An Overview of the Strategies for Tin Selenide Advancement in Thermoelectric Application
Abstract
:1. Introduction
2. Thermoelectric Characteristics and Performance Evaluation
3. Background of Mid-Temperature Thermoelectric Materials
SnSe
Year | Material Based | Composition | Carrier Type | Temperature (K) | Seebeck Coefficient (μVK−1) | Electrical Conductivity (Scm−1) | Thermal Conductivity (Wm−1K−1) | Lattice Thermal Conductivity (Wm−1K−1) | PF (S2σ) (μWcm−1K−2) | Max zT | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
2017 | Cu2Se | Cu2Se + 0.75wt.% C | p | 1000 | 302 | 98 | 0.37 | 0.223 | 8.9 | 2.4 | [20] |
2017 | Cu2Se | Cu2Se + 1% CuInSe2 | p | 850 | 150 | 550 | 0.4 | N/A | 12.4 | 2.6 | [30] |
2017 | Cu2Se | Cu1.98S1/3Se1/3Te1/3 | p | 1000 | 243 | 182 | 0.57 | 0.297 | 10.7 | 1.9 | [31] |
2018 | Cu2Se | Cu2Se + 0.15wt.% graphene | p | 870 | 180 | 270 | 0.32 | N/A | 8.7 | 2.44 | [32] |
2019 | Cu2Se | Cu2Se + 0.10wt.% carbon-coated boron | p | 1000 | 300 | 100 | 0.4 | 0.250 | 9.0 | 2.2 | [33] |
2020 | Cu2Se | Cu2Se + 0.8wt.% carbon nanodots | p | 973 | 290 | 108.7 | 0.45 | 0.25 | 9.1 | 1.98 | [34] |
2020 | Cu2Se | Cu2Se + 0.60wt.% C-Cu2Se | n | 984 | 200 | 270 | 0.5 | N/A | 13 | 2.5 | [35] |
2021 | Cu2Se | Cu2Se + 2wt.% carbon dots | p | 880 | 100 | 302 | 0.5 | N/A | 3 | 2.1 | [64] |
2014 | SnSe | SnSe single crystal (b-axis) | p | 923 | 340 | 80 | 0.33 | 0.219 | 9.2 | 2.6 | [36] |
2016 | SnSe | Hole doped SnSe single crystal (b-axis) | p | 773 | 305 | 160 | 0.56 | 0.374 | 14.9 | 2 | [37] |
2018 | SnSe | Sn0.95Se | p | 873 | 320 | 70 | 0.3 | 0.208 | 7.2 | 2.1 | [38] |
2018 | SnSe | Sn0.98Pb0.01Zn0.01Se | p | 873 | 333 | 49 | 0.215 | 0.151 | 5.4 | 2.2 | [39] |
2018 | SnSe | SnSe + 2% SnTe | p | 793 | 280 | 195 | 0.58 | 0.348 | 15.3 | 2.1 | [40] |
2019 | SnSe | Sn0.99Pb0.01Se + Se quantum dot | p | 873 | 410 | 31 | 0.23 | 0.189 | 5.2 | 2 | [41] |
2020 | SnSe | SnSe0.95 + 2% PbBr2 | n | 770 | −480 | 25 | 0.3 | 0.25 | 8 | 2.1 | [42] |
2021 | SnSe | Na0.03Sn0.965Se (purified) | p | 783 | 280 | 115 | 0.2 | 0.07 | 9 | 3.1 | [25] |
2021 | SnSe | SnSe + 3% CdSe nanoparticles | p | 786 | 330 | 55 | 0.2 | 0.14 | 6 | 2.2 | [65] |
2013 | PbTe | Pb0.98Na0.02Te + 6% MgTe | p | 823 | 305 | 265 | 1.02 | 0.584 | 24.7 | 2 | [43] |
2014 | PbTe | (PbTe)0.86(PbSe)0.07 + 2% Na | p | 800 | 270 | 355 | 1.05 | 0.482 | 25.9 | 2 | [44] |
2014 | PbTe | PbTe0.7S0.3 + 2.5% K | p | 923 | 300 | 160 | 0.60 | 0.305 | 14.4 | 2.2 | [45] |
2015 | PbTe | PbTe0.8S0.2 + 3% Na | p | 923 | 240 | 300 | 0.82 | 0.266 | 17.3 | 2.3 | [46] |
2016 | PbTe | Pb0.98Na0.02Te-8% SrTe, non-equilibrium | p | 923 | 285 | 280 | 0.83 | 0.313 | 22.7 | 2.5 | [47] |
2017 | PbTe | Na0.025Eu0.03Pb0.955Te | p | 850 | 230 | 400 | 0.80 | 0.120 | 21.1 | 2.2 | [48] |
2018 | PbTe | Pb0.953Na0.040Ge0.007Te | p | 805 | 250 | 400 | 1.2 | 0.8 | 28 | 1.9 | [49] |
2019 | PbTe | Bi-doped PbTe/Ag2Te | n | 800 | −250 | 300 | 0.6 | 0.3 | 15 | 2 | [50] |
2020 | PbTe | Pb0.96Na0.04Te | p | 860 | 260 | 416.7 | 1.3 | 0.7 | 29 | 1.9 | [51] |
2021 | PbTe | Na0.03Eu0.03Pb0.94Te0.9Se0.1 | p | 850 | 255 | 377 | 0.8 | 0.4 | 25 | 2.3 | [66] |
2018 | GeTe | Ge0.86Pb0.1Bi0.04Te | p | 600 | 285 | 370.4 | 0.75 | 0.417 | 30.1 | 2.4 | [52] |
2018 | GeTe | Ge0.76Sb0.08Pb0.12Te | p | 800 | 260 | 469.5 | 1.1 | 0.537 | 31.7 | 2.3 | [53] |
2018 | GeTe | Ge0.89Sb0.1In0.01Te | p | 773 | 250 | 580 | 1.25 | 0.577 | 36.3 | 2.3 | [54] |
2018 | GeTe | Ge0.86Pb0.10Sb0.04Te | p | 600 | 260 | 476.2 | 0.92 | 0.491 | 32.2 | 2.1 | [55] |
2019 | GeTe | Bi0.05Ge0.99Te | p | 650 | 250 | 714.3 | 1.45 | 0.754 | 44.6 | 2 | [56] |
2020 | GeTe | BiI3-doped Sb2Te3(GeTe)17 | p | 723 | 260 | 500 | 1.15 | 0.575 | 34 | 2.2 | [57] |
2020 | GeTe | Ge0.92Cr0.03Bi0.05Te | p | 600 | 225 | 666.7 | 1.1 | 0.5 | 32.5 | 2 | [58] |
2021 | GeTe | Ge0.92Sb0.04Bi0.04Te0.95Se0.05 | p | 700 | 200 | 980 | N/A | 0.25 | 39.2 | 2 | [67] |
2021 | GeTe | Ge0.9Mg0.04Bi0.06Te | p | 700 | 255 | 1000 | 1.8 | 0.7 | 55 | 2.5 | [68] |
4. Characteristics of SnSe
4.1. Crystal Structure
4.2. Band Structure
4.3. Anharmonic Bonding
5. Synthesis of SnSe
5.1. Bridgman Method
5.2. Temperature Gradient Growth Method
5.3. Mechanical Alloying
5.4. Hydrothermal/Solvothermal Method
5.5. Post-Treatment Synthesis
Sintering
5.6. Advantages and Disadvantages of Synthesis and Post-treatment Synthesis Methods
6. Strategies to Improve the Thermoelectric Performance of SnSe
6.1. Enhancing the Power Factor
6.2. Reducing the Thermal Conductivity
6.3. Important Correlation of Power Factor and Lattice Thermal Conductivity
7. Applications
7.1. Thin Film
7.2. Organic/Inorganic Composite
8. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, T.; Liu, Y.; Fu, C.; Heremans, J.P.; Snyder, J.G.; Zhao, X. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yan, Y.; Lu, X.; Zhu, H.; Han, X.; Chen, G.; Ren, Z. Routes for high-performance thermoelectric materials. Mater. Today 2018, 21, 974–988. [Google Scholar] [CrossRef]
- Zhang, H.; Talapin, D.V. Thermoelectric tin selenide: The beauty of simplicity. Angew. Chem. Int. Ed. 2014, 53, 9126–9127. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Bathula, S.; Gahtori, B.; Tyagi, K.; Haranath, D.; Dhar, A. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material. J. Alloys Compd. 2016, 668, 152–158. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.; Zhou, C.; Lee, Y.K.; Cho, S.-P.; Chung, I. High Thermoelectric Performance in n-Type Polycrystalline SnSe via Dual Incorporation of Cl and PbSe and Dense Nanostructures. ACS Appl. Mater. Interfaces 2019, 11, 21645–21654. [Google Scholar] [CrossRef]
- Tan, G.; Zhao, L.-D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Ohta, M.; Kanatzidis, M.G. Thermoelectric power generation: From new materials to devices. Philos. Trans. R. Soc. A 2019, 377, 20180450. [Google Scholar] [CrossRef] [Green Version]
- Bhukesh, S.K.; Kumar, A.; Gaware, S.K. Bismuth telluride (Bi2Te3) thermoelectric material as a transducer for solar energy application. Mater. Today Proc. 2020, 26, 3131–3137. [Google Scholar] [CrossRef]
- Wang, H.; Luo, G.; Tan, C.; Xiong, C.; Guo, Z.; Yin, Y.; Yu, B.; Xiao, Y.; Hu, H.; Liu, G. Phonon engineering for thermoelectric enhancement of p-type bismuth telluride by a hot-pressing texture method. ACS Appl. Mater. Interfaces 2020, 12, 31612–31618. [Google Scholar] [CrossRef]
