/agriculture14112091 - 20 Nov 2024
Cited by 2 | Viewed by 1526
Abstract
Biogas production offers an alternate method for managing agricultural waste and contributes to sustainable renewable energy generation. Anaerobic digestion (AD) enables the transformation of organic waste, including agricultural substrates, into biogas, mostly consisting of methane, carbon dioxide, and trace gases such as ammonia [...] Read more.
Biogas production offers an alternate method for managing agricultural waste and contributes to sustainable renewable energy generation. Anaerobic digestion (AD) enables the transformation of organic waste, including agricultural substrates, into biogas, mostly consisting of methane, carbon dioxide, and trace gases such as ammonia and hydrogen sulphide. The objective of this study was to employ a 30 L semi-continuous stirred tank reactor to evaluate the effects of organic loading rate, temperature, and speed of stirring on biogas production. The reactor was inoculated with 8.6 L and filled with 11.4 L of a mixed substrate including cattle manure, potato waste, potato starch waste, fruit waste, and expired dry dog food. The reactor was evaluated with organic loading rates (OLRs) of 11.2, 12.2, and 13.2 g VS/L d, and stirring speeds of 25.5, 35.5, and 45.5 rpm. The results indicated that the maximum yield was 12.2 g VS/L d at 45.5 rpm, and in thermophilic conditions, the biogas yield surpassed that of mesophilic conditions, measuring 105,860 NmL/g VS compared to 69,800 NmL/g VS. This study emphasises the significance of optimising operational parameters to improve biogas output, thereby contributing to sustainable energy resources and advancing the Sustainable Development Goals (SDGs). Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 5128 KiB  
Article
Comparative Study of Mesophilic Biomethane Production in Ex Situ Trickling Bed and Bubble Reactors
by Apostolos Spyridonidis and Katerina Stamatelatou
Fermentation 2024, 10(11), 554; https://doi.org/10.3390/fermentation10110554 - 30 Oct 2024
Cited by 2 | Viewed by 1174
Abstract
Biomethane production via biogas upgrading is regarded as a future renewable gas, further boosting the biogas economy. Moreover, when upgrading is realized by the biogas CO2 conversion to CH4 using surplus renewable energy, the process of upgrading becomes a renewable energy [...] Read more.
Biomethane production via biogas upgrading is regarded as a future renewable gas, further boosting the biogas economy. Moreover, when upgrading is realized by the biogas CO2 conversion to CH4 using surplus renewable energy, the process of upgrading becomes a renewable energy storage method. This conversion can be carried out via microorganisms, and has attracted scientific attention, especially under thermophilic conditions. In this study, mesophilic conditions were imposed using a previously developed enriched culture. The enriched culture consisted of the hydrogenotrophic Methanobrevibacter (97% of the Archaea species and 60% of the overall population). Biogas upgrading took place in three lab-scale bioreactors: (a) a 1.2 L bubble reactor (BR), (b) a 2 L trickling bed reactor (TBR) filled with plastic supporting material (TBR-P), and (c) a 1.2 L TBR filled with sintered glass balls (TBR-S). The gas fed into the reactors was a mixture of synthetic biogas and hydrogen, with the H2 to biogas CO2 ratio being 3.7:1, lower than the stoichiometric ratio (4:1). Therefore, the feeding gas mixture did not make it possible for the CH4 content in the biomethane to be more than 97%. The results showed that the BR produced biomethane with a CH4 content of 91.15 ± 1.01% under a gas retention time (GRT) of 12.7 h, while the TBR-P operation resulted in a CH4 content of 90.92 ± 2.15% under a GRT of 6 h. The TBR-S operated at a lower GRT (4 h), yielding an effluent gas richer in CH4 (93.08 ± 0.39%). Lowering the GRT further deteriorated the efficiency but did not influence the metabolic pathway, since no trace of volatile fatty acids was detected. These findings are essential indicators of the process stability under mesophilic conditions. Full article
(This article belongs to the Special Issue Microbial Fixation of CO2 to Fuels and Chemicals)
Show Figures

