An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production
Abstract
:1. Introduction
2. Anaerobic Digestion (AD) Process
2.1. Physicochemical Parameters and Operational Factors Affecting AD Performances
2.1.1. Temperature
2.1.2. pH
2.1.3. Alkalinity
2.1.4. Total Solid Content and Volatile Solid Content
2.1.5. Ammonium
2.1.6. Total Kjeldahl Nitrogen
2.1.7. Concentration of Volatile Fatty Acids
2.1.8. Carbon/Nitrogen Ratio
2.1.9. Chemical Oxygen Demand
2.1.10. Sample Quantity
- ▪
- Substrate gas yields should recover more than 80% of the total gas amount of a sample.
- ▪
- The solid content of the batch must not exceed 10% if adequate mass transfer is to be ensured [15].
2.1.11. Nutrients and Toxic Agents
3. Substrates and Possible Pretreatments
- ▪
- Mechanical;
- ▪
- Thermal;
- ▪
- Chemical;
- ▪
- Ultrasound;
- ▪
- Biological.
3.1. Mechanical and Particle Size Reduction
3.2. Thermal Pretreatment
3.3. Chemical Pretreatment
3.4. Ultrasound Pretreatment
3.5. Biological Pretreatment
4. Biomethane Potential (BMP) Tests and Discontinuous AD of Organic Wastes and Agrifood By-Products
- ▪
- Evaluation of the biogas yield and anaerobic biological degradability of a material or a mixture of materials;
- ▪
- Assessment of the anaerobic degradation rate of the substrate under examination;
- ▪
- Evaluation of the possible inhibitory effect of the process due to critical concentrations of certain substances, such as polyphenols and essential oils, which have bactericidal action, therefore compromising bacterial consortium activity and AD performances.
5. Continuous Anaerobic Digestion Process
5.1. Average Time of Hydraulic Retention (HRT)
- HRT: average time of hydraulic residence (days);
- V: volume of the reactor (m3);
- Q: flow rate to the reactor (m3 per day).
5.2. Average Residence Time of Sludge (SRT)
- SRT: average residence time of the sludge (days);
- V: reactor volume (m3);
- X: concentration of volatile solids inside the reactor (kgVS/m3);
- W: flow rate of volatile substance extracted from the reactor (kgVS/day).
5.3. Volumetric Organic Load (OLR)
- OLR: volumetric organic load factor in terms of substrate, referring to the reactor volume (kgsubstrate/m3/day);
- Q: influencing flow (m3/day);
- S: substrate concentration in the influencing flow rate kg/m3;
- V: reactor volume (m3).
5.4. Organic Load Referring to Biomass or Volatile Solids in the Reactor (CF)
- CF: organic load factor in terms of substrate (referring to biomass or volatile solids in the reactor and expressed in kgsubstrate/kgVS/day);
- Q: influencing flow (m3/day);
- S: substrate concentration in the influencing flow (kgVS/m3);
- V: reactor volume (m3);
- X: concentration of volatile solids inside the reactor (kgVS/m3).
5.5. Specific Gas Production (SGP)
- SGP: specific production of biogas (m3biogas/kgfeed substrate);
- Qbiogas: flow rate of biogas produced (m3/day);
- Q: influencing flow (m3/day);
- S: substrate concentration in the influencing flow rate (kgsubstrate/m3).
5.6. Biogas Production Speed (GPR)
- GPR: biogas production rate (m3biogas/m3 reactor/day);
- Qbiogas: flow rate of biogas produced (m3/day);
- V: reactor volume (m3).
5.7. Substrate Removal Efficiency
- ɳ: percentage of TVSs removed (%);
- Q: influent and effluent flow (m3/day);
- S: TVS concentration in the influencing flow (kg/m3);
- Se: TVS concentration in effluent flow calculated as the difference between the incoming mass and the biogas produced (easier flows quantification) (kg/m3).
- VSin: percentage of the volatile fraction in the influent (%);
- VSout: percentage of the volatile fraction in the effluent (%).