- Wood, C. Materials for thermoelectric energy conversion. Rep. Prog. Phys. 1988, 51, 459. [Google Scholar] [CrossRef]
- Fatima, N.; Karimov, K.S.; Qasuria, T.A.; Ibrahim, M.A. A novel and stable way for energy harvesting from Bi2Te3Se alloy based semitransparent photo-thermoelectric module. J. Alloys Compd. 2020, 849, 156702. [Google Scholar] [CrossRef] [PubMed]
- Abd Rahman, A.A.; Umar, A.A.; Chen, X.; Salleh, M.M.; Oyama, M. Enhanced thermoelectric properties of bismuth telluride–organic hybrid films via graphene doping. Appl. Phys. A 2016, 122, 133. [Google Scholar] [CrossRef]
- Karimov, K.S.; Fatima, N.; Qasuria, T.; Siddiqui, K.; Bashir, M.; Alharbi, H.; Alharth, N.; Al-Harthi, Y.; Amin, N.; Akhtaruzzaman, M. Innovative semitransparent photo-thermoelectric cells based on bismuth antimony telluride alloy. J. Alloys Compd. 2020, 816, 152593. [Google Scholar] [CrossRef]
- Abd Rahman, A.A.; Umar, A.A.; Othman, M.H.U. Effect of bismuth telluride concentration on the thermoelectric properties of PEDOT: PSS–glycerol organic films. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 66, 293–298. [Google Scholar] [CrossRef]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Biswas, K.; He, J.; Blum, I.D.; Wu, C.-I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Isotta, E.; Syafiq, U.; Ataollahi, N.; Chiappini, A.; Malerba, C.; Luong, S.; Trifiletti, V.; Fenwick, O.; Pugno, N.; Scardi, P. Thermoelectric properties of CZTS thin films: Effect of Cu–Zn disorder. Phys. Chem. Chem. Phys. 2021, 23, 13148–13158. [Google Scholar] [CrossRef]
- Yu, B.; Zebarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.; Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett. 2012, 12, 2077–2082. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Li, J.-F.; Liu, W.-S.; Zhao, L.-D.; Zhou, M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2010, 2, 152–158. [Google Scholar] [CrossRef]
- Shuai, J.; Ge, B.; Mao, J.; Song, S.; Wang, Y.; Ren, Z. Significant role of Mg stoichiometry in designing high thermoelectric performance for Mg3 (Sb, Bi) 2-based n-type Zintls. J. Am. Chem. Soc. 2018, 140, 1910–1915. [Google Scholar] [CrossRef]
- Choi, G.; Kim, H.S.; Lee, K.; Park, S.H.; Cha, J.; Chung, I.; Lee, W.B. Study on thermal conductivity and electrical resistivity of Al-Cu alloys obtained by Boltzmann transport equation and first-principles simulation: Semi-empirical approach. J. Alloys Compd. 2017, 727, 1237–1242. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, Y.K.; Cha, J.; Yoo, B.; Cho, S.-P.; Hyeon, T.; Chung, I. Defect engineering for high-performance n-type PbSe thermoelectrics. J. Am. Chem. Soc. 2018, 140, 9282–9290. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, Y.K.; Yu, Y.; Byun, S.; Luo, Z.-Z.; Lee, H.; Ge, B.; Lee, Y.-L.; Chen, X.; Lee, J.Y. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 2021, 20, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, N.; Jariwala, B.; Bañobre, A.; Maske, A. Thermoelectric Parameters and Their Optimization. In Thermoelectrics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 7–20. [Google Scholar]
- Goldsmid, H.J. Introduction to Thermoelectricity, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 121. [Google Scholar]
- Nguyen, V.Q.; Kim, J.; Cho, S. A review of SnSe: Growth and thermoelectric properties. J. Korean Phys. Soc. 2018, 72, 841–857. [Google Scholar] [CrossRef]
- Nunna, R.; Qiu, P.; Yin, M.; Chen, H.; Hanus, R.; Song, Q.; Zhang, T.; Chou, M.-Y.; Agne, M.T.; He, J. Ultrahigh thermoelectric performance in Cu 2 Se-based hybrid materials with highly dispersed molecular CNTs. Energy Environ. Sci. 2017, 10, 1928–1935. [Google Scholar] [CrossRef]
- Olvera, A.; Moroz, N.; Sahoo, P.; Ren, P.; Bailey, T.; Page, A.; Uher, C.; Poudeu, P. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu 2 Se. Energy Environ. Sci. 2017, 10, 1668–1676. [Google Scholar] [CrossRef]
- Zhao, K.; Zhu, C.; Qiu, P.; Blichfeld, A.B.; Eikeland, E.; Ren, D.; Iversen, B.B.; Xu, F.; Shi, X.; Chen, L. High thermoelectric performance and low thermal conductivity in Cu2-yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy 2017, 42, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Cortie, D.L.; Liu, J.; Yu, D.; Islam, S.M.K.N.; Zhao, L.; Mitchell, D.R.; Mole, R.A.; Cortie, M.B.; Dou, S. Ultra-high thermoelectric performance in graphene incorporated Cu2Se: Role of mismatching phonon modes. Nano Energy 2018, 53, 993–1002. [Google Scholar] [CrossRef]
- Li, M.; Islam, S.M.K.N.; Yahyaoglu, M.; Pan, D.; Shi, X.; Chen, L.; Aydemir, U.; Wang, X. Ultrahigh figure-of-merit of Cu2Se incorporated with carbon coated boron nanoparticles. InfoMat 2019, 1, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Zhang, Y.; Zhang, Y.; Li, X.-J.; Song, H. High thermoelectric performance in Cu2Se/CDs hybrid materials. J. Alloys Compd. 2020, 813, 152204. [Google Scholar] [CrossRef]
- Islam, S.M.K.N.; Cortie, M.; Wang, X. Grape juice: An effective liquid additive for significant enhancement of thermoelectric performance in Cu2Se. J. Mater. Chem. A 2020, 8, 16913–16919. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V.P. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Chang, C.; Yang, T.; Liu, J.; Tang, H.; Zhang, J.; Li, Y.; Xu, F.; Zhang, Z.; Li, J.-F. Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies. J. Am. Chem. Soc. 2018, 140, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, P.; Wang, M.; Xu, R.; Zhang, J.; Liu, J.; Li, D.; Liang, N.; Du, Y.; Chen, G. Achieving high thermoelectric performance with Pb and Zn codoped polycrystalline SnSe via phase separation and nanostructuring strategies. Nano Energy 2018, 53, 683–689. [Google Scholar] [CrossRef]
- Qin, B.; Wang, D.; He, W.; Zhang, Y.; Wu, H.; Pennycook, S.J.; Zhao, L.-D. Realizing high thermoelectric performance in p-type SnSe through crystal structure modification. J. Am. Chem. Soc. 2018, 141, 1141–1149. [Google Scholar] [CrossRef]
- Xu, R.; Huang, L.; Zhang, J.; Li, D.; Liu, J.; Liu, J.; Fang, J.; Wang, M.; Tang, G. Nanostructured SnSe integrated with Se quantum dots with ultrahigh power factor and thermoelectric performance from magnetic field-assisted hydrothermal synthesis. J. Mater. Chem. A 2019, 7, 15757–15765. [Google Scholar] [CrossRef]