Figure 1

17 pages, 1519 KiB  
Article
Comparison of Anaerobic Co-Digestion of Food Waste and Livestock Manure at Various Mixing Ratios under Mesophilic and Thermophilic Temperatures
by Wonbae Lee, Youngo Kim, Ho Kim and Moonil Kim
Sustainability 2024, 16(17), 7653; https://doi.org/10.3390/su16177653 - 3 Sep 2024
Cited by 2 | Viewed by 2232
Abstract
In this study, the optimum mixing ratio of food waste (FW) and livestock manure (LM) was investigated to improve the methane yield efficiency and prohibit the inhibition factors (organic loading rate and NH4+) from inhibiting the anaerobic co-digestion of FW [...] Read more.
In this study, the optimum mixing ratio of food waste (FW) and livestock manure (LM) was investigated to improve the methane yield efficiency and prohibit the inhibition factors (organic loading rate and NH4+) from inhibiting the anaerobic co-digestion of FW and LM under mesophilic and thermophilic conditions. The research involved the following: (I) the analysis of the characteristics of FW and LM, (II) the evaluation of the potential and toxicity of the anaerobic digestion of I have confirmed that there is no problem. FW and LM using the biochemical methane potential (BMP) and anaerobic toxicity assay (ATA) tests, (III) the evaluation of the anaerobic co-digestion of FW and LM using the BMP test, and (IV) the evaluation of the optimum mixing ratio using mathematical modeling. The characteristics of FW and LM were analyzed to evaluate the theoretical methane potential and inhibition factor. The BMP test was carried out to evaluate the concentration of the biodegradable organic matter, biogas production rate, and methane yield. The ATA test was carried out to evaluate the impact of the inhibition concentration. Ultimately, mathematical models, such as a first-order reaction and a modified Gompertz model, were implemented to evaluate the optimum mixing ratio for the anaerobic co-digestion of FW and LM. FW had a higher concentration of degradable organic matter than LM. The initial operational parameters of the anaerobic digestion were determined to be appropriate at an organic matter concentration of less than 2.5 g/L and a TN concentration of 2,000 mg/L. In conclusion, as a result of evaluation through mathematical models, it was determined that anaerobic microorganisms were more sensitive to inhibitory factors under the thermophilic condition than under the mesophilic condition, and the optimum mixing ratio of FW to LM was 5:1 (vol:vol) based on kinetic results (k: 0.080; Bu: 0.23 L CH4/g VSadded; P: 100.84 mL; Rm: 10.23 mL/day; λ: 1.44 days). Full article
Show Figures

Figure 1

19 pages, 1409 KiB  
Article
Advancing Thermophilic Anaerobic Digestion of Corn Whole Stillage: Lignocellulose Decomposition and Microbial Community Characterization
by Alnour Bokhary, Fuad Ale Enriquez, Richard Garrison and Birgitte Kiaer Ahring
Fermentation 2024, 10(6), 306; https://doi.org/10.3390/fermentation10060306 - 8 Jun 2024
Cited by 6 | Viewed by 1992
Abstract
Converting corn grains into bioethanol is an expanding practice for sustainable fuel production, but this is accompanied by the production of large quantities of by-products such as whole stillage. In the present study, the influence of advanced wet oxidation and steam explosion (AWOEx) [...] Read more.
Converting corn grains into bioethanol is an expanding practice for sustainable fuel production, but this is accompanied by the production of large quantities of by-products such as whole stillage. In the present study, the influence of advanced wet oxidation and steam explosion (AWOEx) pretreatment on biogas production and lignocellulose decomposition of corn whole stillage (CWS) was evaluated using semi-continuous thermophilic reactors. The digestion of the CWS was shown to be feasible with an organic loading rate (OLR) of 1.12 ± 0.03 kg VS/m3 day and a hydraulic retention time (HRT) of 30 days, achieving a methane yield of 0.75 ± 0.05 L CH4/g VSfed for untreated stillage and 0.86 ± 0.04 L CH4/g VSfed for pretreated stillage, corresponding with an increase in methane yield of about 15%. However, the reactors showed unstable performance with the highest investigated OLRs and shortest HRTs. Under optimal conditions, the conversion efficiencies of COD, cellulose, hemicellulose, and lignin were 88, 95, 97, and 59% for pretreated CWS, and 86, 94, 95, and 51% for untreated CWS, respectively. Microbial community analysis showed that Proteiniphilum, MBA03, and Acetomicrobium were the dominant genera in the digestate and were likely responsible for the conversion of proteins and volatile fatty acids in CWS. Full article
Show Figures

