Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = thermoelectric microgenerator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10098 KiB  
Article
Planar Thermoelectric Microgenerators in Application to Power RFID Tags
by Andrzej Dziedzic, Szymon Wójcik, Mirosław Gierczak, Slavko Bernik, Nana Brguljan, Kathrin Reinhardt and Stefan Körner
Sensors 2024, 24(5), 1646; https://doi.org/10.3390/s24051646 - 2 Mar 2024
Cited by 4 | Viewed by 2102
Abstract
This paper presents an innovative approach to the integration of thermoelectric microgenerators (μTEGs) based on thick-film thermopiles of planar constantan–silver (CuNi-Ag) and calcium cobaltite oxide–silver (Ca3Co4O9-Ag) thick-film thermopiles with radio frequency identification (RFID) technology. The goal was [...] Read more.
This paper presents an innovative approach to the integration of thermoelectric microgenerators (μTEGs) based on thick-film thermopiles of planar constantan–silver (CuNi-Ag) and calcium cobaltite oxide–silver (Ca3Co4O9-Ag) thick-film thermopiles with radio frequency identification (RFID) technology. The goal was to consider using the TEG for an active or semi-passive RFID tag. The proposed implementation would allow the communication distance to be increased or even operated without changing batteries. This article discusses the principles of planar thermoelectric microgenerators (μTEGs), focusing on their ability to convert the temperature difference into electrical energy. The concept of integration with active or semi-passive tags is presented, as well as the results of energy efficiency tests, considering various environmental conditions. On the basis of the measurements, the parameters of thermopiles consisting of more thermocouples were simulated to provide the required voltage and power for cooperation with RFID tags. The conclusions of the research indicate promising prospects for the integration of planar thermoelectric microgenerators with RFID technology, opening the way to more sustainable and efficient monitoring and identification systems. Our work provides the theoretical basis and practical experimental data for the further development and implementation of this innovative technology. Full article
(This article belongs to the Special Issue RFID-Enabled Sensor Design and Applications)
Show Figures

Figure 1

23 pages, 1542 KiB  
Review
Review of Si-Based Thin Films and Materials for Thermoelectric Energy Harvesting and Their Integration into Electronic Devices for Energy Management Systems
by Carlos Roberto Ascencio-Hurtado, Roberto C. Ambrosio Lázaro, Johan Jair Estrada-López and Alfonso Torres Jacome
Eng 2023, 4(2), 1409-1431; https://doi.org/10.3390/eng4020082 - 15 May 2023
Cited by 5 | Viewed by 2670
Abstract
Energy harvesters are autonomous systems capable of capturing, processing, storing, and utilizing small amounts of free energy from the surrounding environment. Such energy harvesters typically involve three fundamental stages: a micro-generator or energy transducer, a voltage booster or power converter, and an energy [...] Read more.
Energy harvesters are autonomous systems capable of capturing, processing, storing, and utilizing small amounts of free energy from the surrounding environment. Such energy harvesters typically involve three fundamental stages: a micro-generator or energy transducer, a voltage booster or power converter, and an energy storage component. In the case of harvesting mechanical vibrations from the environment, piezoelectric materials have been used as a transducer. For instance, PZT (lead zirconate titanate) is a widely used piezoelectric ceramic due to its high electromechanical coupling factor. However, the integration of PZT into silicon poses certain limitations, not only in the harvesting stage but also in embedding a power management electronics circuit. On the other hand, in thermoelectric (TE) energy harvesting, a recent approach involves using abundant, eco-friendly, and low-cost materials that are compatible with CMOS technology, such as silicon-based compound nanostructures for TE thin film devices. Thus, this review aims to present the current advancements in the fabrication and integration of Si-based thin-film devices for TE energy harvesting applications. Moreover, this paper also highlights some recent developments in electronic architectures that aim to enhance the overall efficiency of the complete energy harvesting system. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