- Mao, L.; Yin, Y.; Zhang, Q.; Liu, G.; Wang, H.; Guo, Z.; Hu, H.; Xiao, Y.; Tan, X.; Jiang, J. Fermi-surface dynamics and High thermoelectric performance along the out-of-plane direction in n-type SnSe crystal. Energy Environ. Sci. 2020, 13, 616–621. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Wu, H.; Hao, S.; Wu, C.-I.; Zhou, X.; Biswas, K.; He, J.; Hogan, T.P.; Uher, C.; Wolverton, C. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 2013, 6, 3346–3355. [Google Scholar] [CrossRef]
- Korkosz, R.J.; Chasapis, T.C.; Lo, S.-h.; Doak, J.W.; Kim, Y.J.; Wu, C.-I.; Hatzikraniotis, E.; Hogan, T.P.; Seidman, D.N.; Wolverton, C. High ZT in p-Type (PbTe)1−2x(PbSe)x(PbS)x Thermoelectric Materials. J. Am. Chem. Soc. 2014, 136, 3225–3237. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, L.-D.; Zheng, F.; Wu, D.; Pei, Y.; Tong, X.; Kanatzidis, M.G.; He, J. Broad temperature plateau for thermoelectric figure of merit ZT> 2 in phase-separated PbTe 0.7 S 0.3. Nat. Commun. 2014, 5, 4515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Zhao, L.-D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J.-F.; Zhu, Y. Superior thermoelectric performance in PbTe–PbS pseudo-binary: Extremely low thermal conductivity and modulated carrier concentration. Energy Environ. Sci. 2015, 8, 2056–2068. [Google Scholar] [CrossRef]
- Tan, G.; Shi, F.; Hao, S.; Zhao, L.-D.; Chi, H.; Zhang, X.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat. Commun. 2016, 7, 12167. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jian, Z.; Li, W.; Chang, Y.; Ge, B.; Hanus, R.; Yang, J.; Chen, Y.; Huang, M.; Snyder, G.J. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv. Mater. 2017, 29, 1606768. [Google Scholar] [CrossRef] [PubMed]
- Jood, P.; Ohta, M.; Yamamoto, A.; Kanatzidis, M.G. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules. Joule 2018, 2, 1339–1355. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.H.; Yun, J.H.; Kim, G.; Lee, J.E.; Park, S.-D.; Reith, H.; Schierning, G.; Nielsch, K.; Ko, W.; Li, A.-P. Synergetic Enhancement of Thermoelectric Performance by Selective Charge Anderson Localization–Delocalization Transition in n-Type Bi-Doped PbTe/Ag2Te Nanocomposite. ACS Nano 2019, 13, 3806–3815. [Google Scholar] [CrossRef]
- Jood, P.; Male, J.; Anand, S.; Matsushita, Y.; Takagiwa, Y.; Kanatzidis, M.G.; Snyder, G.J.; Ohta, M. Na doping in PbTe-Solubility, Band Convergence, Phase Boundary Mapping, and Thermoelectric properties. J. Am. Chem. Soc. 2020, 142, 15464–15475. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Chen, Z.; Lin, S.; Li, W.; Shen, J.; Witting, I.T.; Faghaninia, A.; Chen, Y.; Jain, A. Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2018, 2, 976–987. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Wang, X.; Chen, Z.; Mao, J.; Chen, Y.; Pei, Y. Vacancy manipulation for thermoelectric enhancements in GeTe alloys. J. Am. Chem. Soc. 2018, 140, 15883–15888. [Google Scholar] [CrossRef]
- Hong, M.; Chen, Z.G.; Yang, L.; Zou, Y.C.; Dargusch, M.S.; Wang, H.; Zou, J. Realizing zT of 2.3 in Ge1−x−ySbxInyTe via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping. Adv. Mater. 2018, 30, 1705942. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Wang, X.; Bu, Z.; Zheng, L.; Zhou, B.; Xiong, F.; Chen, Y.; Pei, Y. High-performance GeTe thermoelectrics in both rhombohedral and cubic phases. J. Am. Chem. Soc. 2018, 140, 16190–16197. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Sun, F.-H.; Tang, H.; Pei, J.; Zhuang, H.-L.; Hu, H.-H.; Zhang, B.-P.; Pan, Y.; Li, J.-F. Medium-temperature thermoelectric GeTe: Vacancy suppression and band structure engineering leading to high performance. Energy Environ. Sci. 2019, 12, 1396–1403. [Google Scholar] [CrossRef]
- Xu, X.; Huang, Y.; Xie, L.; Wu, D.; Ge, Z.; He, J. Realizing Improved Thermoelectric Performance in BiI3-Doped Sb2Te3 (GeTe) 17 via Introducing Dual Vacancy Defects. Chem. Mater. 2020, 32, 1693–1701. [Google Scholar] [CrossRef]
- Shuai, J.; Sun, Y.; Tan, X.; Mori, T. Manipulating the Ge Vacancies and Ge Precipitates through Cr Doping for Realizing the High-Performance GeTe Thermoelectric Material. Small 2020, 16, 1906921. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-D.; Chang, C.; Tan, G.; Kanatzidis, M.G. SnSe: A remarkable new thermoelectric material. Energy Environ. Sci. 2016, 9, 3044–3060. [Google Scholar] [CrossRef]
- Banik, A.; Biswas, K. A game-changing strategy in SnSe thermoelectrics. Joule 2019, 3, 636–638. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.; Laurita, G.; Muir, S.; Subramanian, M.A.; Keszler, D.A. Enhanced thermoelectric performance of synthetic tetrahedrites. Chem. Mater. 2014, 26, 2047–2051. [Google Scholar] [CrossRef]
- Dong, Y.; Khabibullin, A.R.; Wei, K.; Salvador, J.R.; Nolas, G.S.; Woods, L.M. Bournonite PbCuSbS3: Stereochemically Active Lone-Pair Electrons that Induce Low Thermal Conductivity. ChemPhysChem 2015, 16, 3264–3270. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.L.; Tao, X.; Zou, J.; Chen, Z.G. High-Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. Adv. Sci. 2020, 7, 1902923. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Vashi, M.; Lakshminarayana, D.; Batra, N. Electrical resistivity anisotropy in layered p-SnSe single crystals. J. Mater. Sci. Mater. Electron. 2000, 11, 67–71. [Google Scholar] [CrossRef]
- Nabi, Z.; Kellou, A.; Mecabih, S.; Khalfi, A.; Benosman, N. Opto-electronic properties of rutile SnO2 and orthorhombic SnS and SnSe compounds. Mater. Sci. Eng. B 2003, 98, 104–115. [Google Scholar] [CrossRef]
- Chang, C.; Wu, M.; He, D.; Pei, Y.; Wu, C.-F.; Wu, X.; Yu, H.; Zhu, F.; Wang, K.; Chen, Y. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018, 360, 778–783. [Google Scholar] [CrossRef] [Green Version]
- Bathula, S.; Jayasimhadri, M.; Gahtori, B.; Singh, N.K.; Tyagi, K.; Srivastava, A.; Dhar, A. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys. Nanoscale 2015, 7, 12474–12483. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cai, K.; Zhao, W. The effect of Te doping on the electronic structure and thermoelectric properties of SnSe. Phys. B Condens. Matter 2012, 407, 4154–4159. [Google Scholar] [CrossRef]