Figure 1

16 pages, 1309 KiB  
Article
Optimisation of Biogas Production in the Co-Digestion of Pre-Hydrodynamically Cavitated Aerobic Granular Sludge with Waste Fats
by Marcin Dębowski, Marcin Zieliński, Joanna Kazimierowicz, Anna Nowicka and Magda Dudek
Energies 2024, 17(4), 922; https://doi.org/10.3390/en17040922 - 16 Feb 2024
Cited by 3 | Viewed by 1228
Abstract
The characteristics of excess aerobic granular sludge, related to its structure and chemical composition, limit the efficiency of anaerobic digestion. For this reason, pre-treatment methods and compositions with other organic substrates are used. In earlier work, no attempt was made to intensify the [...] Read more.
The characteristics of excess aerobic granular sludge, related to its structure and chemical composition, limit the efficiency of anaerobic digestion. For this reason, pre-treatment methods and compositions with other organic substrates are used. In earlier work, no attempt was made to intensify the methane fermentation of the excess aerobic granular sludge by adding fatty waste materials. The aim of the research was to determine the effects of co-digestion of pre-hydrodynamically cavitated aerobic granular sludge with waste fats on the efficiency of methane fermentation under mesophilic and thermophilic conditions. The addition of waste fats improved the C/N ratio and increased its value to 19. Under mesophilic conditions, the highest effects were observed when the proportion of volatile solids from waste fats was 25%. The amount of biogas produced increased by 17.85% and CH4 by 19.85% compared to the control. The greatest effects were observed in thermophilic anaerobic digestion at 55 °C, where a 15% waste fat content in volatile solids was ensured. This resulted in the production of 1278.2 ± 40.2 mL/gVS biogas and 889.4 ± 29.7 mL/gVS CH4. The CH4 content of the biogas was 69.6 ± 1.3%. The increase in biogas and CH4 yield compared to pure aerobic granular sludge anaerobic digestion was 34.4% and 40.1%, respectively. An increase in the proportion of waste fats in the substrate had no significant effect on the efficiency of methane fermentation. Strong positive correlations (R2 > 0.9) were observed between biogas and CH4 production and the C/N ratio and VS concentration. Full article
(This article belongs to the Special Issue From Waste to Energy: Anaerobic Digestion Technologies)
Show Figures

Figure 1

16 pages, 2234 KiB  
Article
Restoring the Stability of Long-Term Operated Thermophilic Anaerobic Digestion of Maize Straw by Supplying Trace Elements
by Bridget Ataa Fosua, Lijuan Ren, Wei Qiao, Jiahao Zhang, Yanning Gao, Xianli Fu, Dunyao Yu and Renjie Dong
Processes 2023, 11(12), 3440; https://doi.org/10.3390/pr11123440 - 16 Dec 2023
Viewed by 1829
Abstract
Maize straw has been widely used for the production of energy through anaerobic digestion, but biogas production can be hindered by a lack of trace elemental nutrients. To address this issue, a lab-scale anaerobic plug flow reactor was continuously operated at 55 °C [...] Read more.
Maize straw has been widely used for the production of energy through anaerobic digestion, but biogas production can be hindered by a lack of trace elemental nutrients. To address this issue, a lab-scale anaerobic plug flow reactor was continuously operated at 55 °C for 300 days, with a hydraulic retention time of 42 days and an organic loading rate of 2.1 g total solids/(L·day). Results from this study showed that between days 101 and 194, the methane yield slightly decreased from 0.26 ± 0.04 to 0.24 ± 0.03 L/g volatile solids (VS), but significant volatile fatty acid accumulation was observed by reaching up to 2759 ± 261 mg/L. After trace elements were added to the reactor, the methane yield increased to 0.30 ± 0.03 L/g VS, with 53% methane content. Around 62% of the total chemical oxygen demand and volatile solids were broken down into methane. Volatile fatty acid levels dropped and stabilized at around 210 ± 50 mg/L, indicating restored process stability. The addition of trace elements increased the abundance of Firmicutes and decreased Synergistetes in bacteria while simultaneously increasing the abundance of Methanosarcina in archaea. In conclusion, trace element supplementation was experimentally found to be necessary for stable thermophilic anaerobic digestion of maize straw. Full article
Show Figures