10 pages, 1622 KiB  
Article
Thermoelectric Micro-Scale Generation by Carbonaceous Devices
by Francesco Miccio
Energies 2022, 15(21), 8105; https://doi.org/10.3390/en15218105 - 31 Oct 2022
Viewed by 1512
Abstract
The paper reports on research focused on the use of largely available carbonaceous materials, such as graphite, carbon black and chars, as thermoelectric materials for micro-generation at high temperature. The key feature is the possibility to ignite the thermoelectric device to self-sustain electric [...] Read more.
The paper reports on research focused on the use of largely available carbonaceous materials, such as graphite, carbon black and chars, as thermoelectric materials for micro-generation at high temperature. The key feature is the possibility to ignite the thermoelectric device to self-sustain electric generation. The results of the tests performed with such materials, under both cold and hot conditions, showed that a significant change of the electromotive force, with absolute increase up to three orders of magnitude, occurred under hot conditions with flame irradiation, achieving measured values of electromotive force up to 55 mV, in the best case. Monoliths based on biomass chars and covered with a layer of gunpowder gave rise to similar variation of the Seebeck coefficient, as the case of the flame exposed samples. This result confirms the basic idea of the investigation and the possibility of generating an electrical peak in a self-sufficient combustion thermoelectric device with power up to 1.0 W. A theoretical assessment has been proposed to provide an interpretation of the observed phenomenology, which is related to the non-linear dependence of the material properties on temperature, in particular the Seebeck coefficient and thermal conductivity. Full article
(This article belongs to the Topic Thermoelectric Energy Harvesting)
Show Figures

Figure 1

13 pages, 3513 KiB  
Article
Influence of Thermoelectric Properties and Parasitic Effects on the Electrical Power of Thermoelectric Micro-Generators
by Soufiane El Oualid, Francis Kosior, Gerhard Span, Ervin Mehmedovic, Janina Paris, Christophe Candolfi and Bertrand Lenoir
Energies 2022, 15(10), 3746; https://doi.org/10.3390/en15103746 - 19 May 2022
Cited by 1 | Viewed by 2468
Abstract
Heat recovery systems based on thermoelectric micro-generators (µ-TEGs) can play a significant role in the development of wireless, energetically autonomous electronics. However, to date, the power density recovered for low temperature differences using µ-TEGs is limited to a few micro-watts or less, which [...] Read more.
Heat recovery systems based on thermoelectric micro-generators (µ-TEGs) can play a significant role in the development of wireless, energetically autonomous electronics. However, to date, the power density recovered for low temperature differences using µ-TEGs is limited to a few micro-watts or less, which is still insufficient to power a wide-range of wireless devices. To develop more efficient µ-TEGs, material, device and system requirements must be considered simultaneously. In this study, an innovative design of an in-plane µ-TEG integrating bismuth telluride forming sinusoidal-shaped trenches is reported. Using 3D numerical modelling, the influence of boundary conditions, parasitic effects (electrical and thermal contact resistances), and transport properties of thermoelectric materials on the output power of these µ-TEGs are investigated in detail for a small temperature difference of 5 K between the hot and cold sources. Compared to wavy-shaped trenches, this novel shape enables enhancing the output power. The results show that either the thermal conductivity or the Seebeck coefficient of the active n- and p-type semiconductors is the key parameter that should be minimized or maximized, depending on the magnitude of the parasitic effects. Full article
(This article belongs to the Special Issue Advanced Thermoelectric Generation Technologies 2022)
Show Figures

Figure 1

27 pages, 2223 KiB  
Review
An Overview of the Strategies for Tin Selenide Advancement in Thermoelectric Application
by Rosnita Md Aspan, Noshin Fatima, Ramizi Mohamed, Ubaidah Syafiq and Mohd Adib Ibrahim
Micromachines 2021, 12(12), 1463; https://doi.org/10.3390/mi12121463 - 27 Nov 2021
Cited by 13 | Viewed by 4028
Abstract
Chalcogenide, tin selenide-based thermoelectric (TE) materials are Earth-abundant, non-toxic, and are proven to be highly stable intrinsically with ultralow thermal conductivity. This work presented an updated review regarding the extraordinary performance of tin selenide in TE applications, focusing on the crystal structures and [...] Read more.
Chalcogenide, tin selenide-based thermoelectric (TE) materials are Earth-abundant, non-toxic, and are proven to be highly stable intrinsically with ultralow thermal conductivity. This work presented an updated review regarding the extraordinary performance of tin selenide in TE applications, focusing on the crystal structures and their commonly used fabrication methods. Besides, various optimization strategies were recorded to improve the performance of tin selenide as a mid-temperature TE material. The analyses and reviews over the methodologies showed a noticeable improvement in the electrical conductivity and Seebeck coefficient, with a noticeable decrement in the thermal conductivity, thereby enhancing the tin selenide figure of merit value. The applications of SnSe in the TE fields such as microgenerators, and flexible and wearable devices are also discussed. In the future, research in low-dimensional TE materials focusing on nanostructures and nanocomposites can be conducted with the advancements in material science technology as well as microtechnology and nanotechnology. Full article
Show Figures