6. Various Types of Continuous Reactors for Anaerobic Digestion
6.1. Continuous Stirred Tank Reactor (CSTR)
6.2. Process in a Continuous Reactor with Recirculation
6.3. Continuous Process with Separate Phases
7. Anaerobic Digestion of Food Waste and Agrifood By-Products
7.1. Anaerobic Digestion and Co-Digestion of Food Waste
7.2. The Anaerobic Digestion and Co-Digestion of Agrifood By-Products
7.3. Anaerobic Digestion of Food Waste and Agrifood By-Products Undergoing Pretreatment and Novelties in the Experimental Field
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atelge, M.R.; Atabani, A.E.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.Ş.; Unalan, S.; et al. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Pramanik, S.K.; Suja, F.B.; Zain, S.M.; Pramanik, B.K. The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresour. Technol. Rep. 2019, 8, 100310. [Google Scholar] [CrossRef]
- FAOSTAT. Emissions Due to Agriculture. Global, Regional and Country Trends 1990–2018; Analytical Brief 18; FAO: Rome, Italy, 2020; ISSN 2709-0078. [Google Scholar]
- Thompson, E.; Wang, Q.; Li, M. Anaerobic digester systems (ADS) for multiple dairy farms: A GIS analysis for optimal site selection. Energy Policy 2013, 61, 114–124. [Google Scholar] [CrossRef]
- Omar, R.; Harun, R.M.; Ghazi, T.I.M.; Ghazi, W.A.K.; Ab Karim Ghani, W.A.W.; bin Idris, R. Anaerobic treatment of cattle manure for biogas production. In Proceedings of the 2008 AIChE Annual Meeting, Philadelphia, PA, USA, 16–21 November 2008; pp. 1–10. [Google Scholar]
- Karim, K.; Hoffmann, R.; Klasson, K.T.; Al-Dahhan, M. Anaerobic digestion of animal waste: Effect of mode of mixing. Water Res. 2005, 39, 3597–3606. [Google Scholar] [CrossRef]
- Drosg, B. Process Monitoring in Biogas Plants; Technical Brochure, no. January; IEA Bioenergy: Paris, France, 2013. [Google Scholar]
- Wu, D.; Li, L.; Zhao, X.; Peng, Y.; Yang, P.; Peng, X. Anaerobic digestion: A review on process monitoring. Renew. Sustain. Energy Rev. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- Vitez, T.; Dokulilova, T.; Vitezova, M.; Elbl, J.; Kintl, A.; Kynicky, J.; Hladky, J.; Brtnicky, M. The Digestion of Waste from Vegetables and Maize Processing. Waste Biomass Valorization 2020, 11, 2467–2473. [Google Scholar] [CrossRef]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Pellera, F.-M.; Gidarakos, E. Anaerobic digestion of solid agroindustrial waste in semi-continuous mode: Evaluation of mono-digestion and co-digestion systems. Waste Manag. 2017, 68, 103–119. [Google Scholar] [CrossRef]
- Sun, C.; Cao, W.; Banks, C.J.; Heaven, S.; Liu, R. Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion. Bioresour. Technol. 2016, 218, 1215–1223. [Google Scholar] [CrossRef]
- Harris, P.W.; McCabe, B.K. Review of pre-treatments used in anaerobic digestion and their potential application in high-fat cattle slaughterhouse wastewater. Appl. Energy 2015, 155, 560–575. [Google Scholar] [CrossRef]
- Christy, P.M.; Gopinath, L.; Divya, D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew. Sustain. Energy Rev. 2014, 34, 167–173. [Google Scholar] [CrossRef]
- Adekunle, K.F.; Okolie, J.A. A Review of Biochemical Process of Anaerobic Digestion. Adv. Biosci. Biotechnol. 2015, 6, 205–212. [Google Scholar] [CrossRef]
- VDI 4630 INGENIEURE. In Fermentation of Organic Materials: Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; Verlag des Vereins Deutscher Ingenieure: Düsseldorf, Germany, 2006.