- Nariya, B.; Dasadia, A.; Bhayani, M.; Patel, A.; Jani, A. Electrical Transport Properties of SNS and Snse Single Crystals Grown by Direct Vapour Transport Technique. Chalcogenide Lett. 2009, 6, 549–554. [Google Scholar]
- Chang, C.; Tan, G.; He, J.; Kanatzidis, M.G.; Zhao, L.-D. The thermoelectric properties of SnSe continue to surprise: Extraordinary electron and phonon transport. Chem. Mater. 2018, 30, 7355–7367. [Google Scholar] [CrossRef]
- Li, F.; Wang, W.; Qiu, X.; Zheng, Z.; Fan, P.; Luo, J.; Li, B. Optimization of thermoelectric properties of n-type Ti, Pb co-doped SnSe. Inorg. Chem. Front. 2017, 4, 1721–1729. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Chen, J.; Miao, L.; Wu, S.; Wang, X.; Xie, Z.; Xu, W.; Chen, Q. Synergistically optimizing the thermoelectric properties of polycrystalline Ag 8 SnSe 6 by introducing additional Sn. CrystEngComm 2020, 22, 248–256. [Google Scholar] [CrossRef]
- Oztan, C.Y.; Hamawandi, B.; Zhou, Y.; Ballikaya, S.; Toprak, M.S.; Leblanc, R.M.; Coverstone, V.; Celik, E. Thermoelectric performance of Cu2Se doped with rapidly synthesized gel-like carbon dots. J. Alloys Compd. 2021, 864, 157916. [Google Scholar] [CrossRef]
- Liu, Y.; Calcabrini, M.; Yu, Y.; Lee, S.; Chang, C.; David, J.; Ghosh, T.; Spadaro, M.C.; Xie, C.; Cojocaru-Mirédin, O.; et al. Defect Engineering in Solution-Processed Polycrystalline SnSe Leads to High Thermoelectric Performance. ACS Nano 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, Y.; Chen, Z.; Nan, P.; Ge, B.; Li, W.; Pei, Y. Manipulation of Defects for High-Performance Thermoelectric PbTe-Based Alloys. Small Struct. 2021, 2, 2100016. [Google Scholar] [CrossRef]
- Xing, T.; Song, Q.; Qiu, P.; Zhang, Q.; Gu, M.; Xia, X.; Liao, J.; Shi, X.; Chen, L. High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ. Sci. 2021, 14, 995–1003. [Google Scholar] [CrossRef]
- Xing, T.; Zhu, C.; Song, Q.; Huang, H.; Xiao, J.; Ren, D.; Shi, M.; Qiu, P.; Shi, X.; Xu, F. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe. Adv. Mater. 2021, 33, 2008773. [Google Scholar] [CrossRef]
- Ju, H.; Kim, J. Chemically exfoliated SnSe nanosheets and their SnSe/poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano 2016, 10, 5730–5739. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, Z.; Hu, Y.; Wang, X.; Zhang, T.; Chen, W.; Wang, Q. Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 2013, 135, 1213–1216. [Google Scholar] [CrossRef]
- Franzman, M.A.; Schlenker, C.W.; Thompson, M.E.; Brutchey, R.L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4061. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Gao, M.; Wei, J.; Gao, J.; Fan, C.; Ashalley, E.; Li, H.; Wang, Z. Tin selenide (SnSe): Growth, properties, and applications. Adv. Sci. 2018, 5, 1700602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.-G.; Shi, X.; Zhao, L.-D.; Zou, J. High-performance SnSe thermoelectric materials: Progress and future challenge. Prog. Mater. Sci. 2018, 97, 283–346. [Google Scholar] [CrossRef] [Green Version]
- Isotta, E.; Mukherjee, B.; Fanciulli, C.; Pugno, N.M.; Scardi, P. Order–disorder transition in kesterite Cu2ZnSnS4: Thermopower enhancement via electronic band structure modification. J. Phys. Chem. C 2020, 124, 7091–7096. [Google Scholar] [CrossRef]
- Xi, L.; Yang, J.; Wu, L.; Yang, J.; Zhang, W. Band engineering and rational design of high-performance thermoelectric materials by first-principles. J. Mater. 2016, 2, 114–130. [Google Scholar] [CrossRef] [Green Version]
- Sirikumara, H.I.; Jayasekera, T. Tunable indirect-direct transition of few-layer SnSe via interface engineering. J. Phys. Condens. Matter 2017, 29, 425501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, A.; Li, L.; Zhu, H.; Yan, Z.; Liu, J.-M.; Ren, Z. Optimizing the thermoelectric performance of low-temperature SnSe compounds by electronic structure design. J. Mater. Chem. A 2015, 3, 13365–13370. [Google Scholar] [CrossRef]
- Shi, G.; Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 2015, 15, 6926–6931. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Usui, H.; Ochi, M.; Kuroki, K. Temperature-and doping-dependent roles of valleys in the thermoelectric performance of SnSe: A first-principles study. Phys. Rev. B 2017, 96, 085113. [Google Scholar] [CrossRef] [Green Version]
- Shafique, A.; Shin, Y.-H. Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds. Sci. Rep. 2017, 7, 1–10. [Google Scholar]
- Pletikosić, I.; von Rohr, F.; Pervan, P.; Das, P.; Vobornik, I.; Cava, R.J.; Valla, T. Band Structure of the IV-VI Black Phosphorus Analog and Thermoelectric SnSe. Phys. Rev. Lett. 2018, 120, 156403. [Google Scholar] [CrossRef] [Green Version]
- Delaire, O. Phonon scattering in thermoelectrics: Thermal transport, strong anharmonicity, and emergent quasiparticles. APS 2017, 2017, C34-007. [Google Scholar]
- Zhang, X.; Zhao, L.-D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 2015, 1, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Heremans, J.P. The ugly duckling. Nature 2014, 508, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Heremans, J.P. Thermoelectric materials: The anharmonicity blacksmith. Nat. Phys. 2015, 11, 990–991. [Google Scholar] [CrossRef]
- Scheel, H.J.; Capper, P.; Rudolph, P. Crystal Growth Technology: Semiconductors and Dielectrics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jin, M.; Jiang, J.; Li, R.; Wang, X.; Chen, Y.; Zhang, R.; Chen, Y. Growth of large size SnSe single crystal and comparison of its thermoelectric property with polycrystal. Mater. Res. Bull. 2019, 114, 156–160. [Google Scholar] [CrossRef]
- Ferreiro, J.M.; Diaz-Droguett, D.; Celentano, D.; Reparaz, J.; Torres, C.S.; Ganguli, S.; Luo, T. Effect of the annealing on the power factor of un-doped cold-pressed SnSe. Appl. Therm. Eng. 2017, 111, 1426–1432. [Google Scholar] [CrossRef]
- Zhao, Q.; Qin, B.; Wang, D.; Qiu, Y.; Zhao, L.-D. Realizing High Thermoelectric Performance in Polycrystalline SnSe via Silver Doping and Germanium Alloying. ACS Appl. Energy Mater. 2019, 3, 2049–2054. [Google Scholar] [CrossRef]
- Yang, S.D.; Nutor, R.K.; Chen, Z.J.; Zheng, H.; Wu, H.F.; Si, J.X. Influence of sodium chloride doping on thermoelectric properties of p-type SnSe. J. Electron. Mater. 2017, 46, 6662–6668. [Google Scholar] [CrossRef]