Figure 1

13 pages, 3055 KiB  
Article
Mono-Digestion of 5-Hydroxymethylfurfural Process-Wastewater in Continuously Operated Anaerobic Filters: A Cascade Utilization Approach
by Muhammad Tahir Khan, Johannes Krümpel, Dominik Wüst and Andreas Lemmer
Energies 2023, 16(22), 7576; https://doi.org/10.3390/en16227576 - 14 Nov 2023
Cited by 2 | Viewed by 1414
Abstract
A proper remedy for the overexploitation of biomass and biobased materials in the bioeconomy is the valorization of biorefineries’ side streams into meaningful products. Hence, in pursuit of a cascade utilization of renewables, a unique biorefinery byproduct was investigated for its biogas potential, [...] Read more.
A proper remedy for the overexploitation of biomass and biobased materials in the bioeconomy is the valorization of biorefineries’ side streams into meaningful products. Hence, in pursuit of a cascade utilization of renewables, a unique biorefinery byproduct was investigated for its biogas potential, specifically methane, in continuously operated anaerobic filters. For this purpose, 5-Hydroxymethylfurfural process-wastewater, after supplementation of necessary nutrients, was diluted down to 10, 20, 30, 40, and 50 gCOD/L concentrations and thereafter tested individually at 43 °C and 55 °C. Maximum methane conversion efficiency at either temperature was observed for test substrates with 10 gCOD/L and 20 gCOD/L concentrations. At 43 °C, the anaerobic filters exhibited their highest biogas yields when supplied with the 30 gCOD/L feedstock. Further exposure of the mesophilic and thermophilic consortia to the ensuing 5-Hydroxymethylfurfural process-wastewater dilutions compromised the stability of the anaerobic process due to the soaring concentrations of short-chained volatile fatty acids. The supplementation of necessary nutrients to unlock the methane potential of the given recalcitrant substrate appears insufficient. Techniques like micro aeration, photolysis, or the use of activated carbon in the fixed bed might have the ability to enhance the biochemical methane conversion of such feedstock; otherwise, the introduction of trace elements alone may be adequate if aiming for platforms (volatile fatty acids) via anaerobic technologies. Full article
(This article belongs to the Special Issue Anaerobic Digestion in the Bioeconomy)
Show Figures

Figure 1

19 pages, 3046 KiB  
Article
Enrichment of Microbial Consortium with Hydrogenotrophic Methanogens for Biological Biogas Upgrade to Biomethane in a Bubble Reactor under Mesophilic Conditions
by Apostolos Spyridonidis, Ioanna A. Vasiliadou, Panagiota Stathopoulou, Athanasios Tsiamis, George Tsiamis and Katerina Stamatelatou
Sustainability 2023, 15(21), 15247; https://doi.org/10.3390/su152115247 - 25 Oct 2023
Cited by 5 | Viewed by 2022
Abstract
The biological upgrading of biogas to simulate natural gas properties contributes to the sustainable establishment of biogas technology. It is an alternative technology to the conventional physicochemical methods applied in biomethane plants and has been studied mainly in thermophilic conditions. Developing an enriched [...] Read more.
The biological upgrading of biogas to simulate natural gas properties contributes to the sustainable establishment of biogas technology. It is an alternative technology to the conventional physicochemical methods applied in biomethane plants and has been studied mainly in thermophilic conditions. Developing an enriched culture for converting the CO2 of biogas to CH4 in mesophilic conditions was the subject of the present study, which could facilitate the biological process and establish it in the mesophilic range of temperature. The enrichment took place via successive dilutions in a bubble bioreactor operated in fed-batch mode. The methane percentage was recorded at 95.5 ± 1.2% until the end of the experiment. The methane production rate was 0.28–0.30 L L−1 d−1 following the low hydrogen loading rate (1.2 ± 0.1 L L−1 d−1) applied to avoid acetate accumulation. Hydrogenotrophic methanogens, Methanobrevibacter sp., were identified at a proportion of 97.9% among the Archaea and 60% of the total population of the enriched culture. Moreover, homoacetogens (Sporomusa sp.) and acetate oxidizers (Proteiniphilum sp.) were also detected, indicating that a possible metabolic pathway for CH4 production from CO2 is via homoacetogenesis and syntrophic acetate oxidation, which kept the acetate concentration at a level of 143 ± 13 mg L−1. It was found that adding NaHCO3 was adequate to sustain the pH at 8.25. Full article
(This article belongs to the Special Issue Anaerobic Environmental Biotechnology and Sustainability II)
Show Figures