- Gerardi, M.H. Nitrification and Denitrification in the Activated Sludge Process; Wastewater Microbiology SERIES; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Staley, B.F.; Reyes, F.L.d.L.; Barlaz, M.A. Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl. Environ. Microbiol. 2011, 77, 2381–2391. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.; Dubey, B.K. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew. Energy 2019, 143, 779–797. [Google Scholar] [CrossRef]
- Cecchi, F.; Battistoni, P.; Pavan, P.; Bolzanella, D.; Innocenti, L. Digestione Anaerobica Della Frazione Organica dei Rifiuti Solidi; APAT: Rome, Italy, 2005; p. 178. [Google Scholar]
- Adani, F.; Schievano, A.; D’Imporzano, G. I Fattori che Rendono Ottimale la Razione per il Digestore; L’Informatore Agrario: Verona, Italy, 2008; Volume 40, pp. 19–24. [Google Scholar]
- Weinrich, S.; Schäfer, F.; Bochmann, G.; Liebetrau, J. Value of Batch Tests for Biogas Potential Analysis; IEA Bioenergy: Paris, France, 2018; p. 10. [Google Scholar]
- Chen, Y.; Jay, J.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Abouelenien, F.; Namba, Y.; Kosseva, M.R.; Nishio, N.; Nakashimada, Y. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes. Bioresour. Technol. 2014, 159, 80–87. [Google Scholar] [CrossRef]
- Fricke, K.; Santen, H.; Wallmann, R.; Hüttner, A.; Dichtl, N. Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Manag. 2007, 27, 30–43. [Google Scholar] [CrossRef]
- Drosg, B.; Fuchs, W.; Al Seadi, T.; Madsen, M.; Linke, B. Nutrient Recovery by Biogas Digestate Processing; Technical Brochure; IEA Bioenergy: Paris, France, 2020. [Google Scholar]
- Marchaim, U.; Krause, C. Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresour. Technol. 1993, 43, 195–203. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef]
- de Zorzi, P.; Balzamo, S.; Barbizzi, S.; Calabretta, E.; Rosamilia, M.; Potalivo, S. Procedura di Misurazione per la Determinazione Della Richiesta Chimica di Ossigeno (COD) Mediante Test in Cuvetta: Metodo 5135; ISPRA: Rome, Italy, 2014.
- Gourdon, R.; Vermande, P. Effects of Propionic Acid Concentration on Anaerobic Digestion of Pig Manure. Biomass 1987, 13, 1–12. [Google Scholar] [CrossRef]
- Visser, A. The Anaerobic Treatment of Sulfate Containing Wastewater. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1995; p. 157. [Google Scholar]
- Speece, R.E. Anaerobic biotechnology for industrial wastewater treatment a description of several installations. Environ. Sci. Technol. 1983, 17, 416A–427A. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, P.; Ayyadurai, S.; Arunachalam, K.D.; Mishra, G.; Chen, W.-H.; Juan, J.C.; Naqvi, S.R. Current technologies of biochemical conversion of food waste into biogas production: A review. Fuel 2022, 323, 124321. [Google Scholar] [CrossRef]
- Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Mmabyalwa, S.; Edison, M.; Habtom, T. Effect of particle size on anaerobic digestion of different feedstocks. S. Afr. J. Chem. Eng. 2015, 20, 11–26. [Google Scholar]
- Dahunsi, S. Mechanical pretreatment of lignocelluloses for enhanced biogas production: Methane yield prediction from biomass structural components. Bioresour. Technol. 2019, 280, 18–26. [Google Scholar] [CrossRef]
- Montgomery, L.F.R.; Bochmann, G. Pretreatment of Feedstock for Enhanced Biogas Production; Technical Brochure; IEA Bioenergy: Paris, France, 2014. [Google Scholar]
- Qiao, Z.; Xu, S.; Zhang, W.; Shi, S.; Zhang, W.; Liu, H. Potassium ferrate pretreatment promotes short chain fatty acids yield and antibiotics reduction in acidogenic fermentation of sewage sludge. J. Environ. Sci. 2022, 120, 41–52. [Google Scholar] [CrossRef]
- Zerrouki, S.; Rihani, R.; Lekikot, K.; Ramdhane, I. Enhanced biogas production from anaerobic digestion of wastewater from the fruit juice industry by sonolysis: Experiments and modelling. Water Sci. Technol. 2021, 84, 644–655. [Google Scholar] [CrossRef]
- Oleszek, M.; Krzemińska, I. Biogas production from high-protein and rigid cell wall microalgal biomasses: Ultrasonication and FT-IR evaluation of pretreatment effects. Fuel 2021, 296, 120676. [Google Scholar] [CrossRef]
- FNR. Leitfaden Biogas. Available online: https://mediathek.fnr.de/leitfaden-biogas.html (accessed on 18 August 2023).