- Lohani, K.; Isotta, E.; Ataollahi, N.; Fanciulli, C.; Chiappini, A.; Scardi, P. Ultra-low thermal conductivity and improved thermoelectric performance in disordered nanostructured copper tin sulphide (Cu2SnS3, CTS). J. Alloys Compd. 2020, 830, 154604. [Google Scholar] [CrossRef]
- Bux, S.K.; Fleurial, J.-P.; Kaner, R.B. Nanostructured materials for thermoelectric applications. Chem. Commun. 2010, 46, 8311–8324. [Google Scholar] [CrossRef]
- Ovik, R.; Long, B.; Barma, M.; Riaz, M.; Sabri, M.; Said, S.; Saidur, R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 2016, 64, 635–659. [Google Scholar]
- Ju, H.; Park, D.; Kim, J. Hydrothermal transformation of SnSe crystal to Se nanorods in oxalic acid solution and the outstanding thermoelectric power factor of Se/SnSe composite. Sci. Rep. 2017, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.-H.; Wei, K.; Lewis, H.; Martin, J.; Nolas, G.S. Bottom-up processing and low temperature transport properties of polycrystalline SnSe. J. Solid State Chem. 2015, 225, 354–358. [Google Scholar] [CrossRef] [Green Version]
- Rongione, N.A.; Li, M.; Wu, H.; Nguyen, H.D.; Kang, J.S.; Ouyang, B.; Xia, H.; Hu, Y. High-performance solution-processable flexible SnSe nanosheet films for lower grade waste heat recovery. Adv. Electron. Mater. 2019, 5, 1800774. [Google Scholar] [CrossRef]
- Seward, T. Metal complex formation in aqueous solutions at elevated temperatures and pressures. Phys. Chem. Earth 1981, 13, 113–132. [Google Scholar] [CrossRef]
- Tang, G.; Liu, J.; Zhang, J.; Li, D.; Rara, K.H.; Xu, R.; Lu, W.; Liu, J.; Zhang, Y.; Feng, Z. Realizing High Thermoelectric Performance below Phase Transition Temperature in Polycrystalline SnSe via Lattice Anharmonicity Strengthening and Strain Engineering. ACS Appl. Mater. Interfaces 2018, 10, 30558–30565. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Yi, S.-I.; Yu, C. Gram-scale solution-based synthesis of SnSe thermoelectric nanomaterials. Appl. Surf. Sci. 2018, 459, 376–384. [Google Scholar] [CrossRef]
- Shi, X.L.; Zheng, K.; Liu, W.D.; Wang, Y.; Yang, Y.Z.; Chen, Z.G.; Zou, J. Realizing high thermoelectric performance in n-type highly distorted Sb-doped SnSe microplates via tuning high electron concentration and inducing intensive crystal defects. Adv. Energy Mater. 2018, 8, 1800775. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.; Dong, J.; Ge, Z.; Kang, F.; He, J.; Du, H.; Li, B.; Li, J.-F. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. J. Mater. Chem. C 2016, 4, 2047–2055. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, T.; Ji, X. Thermoelectrics Handbook Macro to Nano; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Syafiq, U.; Ataollahi, N.; Maggio, R.D.; Scardi, P. Solution-based synthesis and characterization of Cu2ZnSnS4 (CZTS) thin films. Molecules 2019, 24, 3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhu, T.; Tu, J.; Zhao, X. Flower-like nanostructure and thermoelectric properties of hydrothermally synthesized La-containing Bi2Te3 based alloys. Mater. Chem. Phys. 2007, 103, 484–488. [Google Scholar] [CrossRef]
- Tokita, M. Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Saheb, N.; Iqbal, Z.; Khalil, A.; Hakeem, A.S.; Al Aqeeli, N.; Laoui, T.; Al-Qutub, A.; Kirchner, R. Spark plasma sintering of metals and metal matrix nanocomposites: A review. J. Nanomater. 2012, 2012, 983470. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, D.; Qin, X.; Zhang, J. Enhanced thermoelectric performance of p-type SnSe doped with Zn. Scr. Mater. 2017, 126, 6–10. [Google Scholar] [CrossRef]
- Diouf, S.; Molinari, A. Densification mechanisms in spark plasma sintering: Effect of particle size and pressure. Powder Technol. 2012, 221, 220–227. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Liu, Z.-F.; Lu, J.-F.; Shen, X.-B.; Wang, F.-C.; Wang, Y.-D. The sintering mechanism in spark plasma sintering–proof of the occurrence of spark discharge. Scr. Mater. 2014, 81, 56–59. [Google Scholar] [CrossRef]
- Seevakan, K.; Bharanidharan, S. Different Types of Crystal Growth Methods. Int. J. Pure Appl. Math. 2018, 119, 5743–5758. [Google Scholar]
- Li, J.; Pan, Y.; Wu, C.; Sun, F.; Wei, T. Processing of advanced thermoelectric materials. Sci. China Technol. Sci. 2017, 60, 1347–1364. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Ullah, M.; Ali, M.E.; Abd Hamid, S.B. Surfactant-assisted ball milling: A novel route to novel materials with controlled nanostructure-A review. Rev. Adv. Mater. Sci 2014, 37, 1–14. [Google Scholar]
- Abu-Oqail, A.; Wagih, A.; Fathy, A.; Elkady, O.; Kabeel, A. Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites. Ceram. Int. 2019, 45, 5866–5875. [Google Scholar] [CrossRef]
- Feng, S.-H.; Li, G.-H. Hydrothermal and solvothermal syntheses. In Modern Inorganic Synthetic Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 73–104. [Google Scholar]
- Francis, L.F. Chapter 5—Powder Processes. In Materials Processing; Francis, L.F., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 343–414. [Google Scholar]
- Li, D.; Tan, X.; Xu, J.; Liu, G.; Jin, M.; Shao, H.; Huang, H.; Zhang, J.; Jiang, J. Enhanced thermoelectric performance in n-type polycrystalline SnSe by PbBr 2 doping. RSC Adv. 2017, 7, 17906–17912. [Google Scholar] [CrossRef] [Green Version]
- Chere, E.K.; Zhang, Q.; Dahal, K.; Cao, F.; Mao, J.; Ren, Z. Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe. J. Mater. Chem. A 2016, 4, 1848–1854. [Google Scholar] [CrossRef]
- Kucek, V.; Plechacek, T.; Janicek, P.; Ruleova, P.; Benes, L.; Navratil, J.; Drasar, C. Thermoelectric properties of Tl-doped SnSe: A hint of phononic structure. J. Electron. Mater. 2016, 45, 2943–2949. [Google Scholar] [CrossRef]
- Yang, S.; Si, J.; Su, Q.; Wu, H. Enhanced thermoelectric performance of SnSe doped with layered MoS2/graphene. Mater. Lett. 2017, 193, 146–149. [Google Scholar] [CrossRef]
- Cavaliere, P.; Sadeghi, B.; Shabani, A. Spark plasma sintering: Process fundamentals. In Spark Plasma Sintering of Materials; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–20. [Google Scholar]
- Lv, S.; Ge, Z.-H.; Chen, Y.-X.; Zhao, K.; Feng, J.; He, J. Thermoelectric properties of polycrystalline SnSe 1±x prepared by mechanical alloying and spark plasma sintering. RSC Adv. 2016, 6, 92335–92340. [Google Scholar] [CrossRef]
