Selective Lactic Acid Production via Thermophilic Anaerobic Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Feedstock and Inoculum Used for SCC Production
2.2. Experimental Setup
2.3. Process Monitoring
2.4. Microbial Community Analysis
3. Results and Discussion
3.1. Process Performance
3.2. SCC Profile Distribution
3.3. Microbial Community Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Anaerobic fermentation |
SCCs | Short-chain carboxylates |
COD | Chemical oxygen demand |
AD | Anaerobic digestion |
TSs | Total solids |
VSs | Volatile solids |
OLR | Organic loading rate |
HRT | Hydraulic retention time |
HAc | Acetic acid |
HPro | Propionic acid |
HBu | Butyric acid |
isoHBu | Isobutyric acid |
HVal | Valeric acid |
isoHVal | Isovaleric acid |
HCa | Caproic acid |
HLact | Lactic acid |
NKT | Total Kjeldahl nitrogen |
References
- Food Waste Index Report 2024. Think Eat Save: Tracking Progress to Halve Global Food Waste|Knowledge for Policy. Available online: https://knowledge4policy.ec.europa.eu/publication/food-waste-index-report-2024-think-eat-save-tracking-progress-halve-global-food-waste_en?utm_source.com (accessed on 16 July 2025).
- Qin, W.; Han, S.; Meng, F.; Chen, K.; Gao, Y.; Li, J.; Lin, L.; Hu, E.; Jiang, J. Impacts of seasonal variation on volatile fatty acids production of food waste anaerobic fermentation. Sci. Total Environ. 2024, 912, 168764. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.J.; Kabir, M.I.; Sohany, M.; Islam, M.H.; Khatun, A.A.; Hosen, A.; Kabir, M.F. Effect of carrot pulp on the physicochemical, microbiological and sensory attributes of kulfi. Food Res. 2024, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, I.; Ibrahim, A. Functional jam production from blends of carrot and sweet potato pulp. Int. J. Food Sci. Nutr. 2021, 6, 10–15. [Google Scholar]
- Khan, S.R. Utilization Carrot Pulp as Corn Replacement in the Broiler Diet. J. Agric. Vet. Sci. 2019, 12, 72–74. [Google Scholar] [CrossRef]
- Akcakaya, M.; Tuncay, S.; Icgen, B. Two-stage anaerobic digestion of ozonated sewage sludge predominantly took over by acetotrophic methanogens with increased biogas and methane production. Fuel 2022, 317, 123434. [Google Scholar] [CrossRef]
- Strazzera, G.; Battista, F.; Herrero-Garcia, N.; Frison, N.; Bolzonella, D. Volatile fatty acids production from food wastes for biorefinery platforms: A review. J. Environ. Manag. 2018, 226, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ren, X.; Xuan, Y.; Liu, M.; Bai, G.; Jiang, F. Enhancement of volatile fatty acids to extremely high content in fermentation of food waste: Optimization of conditions, microbial functional genes, and mechanisms. Bioresour. Technol. 2025, 416, 131735. [Google Scholar] [CrossRef] [PubMed]
- Greses, S.; Tomás-Pejó, E.; González-Fernández, C. Assessing the relevance of acidic pH on primary intermediate compounds when targeting at carboxylate accumulation. Biomass Convers. Biorefinery 2022, 12, 4519–4529. [Google Scholar] [CrossRef]
- Shen, D.; Yin, J.; Yu, X.; Wang, M.; Long, Y.; Shentu, J.; Chen, T. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids. Bioresour. Technol. 2017, 227, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Wang, H. Volatile fatty acids productions by mesophilic thermophilic sludge fermentation: Biological responses to fermentation temperature. Bioresour. Technol. 2015, 175, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Greses, S.; Tomás-Pejó, E.; González-Fernández, C. Food waste valorization into bioenergy and bioproducts through a cascade combination of bioprocesses using anaerobic open mixed cultures. J. Clean. Prod. 2022, 372, 133680. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; ISBN 978-0875532875. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Greses, S.; Gaby, J.C.; Aguado, D.; Ferrer, J.; Seco, A.; Horn, S.J. Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Res. 2017, 27, 121–130. [Google Scholar] [CrossRef]