- Li, L.; Feng, L.; Zhang, R.; He, Y.; Wang, W.; Chen, C.; Liu, G. Anaerobic digestion performance of vinegar residue in continuously stirred tank reactor. Bioresour. Technol. 2015, 186, 338–342. [Google Scholar] [CrossRef]
- Folino, A.; Calabrò, P.S.; Zema, D.A. Effects of ammonia stripping and other physico-chemical pretreatments on anaerobic digestion of swine wastewater. Energies 2020, 13, 3413. [Google Scholar] [CrossRef]
- Jiang, J.; Li, L.; Cui, M.; Zhang, F.; Liu, Y.; Liu, Y.; Long, J.; Guo, Y. Anaerobic digestion of kitchen waste: The effects of source, concentration, and temperature. Biochem. Eng. J. 2018, 135, 91–97. [Google Scholar] [CrossRef]
- Palatsi, J.; Viñas, M.; Guivernau, M.; Fernandez, B.; Flotats, X. Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresour. Technol. 2011, 102, 2219–2227. [Google Scholar] [CrossRef] [PubMed]
- Kafle, G.K.; Kim, S.H.; Sung, K.I. Ensiling of fish industry waste for biogas production: A lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour. Technol. 2013, 127, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, S.; Yuan, H.; Zou, D.; Liu, Y.; Zhu, B.; Chufo, A.; Jaffar, M.; Li, X. Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresour. Technol. 2015, 185, 7–13. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Li, A. Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: Process performance and synergistic effects. Chem. Eng. J. 2015, 259, 795–805. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef]
- Yong, Z.; Dong, Y.; Zhang, X.; Tan, T. Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy 2015, 78, 527–530. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Li, H.; Borrion, A.; Yu, Z.; Li, J. Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste. Appl. Energy 2018, 213, 136–147. [Google Scholar] [CrossRef]
- Park, S.; Li, Y. Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour. Technol. 2012, 111, 42–48. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y. Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresour. Technol. 2012, 118, 219–226. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dzienis, L.; Dębowski, M.; Zieliński, M. Optimisation of methane fermentation as a valorisation method for food waste products. Biomass Bioenergy 2021, 144, 105913. [Google Scholar] [CrossRef]
- Lee, E.; Bittencourt, P.; Casimir, L.; Jimenez, E.; Wang, M.; Zhang, Q.; Ergas, S.J. Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge. Waste Manag. 2019, 95, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Rattanapan, C.; Sinchai, L.; Suksaroj, T.T.; Kantachote, D.; Ounsaneha, W. Biogas production by co-digestion of canteen food waste and domestic wastewater under organic loading rate and temperature optimization. Environments 2019, 6, 16. [Google Scholar] [CrossRef]
- Teixeira, R.A.; Bueno, B.A.; Borges, R.M.; Bringhenti, J.R. Biochemical Methane Potential of Spent Coffee Grounds via Co-digestion with Food Waste. BioEnergy Res. 2021, 1–12. [Google Scholar] [CrossRef]
- Megido, L.; Negral, L.; Fernández-Nava, Y.; Suárez-Peña, B.; Ormaechea, P.; Díaz-Caneja, P.; Castrillón, L.; Marañón, E. Impact of organic loading rate and reactor design on thermophilic anaerobic digestion of mixed supermarket waste. Waste Manag. 2021, 123, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zuo, J.; Gan, L.; Li, P.; Liu, F.; Wang, K.; Chen, L.; Gan, H. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J. Environ. Sci. 2011, 23, 1403–1408. [Google Scholar] [CrossRef]
- Shen, F.; Yuan, H.; Pang, Y.; Chen, S.; Zhu, B.; Zou, D.; Liu, Y.; Ma, J.; Yu, L.; Li, X. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresour. Technol. 2013, 144, 80–85. [Google Scholar] [CrossRef]
- Benalia, S.; Falcone, G.; Stillitano, T.; De Luca, A.I.; Strano, A.; Gulisano, G.; Zimbalatti, G.; Bernardi, B. Increasing the content of olive mill wastewater in biogas reactors for a sustainable recovery: Methane productivity and life cycle analyses of the process. Foods 2021, 10, 1029. [Google Scholar] [CrossRef]
- Zema, D.A.; Zappia, G.; Benalia, S.; Zimbalatti, G.; Perri, E.; Urso, E.; Tamburino, V.; Bernardi, B. Limiting factors for anaerobic digestion of olive mill wastewater blends under mesophilic and thermophilic conditions. J. Agric. Eng. 2018, 49, 130–137. [Google Scholar] [CrossRef]