- Wei, T.-R.; Li, Z.; Sun, F.-H.; Pan, Y.; Wu, C.-F.; Farooq, M.U.; Tang, H.; Li, F.; Li, B.; Li, J.-F. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties. Sci. Rep. 2017, 7, 43262. [Google Scholar]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, D.; Vaney, J.-B.; Sassi, S.; Candolfi, C.; Ohorodniichuk, V.; Levinsky, P.; Semprimoschnig, C.; Dauscher, A.; Lenoir, B. Reinvestigation of the thermal properties of single-crystalline SnSe. Appl. Phys. Lett. 2017, 110, 032103. [Google Scholar] [CrossRef]
- Zhang, Q.; Chere, E.K.; Sun, J.; Cao, F.; Dahal, K.; Chen, S.; Chen, G.; Ren, Z. Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping. Adv. Energy Mater. 2015, 5, 1500360. [Google Scholar] [CrossRef]
- Ge, Z.-H.; Song, D.; Chong, X.; Zheng, F.; Jin, L.; Qian, X.; Zheng, L.; Dunin-Borkowski, R.E.; Qin, P.; Feng, J. Boosting the thermoelectric performance of (Na, K)-codoped polycrystalline SnSe by synergistic tailoring of the band structure and atomic-scale defect phonon scattering. J. Am. Chem. Soc. 2017, 139, 9714–9720. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Ge, Z.H.; Yin, M.; Feng, D.; Huang, X.Q.; Zhao, W.; He, J. Understanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium doping. Adv. Funct. Mater. 2016, 26, 6836–6845. [Google Scholar] [CrossRef]
- Guo, R.; Wang, X.; Kuang, Y.; Huang, B. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys. Rev. B 2015, 92, 115202. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Ai, X.; Zhang, Q.; Gu, S.; Wang, L.; Jiang, W. Enhanced thermoelectric performance of hydrothermally synthesized polycrystalline Te-doped SnSe. Chin. Chem. Lett. 2020, 32, 811–815. [Google Scholar] [CrossRef]
- Kanatzidis, M.G. Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 2010, 22, 648–659. [Google Scholar] [CrossRef]
- Chang, C.; Zhao, L.-D. Anharmoncity and low thermal conductivity in thermoelectrics. Mater. Today Phys. 2018, 4, 50–57. [Google Scholar] [CrossRef]
- Ma, Z.; Wei, J.; Song, P.; Zhang, M.; Yang, L.; Ma, J.; Liu, W.; Yang, F.; Wang, X. Review of experimental approaches for improving zT of thermoelectric materials. Mater. Sci. Semicond. Process. 2021, 121, 105303. [Google Scholar] [CrossRef]
- Song, Q.; Liu, T.-H.; Zhou, J.; Ding, Z.; Chen, G. Ab initio study of electron mean free paths and thermoelectric properties of lead telluride. Mater. Today Phys. 2017, 2, 69–77. [Google Scholar] [CrossRef]
- Cai, B.; Li, J.; Sun, H.; Zhao, P.; Yu, F.; Zhang, L.; Yu, D.; Tian, Y.; Xu, B. Sodium doped polycrystalline SnSe: High pressure synthesis and thermoelectric properties. J. Alloys Compd. 2017, 727, 1014–1019. [Google Scholar] [CrossRef]
- Leng, H.-Q.; Zhou, M.; Zhao, J.; Han, Y.-M.; Li, L.-F. The thermoelectric performance of anisotropic SnSe doped with Na. RSC Adv. 2016, 6, 9112–9116. [Google Scholar] [CrossRef]
- Wei, T.-R.; Tan, G.; Zhang, X.; Wu, C.-F.; Li, J.-F.; Dravid, V.P.; Snyder, G.J.; Kanatzidis, M.G. Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe. J. Am. Chem. Soc. 2016, 138, 8875–8882. [Google Scholar] [CrossRef]
- Leng, H.; Zhou, M.; Zhao, J.; Han, Y.; Li, L. Optimization of thermoelectric performance of anisotropic Ag x Sn 1 − x Se compounds. J. Electron. Mater. 2016, 45, 527–534. [Google Scholar] [CrossRef]
- Chien, C.-H.; Chang, C.-C.; Chen, C.-L.; Tseng, C.-M.; Wu, Y.-R.; Wu, M.-K.; Lee, C.-H.; Chen, Y.-Y. Facile chemical synthesis and enhanced thermoelectric properties of Ag doped SnSe nanocrystals. RSC Adv. 2017, 7, 34300–34306. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Tan, Q.; Pei, Y.; Xiao, Y.; Zhang, X.; Chen, Y.-X.; Zheng, L.; Gong, S.; Li, J.-F.; He, J. Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying. RSC Adv. 2016, 6, 98216–98220. [Google Scholar] [CrossRef]
- Sassi, S.; Candolfi, C.; Vaney, J.-B.; Ohorodniichuk, V.; Masschelein, P.; Dauscher, A.; Lenoir, B. Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Appl. Phys. Lett. 2014, 104, 212105. [Google Scholar] [CrossRef]
- Cho, J.; Siyar, M.; Bae, S.; Mun, J.; Kim, M.; Hong, S.; Park, C. Effect of sintering pressure on electrical transport and thermoelectric properties of polycrystalline SnSe. Bull. Mater. Sci. 2020, 43, 63. [Google Scholar] [CrossRef]
- Gong, Y.; Chang, C.; Wei, W.; Liu, J.; Xiong, W.; Chai, S.; Li, D.; Zhang, J.; Tang, G. Extremely low thermal conductivity and enhanced thermoelectric performance of polycrystalline SnSe by Cu doping. Scr. Mater. 2018, 147, 74–78. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, X.; Li, J. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries. Electrochim. Acta 2015, 176, 1296–1301. [Google Scholar] [CrossRef]
- Peng, K.; Zhang, B.; Wu, H.; Che, H.; Sun, X.; Ying, J.; Wang, G.; Sun, Z.; Wang, G.; Zhou, X. The unique evolution of transport bands and thermoelectric performance enhancement by extending low-symmetry phase to high temperature in tin selenide. J. Mater. Chem. C 2020, 8, 9345–9351. [Google Scholar] [CrossRef]
- Li, C.W.; Hong, J.; May, A.F.; Bansal, D.; Chi, S.; Hong, T.; Ehlers, G.; Delaire, O. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 2015, 11, 1063–1069. [Google Scholar] [CrossRef]
- Peng, K.; Lu, X.; Zhan, H.; Hui, S.; Tang, X.; Wang, G.; Dai, J.; Uher, C.; Wang, G.; Zhou, X. Broad temperature plateau for high ZT s in heavily doped p-type SnSe single crystals. Energy Environ. Sci. 2016, 9, 454–460. [Google Scholar] [CrossRef]
- Yang, G.; Sang, L.; Li, M.; Kazi Nazrul Islam, S.M.; Yue, Z.; Liu, L.; Li, J.; Mitchell, D.R.; Ye, N.; Wang, X. Enhancing the Thermoelectric Performance of Polycrystalline SnSe by Decoupling Electrical and Thermal Transport through Carbon Fiber Incorporation. ACS Appl. Mater. Interfaces 2020, 12, 12910–12918. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Zhao, W.; Li, M.; Yang, G.; Islam, S.M.K.N.; Mitchell, D.; Cheng, Z. Graphene Inclusion Induced Ultralow Thermal Conductivity and Improved Figure of Merit in p-type SnSe. Nanoscale 2020, 12, 12760–12766. [Google Scholar]