Figure 1

11 pages, 16739 KiB  
Article
Transitioning from Si to SiGe Nanowires as Thermoelectric Material in Silicon-Based Microgenerators
by Luis Fonseca, Inci Donmez-Noyan, Marc Dolcet, Denise Estrada-Wiese, Joaquin Santander, Marc Salleras, Gerard Gadea, Mercè Pacios, Jose-Manuel Sojo, Alex Morata and Albert Tarancon
Nanomaterials 2021, 11(2), 517; https://doi.org/10.3390/nano11020517 - 18 Feb 2021
Cited by 24 | Viewed by 3827
Abstract
The thermoelectric performance of nanostructured low dimensional silicon and silicon-germanium has been functionally compared device-wise. The arrays of nanowires of both materials, grown by a VLS-CVD (Vapor-Liquid-Solid Chemical Vapor Deposition) method, have been monolithically integrated in a silicon micromachined structure in order to [...] Read more.
The thermoelectric performance of nanostructured low dimensional silicon and silicon-germanium has been functionally compared device-wise. The arrays of nanowires of both materials, grown by a VLS-CVD (Vapor-Liquid-Solid Chemical Vapor Deposition) method, have been monolithically integrated in a silicon micromachined structure in order to exploit the improved thermoelectric properties of nanostructured silicon-based materials. The device architecture helps to translate a vertically occurring temperature gradient into a lateral temperature difference across the nanowires. Such thermocouple is completed with a thin film metal leg in a unileg configuration. The device is operative on its own and can be largely replicated (and interconnected) using standard IC (Integrated Circuits) and MEMS (Micro-ElectroMechanical Systems) technologies. Despite SiGe nanowires devices show a lower Seebeck coefficient and a higher electrical resistance, they exhibit a much better performance leading to larger open circuit voltages and a larger overall power supply. This is possible due to the lower thermal conductance of the nanostructured SiGe ensemble that enables a much larger internal temperature difference for the same external thermal gradient. Indeed, power densities in the μW/cm2 could be obtained for such devices when resting on hot surfaces in the 50–200 °C range under natural convection even without the presence of a heat exchanger. Full article
Show Figures

Graphical abstract

9 pages, 2009 KiB  
Article
Measuring Device and Material ZT in a Thin-Film Si-Based Thermoelectric Microgenerator
by Pablo Ferrando-Villalba, Antonio Pablo Pérez-Marín, Llibertat Abad, Gustavo Gonçalves Dalkiranis, Aitor F. Lopeandia, Gemma Garcia and Javier Rodriguez-Viejo
Nanomaterials 2019, 9(4), 653; https://doi.org/10.3390/nano9040653 - 24 Apr 2019
Cited by 11 | Viewed by 4432
Abstract
Thermoelectricity (TE) is proving to be a promising way to harvest energy for small applications and to produce a new range of thermal sensors. Recently, several thermoelectric generators (TEGs) based on nanomaterials have been developed, outperforming the efficiencies of many previous bulk generators. [...] Read more.
Thermoelectricity (TE) is proving to be a promising way to harvest energy for small applications and to produce a new range of thermal sensors. Recently, several thermoelectric generators (TEGs) based on nanomaterials have been developed, outperforming the efficiencies of many previous bulk generators. Here, we presented the thermoelectric characterization at different temperatures (from 50 to 350 K) of the Si thin-film based on Phosphorous (n) and Boron (p) doped thermocouples that conform to a planar micro TEG. The thermocouples were defined through selective doping by ion implantation, using boron and phosphorous, on a 100 nm thin Si film. The thermal conductivity, the Seebeck coefficient, and the electrical resistivity of each Si thermocouple was experimentally determined using the in-built heater/sensor probes and the resulting values were refined with the aid of finite element modeling (FEM). The results showed a thermoelectric figure of merit for the Si thin films of z T = 0.0093, at room temperature, which was about 12% higher than the bulk Si. In addition, we tested the thermoelectric performance of the TEG by measuring its own figure of merit, yielding a result of ZT = 0.0046 at room temperature. Full article
(This article belongs to the Special Issue Nanostructured Materials for Thermoelectrics)
Show Figures