- Beniche, I.; Hungría, J.; El Bari, H.; Siles, J.A.; Chica, A.F.; Martín, M.A. Effects of C/N ratio on anaerobic co-digestion of cabbage, cauliflower, and restaurant food waste. Biomass Convers. Biorefinery 2021, 11, 2133–2145. [Google Scholar] [CrossRef]
- Chaurasia, A.K.; Siwach, P.; Shankar, R.; Mondal, P. Effect of pre-treatment on mesophilic anaerobic co-digestion of fruit, food and vegetable waste. Clean Technol. Environ. Policy 2021, 25, 603–616. [Google Scholar] [CrossRef]
- El Gnaoui, Y.; Karouach, F.; Bakraoui, M.; Barz, M.; El Bari, H. Mesophilic anaerobic digestion of food waste: Effect of thermal pretreatment on improvement of anaerobic digestion process. Energy Rep. 2020, 6, 417–422. [Google Scholar] [CrossRef]
- Sun, Y.; Dai, H.-L.; Moayedi, H.; Le, B.N.; Adnan, R.M. Predicting steady-state biogas production from waste using advanced machine learning-metaheuristic approaches. Fuel 2023, 355, 129493. [Google Scholar] [CrossRef]
- Beltramo, T.; Klocke, M.; Hitzmann, B. Prediction of the biogas production using GA and ACO input features selection method for ANN model. Sci. Total Environ. 2019, 6, 349–356. [Google Scholar] [CrossRef]
- Cruz, I.A.; de Melo, L.; Leite, A.N.; Sátiro, J.V.M.; Andrade, L.R.S.; Torres, N.H.; Padilla, R.Y.C.; Bharagava, R.N.; Tavares, R.F.; Ferreira, L.F.R. A new approach using an open-source low cost system for monitoring and controlling biogas production from dairy wastewater. J. Clean. Prod. 2019, 241, 118284. [Google Scholar] [CrossRef]
- Bernardi, B.; Benalia, S.; Zema, D.; Tamburino, V.; Zimbalatti, G. An automated medium scale prototype for anaerobic co-digestion of olive mill wastewater. Inf. Process. Agric. 2017, 4, 316–320. [Google Scholar] [CrossRef]
- Scarcello, L.; Benalia, S.; Zimbalatti, G.; Fazari, A.; Bernardi, B. A Smart Automation System for the Management and Control of a Medium Scale Digester Plant. In AIIA 2022: Biosystems Engineering Towards the Green Deal: Improving the Resilience of Agriculture, Forestry and Food Systems in the Post-Covid Era; Springer: Berlin/Heidelberg, Germany, 2023; pp. 917–925. [Google Scholar] [CrossRef]
- Farhat, A.; Asses, N.; Ennouri, H.; Hamdi, M.; Bouallagui, H. Combined effects of thermal pretreat-ment and increasing organic loading by co-substrate addition for enhancing municipal sewage sludge anaerobic digestion and energy production. Process Saf. Environ. Prot. 2018, 119, 14–22. [Google Scholar] [CrossRef]
- Farhat, A.; Manai, I.; Gtari, M.; Bouallagui, H. Effect of enhancing nutrient balance in anaerobic digester feedstock by co-substrate addition on the microbial diversity and energy production from municipal sewage sludge. J. Biosci. Bioeng. 2018, 126, 497–506. [Google Scholar] [CrossRef]
- Zema, D.A.; Fòlino, A.; Zappia, G.; Calabrò, P.S.; Tamburino, V.; Zimbone, S.M. Anaerobic digestion of orange peel in a semi-continuous pilot plant: An environmentally sound way of citrus waste management in agro-ecosystems. Sci. Total Environ. 2018, 630, 401–408. [Google Scholar] [CrossRef]
- Tufaner, F. Evaluation of COD and color removals of effluents from UASB reactor treating olive oil mill wastewater by Fenton process. Sep. Sci. Technol. 2020, 55, 3455–3466. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neri, A.; Bernardi, B.; Zimbalatti, G.; Benalia, S. An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production. Energies 2023, 16, 6851. https://doi.org/10.3390/en16196851
Neri A, Bernardi B, Zimbalatti G, Benalia S. An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production. Energies. 2023; 16(19):6851. https://doi.org/10.3390/en16196851
Chicago/Turabian StyleNeri, Alessandro, Bruno Bernardi, Giuseppe Zimbalatti, and Souraya Benalia. 2023. "An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production" Energies 16, no. 19: 6851. https://doi.org/10.3390/en16196851
APA StyleNeri, A., Bernardi, B., Zimbalatti, G., & Benalia, S. (2023). An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production. Energies, 16(19), 6851. https://doi.org/10.3390/en16196851