- Lee, Y.K.; Luo, Z.; Cho, S.P.; Kanatzidis, M.G.; Chung, I. Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule 2019, 3, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Isotta, E.; Mukherjee, B.; Fanciulli, C.; Ataollahi, N.; Sergueev, I.; Stankov, S.; Edla, R.; Pugno, N.M.; Scardi, P. Origin of a Simultaneous Suppression of Thermal Conductivity and Increase of Electrical Conductivity and Seebeck Coefficient in Disordered Cubic Cu2ZnSnS4. Phys. Rev. Appl. 2020, 14, 064073. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, H.; Mao, T.; Zhang, L.; Di, J.; Xu, G. The effect of Sm doping on the transport and thermoelectric properties of SnSe. Mater. Res. Bull. 2017, 93, 366–372. [Google Scholar] [CrossRef]
- Huang, L.; Lu, J.; Ma, D.; Ma, C.; Zhang, B.; Wang, H.; Wang, G.; Gregory, D.H.; Zhou, X.; Han, G. Facile in situ solution synthesis of SnSe/rGO nanocomposites with enhanced thermoelectric performance. J. Mater. Chem. A 2020, 8, 1394–1402. [Google Scholar] [CrossRef]
- Chandra, S.; Biswas, K. Realization of high thermoelectric figure of merit in solution synthesized 2D SnSe nanoplates via Ge alloying. J. Am. Chem. Soc. 2019, 141, 6141–6145. [Google Scholar] [CrossRef]
- Hong, M.; Chen, Z.-G.; Yang, L.; Chasapis, T.C.; Kang, S.D.; Zou, Y.; Auchterlonie, G.J.; Kanatzidis, M.G.; Snyder, G.J.; Zou, J. Enhancing the thermoelectric performance of SnSe 1−x Te x nanoplates through band engineering. J. Mater. Chem. A 2017, 5, 10713–10721. [Google Scholar] [CrossRef]
- Gao, J.; Xu, G. Thermoelectric performance of polycrystalline Sn1-xCuxSe (x= 0–003) prepared by high pressure method . Intermetallics 2017, 89, 40–45. [Google Scholar]
- Cai, B.; Zhuang, H.-L.; Tang, H.; Li, J.-F. Polycrystalline SnSe–Sn1–vS solid solutions: Vacancy engineering and nanostructuring leading to high thermoelectric performance. Nano Energy 2020, 69, 104393. [Google Scholar]
- Li, C.; Wu, H.; Zhang, B.; Zhu, H.; Fan, Y.; Lu, X.; Sun, X.; Zhang, X.; Wang, G.; Zhou, X. High Thermoelectric Performance of Co-Doped P-Type Polycrystalline SnSe via Optimizing Electrical Transport Properties. ACS Appl. Mater. Interfaces 2020, 12, 8446–8455. [Google Scholar] [CrossRef]
- Li, S.; Zhang, F.; Chen, C.; Li, X.; Cao, F.; Sui, J.; Liu, X.; Ren, Z.; Zhang, Q. Enhanced thermoelectric performance in polycrystalline N-type Pr-doped SnSe by hot forging. Acta Mater. 2020, 190, 1–7. [Google Scholar] [CrossRef]
- Luo, Y.; Cai, S.; Hua, X.; Chen, H.; Liang, Q.; Du, C.; Zheng, Y.; Shen, J.; Xu, J.; Wolverton, C. High Thermoelectric Performance in Polycrystalline SnSe Via Dual-Doping with Ag/Na and Nanostructuring With Ag8SnSe6. Adv. Energy Mater. 2019, 9, 1803072. [Google Scholar] [CrossRef]
- Ge, Z.H.; Qiu, Y.; Chen, Y.X.; Chong, X.; Feng, J.; Liu, Z.K.; He, J. Multipoint Defect Synergy Realizing the Excellent Thermoelectric Performance of n-Type Polycrystalline SnSe via Re Doping. Adv. Funct. Mater. 2019, 29, 1902893. [Google Scholar] [CrossRef]
- Lu, W.; Li, S.; Xu, R.; Zhang, J.; Li, D.; Feng, Z.; Zhang, Y.; Tang, G. Boosting Thermoelectric Performance of SnSe via Tailoring Band Structure, Suppressing Bipolar Thermal Conductivity, and Introducing Large Mass Fluctuation. ACS Appl. Mater. Interfaces 2019, 11, 45133–45141. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Y.; Chen, C.; Li, X.; Xue, W.; Wang, X.; Zhang, Z.; Cao, F.; Sui, J.; Liu, X. Heavy Doping by Bromine to Improve the Thermoelectric Properties of n-type Polycrystalline SnSe. Adv. Sci. 2018, 5, 1800598. [Google Scholar] [CrossRef]
- Lee, Y.K.; Ahn, K.; Cha, J.; Zhou, C.; Kim, H.S.; Choi, G.; Chae, S.I.; Park, J.-H.; Cho, S.-P.; Park, S.H. Enhancing p-type thermoelectric performances of polycrystalline SnSe via tuning phase transition temperature. J. Am. Chem. Soc. 2017, 139, 10887–10896. [Google Scholar] [CrossRef]
- Tang, G.; Wen, Q.; Yang, T.; Cao, Y.; Wei, W.; Wang, Z.; Zhang, Z.; Li, Y. Rock-salt-type nanoprecipitates lead to high thermoelectric performance in undoped polycrystalline SnSe. RSC Adv. 2017, 7, 8258–8263. [Google Scholar] [CrossRef] [Green Version]
- Heo, S.H.; Jo, S.; Kim, H.S.; Choi, G.; Song, J.Y.; Kang, J.-Y.; Park, N.-J.; Ban, H.W.; Kim, F.; Jeong, H. Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films. Nat. Commun. 2019, 10, 865. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Park, D.; Kim, J. Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe 0.8 S 0.2 nanosheets/carbon nanotubes for wearable electronic applications. J. Mater. Chem. A 2018, 6, 5627–5634. [Google Scholar]
- Zhang, J.; Zhang, T.; Zhang, H.; Wang, Z.; Li, C.; Wang, Z.; Li, K.; Huang, X.; Chen, M.; Chen, Z. Single-Crystal SnSe Thermoelectric Fibers via Laser—Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics. Adv. Mater. 2020, 32, 2002702. [Google Scholar] [CrossRef]
Method | Advantage | Disadvantage | Ref. |
---|---|---|---|
Bridgman |
| [96] | |
Temperature gradient growth |
|
| [98,99] |
Mechanical alloying (Ball milling) |
| [76] | |
Hydrothermal/solvothermal |
| [107,108,109] | |
Hot pressing | [116,126,127,128,129] | ||
Spark plasma sintering |
| [131,132] |
Year | Composition | Synthesis Process | Approach | T (K) | S (μVK−1) | σ (Scm−1) | κ (Wm−1K−1) | PF (S2σ) (μWcm−1K−2) | zT | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
2020 | Polycrystalline SnSe | Mechanical alloying + SPS | Pressure applied during spark plasma sintering (SPS) | 823 | SnSe sintered at 120MPa has a PF of ∼3.9 μWcm−1 K−2 | ~0.7 with a pressure 60 MPa | [151] | |||
2017 | Na0.02Sn0.98Se | High-Pressure synthesis + SPS | Sodium doped polycrystalline SnSe with high-pressure synthesis (increased the hole concentration) | 798 | 288.8 | 56.4 | 0.4 | 4.7 | 0.87 | [144] |
2017 | Ag0.03Sn0.97Se | Surfactant-free solution growth process + SPS | P-type Ag-doped SnSe nanocrystals
| 850 | 266.2 | 90.3 | 0.68 | 6.4 | 0.8 | [148] |
2017 | SnSe0.95–3% PbBr2 | Melting + hot pressing | N-Type polycrystalline SnSe by PbBr2 doping | 793 | −360 | 35 | 0.72 | 4.8 | 0.54 | [126] |
2017 | Zn0.01Sn0.99Se | Melting + hot pressing | P-Type SnSe doped with Zn increased power factor coming from a high electrical conductivity and an enhanced Seebeck coefficient | 873 | 328.5 | 74.1 | 0.73 | 8.0 | 0.96 | [116] |
2016 | Na0.015Sn0.985Se | Melting + hot pressing | Na-doped p-type polycrystalline SnSe to optimize the carrier concentration | 773 | 298.8 | 37.9 | 0.33 | 3.4 | 0.8 | [127] |
2016 | Na0.01Sn0.99Se | Melting + SPS | Na2Se as an acceptor was doped into SnSe.