Figure 1

12 pages, 4469 KiB  
Article
Design of Nano-Structured Micro-Thermoelectric Generator: Load Resistance and Inflections in the Efficiency
by Carlos Alberto Badillo-Ruiz, Miguel Angel Olivares-Robles and Jose Jorge Chanona-Perez
Entropy 2019, 21(3), 224; https://doi.org/10.3390/e21030224 - 27 Feb 2019
Cited by 9 | Viewed by 4454
Abstract
In recent years the interest for the harvest of energy with micro thermoelectric generators ( μ TEG) has increased, due to its advantages compared to technologies that use fossil fuels. There are three ways to improve the performance of the device, by modifying [...] Read more.
In recent years the interest for the harvest of energy with micro thermoelectric generators ( μ TEG) has increased, due to its advantages compared to technologies that use fossil fuels. There are three ways to improve the performance of the device, by modifying its structure, type of material and operation control. In this study, the role of the load resistance R L on the performance of a μ TEG with nanostructured materials is investigated. The interaction of the load resistance with the thermoelements exhibits interesting features, arising from the coupling of the temperature-dependent electrical and thermal transport properties at different temperature ranges and the architecture of nanostructured thermoelectric materials. This coupling results in inflections on the efficiency, i.e., maximum and minimum values of the efficiency at higher temperatures, 600–900 K. We show the explicit dependence of the performance of the μ TEG in terms of the load resistance and discuss the underlying physics. The unusual features of the efficiency of nanostructured thermoelectric materials are a result of the behavior of the power factor and the nonequilibrium properties of the system. We also analyze the effect of the geometric shape of the thermoelements on the device. We determine the performance of the μ TEG, evaluating the generation power and its efficiency. The results show that the efficiency of the device can decrease or increase depending on the value of R L , while the power decreases with an increase of the load resistance. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Graphical abstract

11 pages, 3032 KiB  
Article
Thermoelectric Properties of Thin Films of Germanium-Gold Alloy Obtained by Magnetron Sputtering
by Damian Nowak, Marta Turkiewicz and Natalia Solnica
Coatings 2019, 9(2), 120; https://doi.org/10.3390/coatings9020120 - 15 Feb 2019
Cited by 9 | Viewed by 5043
Abstract
In this paper, the electric and thermoelectric properties of thin films of germanium–gold alloy (Ge–Au) are discussed in terms of choosing the optimal deposition process and post-processing conditions to obtain Ge–Au layers with the best thermoelectric parameters. Thin films were fabricated by magnetron [...] Read more.
In this paper, the electric and thermoelectric properties of thin films of germanium–gold alloy (Ge–Au) are discussed in terms of choosing the optimal deposition process and post-processing conditions to obtain Ge–Au layers with the best thermoelectric parameters. Thin films were fabricated by magnetron sputtering using the Ge–Au alloy target onto glass substrates at two various conditions; during one of the sputtering processes, the external substrate bias voltage (Ub = −150 V) was used. After deposition thin films were annealed in the atmosphere of N2 at various temperatures (473, 523 and 573 K) to investigate the influence of annealing temperature on the electric and thermoelectric properties of films. Afterwards, the thermocouples were created by deposition of the NiCrSi/Ag contact pads onto Ge–Au films. In this work, particular attention has been paid to thermoelectric properties of fabricated thin films—the thermoelectric voltage, Seebeck coefficient, power factor PF and dimensionless figure of merit ZT were determined. Full article
(This article belongs to the Special Issue Novel Thin Film Materials for Thermoelectric Applications)
Show Figures