Figure 1

20 pages, 910 KiB  
Review
An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production
by Alessandro Neri, Bruno Bernardi, Giuseppe Zimbalatti and Souraya Benalia
Energies 2023, 16(19), 6851; https://doi.org/10.3390/en16196851 - 27 Sep 2023
Cited by 25 | Viewed by 6745
Abstract
In a world facing increasing environmental and energy challenges, anaerobic digestion of agrifood by-products and food waste could contribute to the production of green energy while reducing greenhouse gas emissions into the atmosphere. Anaerobic digestion is a biological process capable of breaking down [...] Read more.
In a world facing increasing environmental and energy challenges, anaerobic digestion of agrifood by-products and food waste could contribute to the production of green energy while reducing greenhouse gas emissions into the atmosphere. Anaerobic digestion is a biological process capable of breaking down and stabilising organic matter in the absence of oxygen and converting it into a renewable source of energy, known as biogas. Biomethane production also enables the generation of electricity and produces digestate, a by-product of the digestion process that can be used as a soil conditioner or fertiliser. This review aims to highlight how substrate pretreatment, together with the optimisation of operating parameters, application of additives, recirculation of digestate and frequent feeding, can increase biogas production. An overview of the basics of the anaerobic digestion of agrifood by-products and food waste is provided, including feedstock characteristics (nutrient content, particle size and inhibitory compounds) and process parameters (process configuration, pH, temperature, total and volatile solids, total Kjeldahl nitrogen, ammonium, chemical oxygen demand, carbon/nitrogen ratio, retention time, organic loading rate, etc.). In addition, recent studies in the field of processes, equipment and pretreatments that can significantly improve the anaerobic digestion process of agricultural and food wastes were classified and discussed. Finally, the challenges and future perspectives of biogas production from the agrifood sector are addressed. Full article
(This article belongs to the Special Issue New Trends in Biofuels and Bioenergy for Sustainable Development II)
Show Figures

Figure 1

13 pages, 2106 KiB  
Article
The Use of Solidified Carbon Dioxide in the Aerobic Granular Sludge Pre-Treatment before Thermophilic Anaerobic Digestion
by Joanna Kazimierowicz, Marcin Dębowski, Marcin Zieliński, Izabela Bartkowska, Adam Wasilewski, Dawid Łapiński and Piotr Ofman
Appl. Sci. 2023, 13(13), 7864; https://doi.org/10.3390/app13137864 - 4 Jul 2023
Cited by 5 | Viewed by 1261
Abstract
The most common technology for the recovery of energy and valuable materials from sewage sludge is anaerobic digestion (AD). Ensuring thermophilic conditions during AD has been proven to cause process intensification and an improvement in its final outcomes. Nonetheless, the search is underway [...] Read more.
The most common technology for the recovery of energy and valuable materials from sewage sludge is anaerobic digestion (AD). Ensuring thermophilic conditions during AD has been proven to cause process intensification and an improvement in its final outcomes. Nonetheless, the search is underway for other methods to bolster the effectiveness of the AD of aerobic granular sludge (AGS), which is characterized by a compact and complex structure. A prospective AGS pre-treatment technology entails the use of solidified carbon dioxide (SCO2). The present study focused on an evaluation of the AGS pre-treatment with SCO2 on the thermophilic AD technological effects. It evaluated the effect of the SCO2 pre-treatment method on changes in the concentrations of organic and biogenic compounds in the dissolved phase and the yield and kinetics of biogas and methane production in periodical reactors, as well as enabled the development of an empirical organizational model of biogas production. SCO2 introduced to AGS caused an increase in the content of COD, N-NH4+, and P-PO43− in the AGS dissolved phase at SCO2/AGS volumetric ratios ranging from 0 to 0.3. A further increase in the SCO2 dose did not cause any statistically significant differences in this respect. The highest biogas and methane yields were obtained at SCO2/AGS of 0.3 and reached 482 ± 21 cm3/gVS and 337 ± 14 cm3/gVS, respectively. The higher SCO2 doses used led to a significant decrease in the pH value of the AGS, which, in turn, contributed to a decreasing CH4 concentration in the biogas. Full article
(This article belongs to the Special Issue Low Carbon Water Treatment and Energy Recovery, Volume II)
Show Figures

Figure 1

Back to TopTop