- Fernandez-Bayo, J.D.; Simmons, C.W.; VanderGheynst, J.S. Characterization of digestate microbial community structure following thermophilic anaerobic digestion with varying levels of green and food wastes. J. Ind. Microbiol. Biotechnol. 2020, 47, 1031–1044. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, C.; Da Ros, C.; Pavan, P.; Bolzonella, D. Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage. Bioresour. Technol. 2017, 223, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aguirre, J.; Aymerich, E.; Gonzalez-Mtnez de Goni, J.; Esteban-Gutierrez, M. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence. Bioresour. Technol. 2017, 244, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- de Souza Moraes, B.; Dos Santos, G.M.; Delforno, T.P.; Fuess, L.T.; da Silva, A.J. Enriched microbial consortia for dark fermentation of sugarcane vinasse towards value-added short-chain organic acids and alcohol production. J. Biosci. Bioeng. 2019, 127, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yin, J.; Shen, D.; Li, N. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresour. Technol. 2014, 161, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Strazzera, G.; Battista, F.; Tonanzi, B.; Rossetti, S.; Bolzonella, D. Optimization of short chain volatile fatty acids production from household food waste for biorefinery applications. Environ. Technol. Innov. 2021, 23, 101562. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, H.; Meng, X.; Huang, Z.; Yongrui Feng, Y.; Gao, Q.; Ruan, W. Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession. Bioresour. Technol. 2024, 399, 130576. [Google Scholar] [CrossRef] [PubMed]
- Llamas, M.; Greses, S.; Tomas-Pejo, E.; Gonzalez-Fernandez, C. Carboxylic acids production via anaerobic fermentation: Microbial communities’ responses to stepwise and direct hydraulic retention time decrease. Bioresour. Technol. 2022, 344, 126282. [Google Scholar] [CrossRef] [PubMed]
- Sikora, A.; Baszczyk, M.; Jurkowski, M.; Zielenkiewicz, U. Lactic Acid Bacteria in Hydrogen-Producing Consortia: On Purpose or by Coincidence? In Lactic Acid Bacteria—R & D for Food, Health and Livestock Purposes; IntechOpen: London, UK, 2013. [Google Scholar]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Yang, Y.-H. Microbial production of volatile fatty acids: Current status and future perspectives. Rev. Environ. Sci. Biotechnol. 2017, 16, 327–345. [Google Scholar] [CrossRef]
- Zhou, M.; Yan, B.; Wong, J.W.C.; Zhang, Y. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 2018, 248, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.J.; González-Fernández, C.; Greses, S. Long hydraulic retention time mediates stable volatile fatty acids production against slight pH oscillations. Waste Manag. 2024, 176, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Kim, S.J.; Raza, S.; Lee, S.; Lee, J.; Son, H.; Wang, J.; Kim, Y.M. Temperature is more important than solid retention time in biogas production and resistome dynamics in anaerobic digestion with recuperative thickening. Chem. Eng. J. 2025, 514, 163355. [Google Scholar] [CrossRef]