Figure 1

12 pages, 6059 KiB  
Article
Fabrication and Testing of Thermoelectric CMOS-MEMS Microgenerators with CNCs Film
by Yu-Wei Chen, Chyan-Chyi Wu, Cheng-Chih Hsu and Ching-Liang Dai
Appl. Sci. 2018, 8(7), 1047; https://doi.org/10.3390/app8071047 - 27 Jun 2018
Cited by 23 | Viewed by 4338
Abstract
Manufacturing and testing of a TMG (thermoelectric microgenerator) with CNCs (carbon nanocapsules) film fabricated utilizing a CMOS (complementary metal oxide semiconductor) technology are investigated. The microgenerator includes a CNCs layer, thermopiles, and thermometers. CNCs, a heat absorbing material, are coated on the microgenerator, [...] Read more.
Manufacturing and testing of a TMG (thermoelectric microgenerator) with CNCs (carbon nanocapsules) film fabricated utilizing a CMOS (complementary metal oxide semiconductor) technology are investigated. The microgenerator includes a CNCs layer, thermopiles, and thermometers. CNCs, a heat absorbing material, are coated on the microgenerator, so that the TD (temperature difference) of HP (hot part) and CP (cold part) in the thermopiles increases, resulting in an enhancement of the microgenerator OP (output power). Thermometers fabricated in the microgenerator are employed to detect the HP and CP temperature in thermopiles. In order to enhance thermopiles’ TD, the HP in thermopiles was manufactured as suspension structures isolating heat dissipation, and the CP in thermopiles was made on a silicon substrate to increase the heat sink. Experiments showed that the microgenerator OV (output voltage) was 3.3 mV and its output power was 125 pW at TD 3 K. Voltage and power factors of TMG were 0.71 mV/K/mm2 and 9.04 pW/K2/mm2, respectively. Full article
(This article belongs to the Special Issue Selected Papers from the 2017 International Conference on Inventions)
Show Figures

Graphical abstract

9 pages, 2274 KiB  
Article
Thermoelectric Mixed Thick-/Thin Film Microgenerators Based on Constantan/Silver
by Mirosław Gierczak, Joanna Prażmowska-Czajka and Andrzej Dziedzic
Materials 2018, 11(1), 115; https://doi.org/10.3390/ma11010115 - 12 Jan 2018
Cited by 26 | Viewed by 5415
Abstract
This paper describes the design, manufacturing and characterization of newly developed mixed thick-/thin film thermoelectric microgenerators based on magnetron sputtered constantan (copper-nickel alloy) and screen-printed silver layers. The thermoelectric microgenerator consists of sixteen thermocouples made on a 34.2 × 27.5 × 0.25 mm [...] Read more.
This paper describes the design, manufacturing and characterization of newly developed mixed thick-/thin film thermoelectric microgenerators based on magnetron sputtered constantan (copper-nickel alloy) and screen-printed silver layers. The thermoelectric microgenerator consists of sixteen thermocouples made on a 34.2 × 27.5 × 0.25 mm3 alumina substrate. One of thermocouple arms was made of magnetron-sputtered constantan (Cu-Ni alloy), the second was a Ag-based screen-printed film. The length of each thermocouple arm was equal to 27 mm, and their width 0.3 mm. The distance between the arms was equal to 0.3 mm. In the first step, a pattern mask with thermocouples was designed and fabricated. Then, a constantan layer was magnetron sputtered over the whole substrate, and a photolithography process was used to prepare the first thermocouple arms. The second arms were screen-printed onto the substrate using a low-temperature silver paste (Heraeus C8829A or ElectroScience Laboratories ESL 599-E). To avoid oxidation of constantan, they were fired in a belt furnace in a nitrogen atmosphere at 550/450 °C peak firing temperature. Thermoelectric and electrical measurements were performed using the self-made measuring system. Two pyrometers included into the system were used for temperature measurement of hot and cold junctions. The estimated Seebeck coefficient, α was from the range 35 − 41 µV/K, whereas the total internal resistances R were between 250 and 3200 ohms, depending on magnetron sputtering time and kind of silver ink (the resistance of a single thermocouple was between 15.5 and 200 ohms). Full article
Show Figures

Figure 1

Back to TopTop