- Garcia-Peña, E.I.; Parameswaran, P.; Kang, D.W.; Canul-Chan, M.; Krajmalnik-Brown, R. Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology. Bioresour. Technol. 2011, 102, 9447–9455. [Google Scholar] [CrossRef] [PubMed]
- Elferink, S.J.O.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S.F.; Faber, F.; Driehuis, F. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri. Appl. Environ. Microb. 2001, 67, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Cetecioglu, Z.; Atasoy, M.; Cenian, A.; Sołowski, G.; Trček, J.; Ugurlu, A.; Sedlakova-Kadukova, J. Bio-Based Processes for Material and Energy Production from Waste Streams under Acidic Conditions. Fermentation 2022, 8, 115. [Google Scholar] [CrossRef]
Physicochemical Parameters | Mean ± Standard Deviation | ||
---|---|---|---|
25 °C Adapted Inoculum | 35 °C Adapted Inoculum | 55 °C Adapted Inoculum | |
SCOD/TCOD | 0.6 ± 0.1 | 0.3 ± 0.1 | 0.1 ± 0.1 |
VS/TS | 0.7 ± 0.2 | 0.7 ± 0.1 | 0.7 ± 0.1 |
pH (25 °C) | 5.1 ± 0.1 | 7.1 ± 0.2 | 7.1 ± 0.2 |
Physicochemical Parameters | Mean ± Standard Deviation |
---|---|
SCOD/TCOD | 0.5 ± 0.1 |
VS/TS | 0.9 ± 0.1 |
Total nitrogen (g N L−1) | 0.5 ± 0.0 |
Carbohydrates (%) | 79.7 ± 2.4 |
Proteins (%) | 7.3 ± 0.1 |
Lipids (%) | 6.3 ± 1.6 |
Ash (%) | 6.6 ± 0.8 |
pH (25 °C) | 5.9 ± 0.2 |
Reactor | Identification | Inoculum | Substrate |
---|---|---|---|
Reactor No.1 | R1 | Sludge from the VFA production process at 25 °C | Carrot pulp |
Reactor No.2 | R2 | Conventional anaerobic sludge adapted to a temperature of 35 °C | |
Reactor No.3 | R3 | Thermophilic anaerobic sludge adapted to a temperature of 55 °C |
R1 | R2 | R3 | |
---|---|---|---|
pH | 5.1 ± 0.01 | 5.1 ± 0.02 | 5.1 ± 0.02 |
TCOD (g L−1) | 57.3 ± 1.6 | 53.5 ± 1.1 | 53.7 ± 1.7 |
SCOD (%) | 49.8 ± 1.8 | 57.4 ± 1.1 | 50.3 ± 3.6 |
TS (g L−1) | 35.6 ± 1.8 | 38.6 ± 2.5 | 37.2 ± 0.1 |
VS (%) | 68.4 ± 3.6 | 64.2 ± 2.5 | 69.3 ± 0.2 |
NH4+-N (mgN L−1) | 48.0 ± 3.0 | 102.7 ± 6.43 | 80.7 ± 3.1 |
Total SCCs (gVFAs+HLac L−1) | 12.1 ± 1.4 | 16.1 ± 1.7 | 14.9 ± 3.1 |
Ethanol (g L−1) | <LD 1 | 0.7 ± 0.1 | <LD 1 |
Total bioconversion (%) | 18.9 ± 1.8 | 26.1 ± 2.2 | 22.8 ± 4.6 |
Acidification (%) | 43.7 ± 2.9 | 56.3 ± 6.9 | 55.9 ± 13.8 |
VS removal (%) | 43.5 ± 4.7 | 42.5 ± 5.8 | 40.1 ± 0.4 |
COD removal (%) | 13.4 ± 2.3 | 19.1 ± 1.7 | 18.7 ± 2.6 |
Sample | Observed OTUs | Shannon | Simpson |
---|---|---|---|
R1-inoculum | 50 | 1.11 | 0.59 |
R1-steady state | 45 | 1.15 | 0.61 |
R2-inoculum | 478 | 4.14 | 0.97 |
R2-steady state | 51 | 0.21 | 0.08 |
R3-inoculum | 398 | 3.70 | 0.94 |
R3-steady state | 62 | 0.93 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao-Reyes, C.; Timmers, R.A.; Mahdy, A.; Greses, S.; González-Fernández, C. Selective Lactic Acid Production via Thermophilic Anaerobic Fermentation. Water 2025, 17, 2183. https://doi.org/10.3390/w17152183
Chao-Reyes C, Timmers RA, Mahdy A, Greses S, González-Fernández C. Selective Lactic Acid Production via Thermophilic Anaerobic Fermentation. Water. 2025; 17(15):2183. https://doi.org/10.3390/w17152183
Chicago/Turabian StyleChao-Reyes, Claudia, Rudolphus Antonius Timmers, Ahmed Mahdy, Silvia Greses, and Cristina González-Fernández. 2025. "Selective Lactic Acid Production via Thermophilic Anaerobic Fermentation" Water 17, no. 15: 2183. https://doi.org/10.3390/w17152183
APA StyleChao-Reyes, C., Timmers, R. A., Mahdy, A., Greses, S., & González-Fernández, C. (2025). Selective Lactic Acid Production via Thermophilic Anaerobic Fermentation. Water, 17(15), 2183. https://doi.org/10.3390/w17152183