| 823 | 311.1 | 49.6 | 0.53 | 4.8 | 0.75 | [145] |
2016 | SnSe0.97Br0.03 alloyed with Pb >10% | N/A | N-Type SnSe via Br doping and Pb alloying
| 773 | 390 | 30 | κ = 0.37 κlat = 0.28 | 5.8 | 1.2 | [149] |
2016 | Na0.01Sn0.99Se | Melting + SPS | Polycrystalline SnSe doped with three alkali metals (Li, Na, and K)
| 800 | 267.2 | 81.2 | 0.50 | 5.8 | 0.8 | [148] |
2016 | Ag0.01Sn0.99Se | Melting + SPS | Polycrystalline Ag-doped SnSe compounds
| 823 | 330.9 | 54.8 | 0.66 | 6.0 | 0.74 | [147] |
2016 | Sn0.995Tl0.005Se | Melting + hot pressing | P-type polycrystalline Tl-doped SnSe | 725 | 300 | 68.9 | 0.75 | 6.2 | 0.6 | [128] |
Year | Composition | Synthesis Process | T (K) | S (μVK−1) | σ (Scm−1) | κ (Wm−1K−1) | PF (S2σ) (μWcm−1K−2) | zT | Ref. |
---|---|---|---|---|---|---|---|---|---|
2021 | Na0.03Sn0.965Se | Ball milling + chemical reduction | 783 | 280 | 115 | κ= 0.2 κlat = ~0.07 | 9 | 3.1 | [25] |
2020 | Polycrystalline SnSe | Melting + SPS | 823 | 250 | 25 | κ= ~0.22 κlat = ~0.19 | 3.88 | 1.3 | [157] |
2020 | 0.5 wt.% graphene incorporated SnSe | SPS | 823 | 270 | 27 | 0.18 | 2.2 | 1.06 | [158] |
2019 | Na0.01(Sn0.95Pb0.05)0.99Se | Melting + ball milling + SPS | 773 | 280 | 95 | κ = 0.3 κlat = ~0.11 | 7.5 | 2.5 | [159] |
2018 | Cu0.01Sn0.99Se | Hydrothermal + SPS | 873 | 310 | 30 | κ = 0.28 κlat = 0.2 | 3.5 | 1.2 | [152] |
2017 | Sn0.74Pb0.20Ti0.06Se | Mechanical alloying + SPS | 773 | −450 | 16 | 0.55 | 3.0 | 0.4 | [76] |
2016 | Sn0.98Cu0.02Se | Conventional fushion method + SPS | 773 | 225 | 22 | 0.27 | NA | 0.7 | [4] |
Year | Composition | Synthesis Process | T (K) | S (μVK−1) | σ (Scm−1) | κ (Wm−1K−1) | PF (S2σ) (μWcm−1K−2) | zT | Ref. |
---|---|---|---|---|---|---|---|---|---|
2020 | Sn0.985S0.25Se0.75 | Mechanical alloying + SPS | 823 | 350 | 40 | 0.38 | ~4.5 | ~1.1 | [166] |
2020 | Sn0.978Ag0.007S0.25Se0.75 | Mechanical alloying + SPS | 823 | 325 | 50 | κ = 0.24 κlat = 0.19 | ~5.3 | ~1.75 | [166] |
2020 | SnSe/reduced graphene oxide(rGO)-0.3 | In situ solution method + SPS | 823 | 242 | 76 | κ = 0.45 κlat = 0.4 | 5.3 | 0.91 | [162] |
2020 | Sn0.98Na0.016Ag0.004Se | Melting + SPS | 785 | 260 | 100 | κlat= 0.44 | ~ 7.3 | ~1.2 | [167] |
2020 | SnSe0.85Te0.15 | Hydrothermal + SPS | 773 | 339 | 40 | 0.79 | 4.59 | 0.79 | [139] |
2020 | Sn0.97Pr0.03Se | Mechanical alloying + SPS | 773 | −425 | 20 | 0.39 | 4.55 | ~0.9 | [168] |
2019 | Sn0.99Na0.01Se–STSe | Melting + SPS | 773 | 300 | 65 | 0.5 | 7 | 1.33 | [169] |
2019 | Sn0.97Re0.03Se0.93Cl0.02 | Melting + SPS | 798 | −450 | 31 | 0.38 | 6.0 | 1.5 | [170] |
2019 | Ge doping (3 mol %) SnSe | Hydrothermal + SPS | 873 | 260 | 50 | κlat = 0.18 | 5.1 | 2.1 | [163] |
2019 | Sn0.99Pb0.01Se0.93S0.07 | Hydrothermal + SPS | 873 | 320 | 37 | κ = 0.18 κlat = 0.13 | 3.8 | 1.85 | [171] |
2018 | SnSb0.02Se0.96 | Solvothermal + SPS | 773 | −247 | 39.4 | 0.17 | 2.4 | 1.1 | [109] |
2019 | Sn0.90Pb0.15Se0.95Cl0.05 | Melting + SPS | 823 | −325 | 54 | 0.45 | 5.6 | 1.2 | [6] |
2019 | Sn0.975Ag0.01Ge0.015Se | Melting + SPS | 793 | 360 | 75 | 0.55 | 10 | 1.5 | [98] |
2018 | Sn0.93Pb0.02Se | Hydrothermal + SPS | 773 | 320 | 42 | κ = 0.26 κlat = 0.2 | 4.25 | 1.4 | [107] |
2018 | SnSe0.9Br0.1 | Melting, mechanical alloying + SPS | 773 | −400 | 30 | 0.26 | 4.2 | 1.3 | [172] |
2017 | Na0.01(Sn0.96Pb0.04)0.999Se | Melting + SPS | 773 | 269.7 | 89.4 | κ = 0.45 | 6.5 | 1.2 | [173] |
2017 | (0.5% Na + 0.5% K)-co-doped SnSe | Mechanical alloying + SPS | 773 | 374.7 | 34.9 | κ = 0.32 κlat = 0.29 | 4.92 | 1.2 | [136] |
2017 | SnSe0.9Te0.1 | Solvothermal + SPS | 800 | 322.8 | 57.4 | 0.44 | 6.0 | 1.1 | [164] |
2017 | SnSe + 3.2 wt% MoS2/G | Melting + hot pressing | 810 | 250 | 70 | 0.39 | 4.6 | 0.98 | [129] |
2017 | Na0.005Sn0.995SeCl0.005 | Melting + hot pressing | 810 | 228.6 | 79.2 | κ = 0.39 κlat = 0.19 | 4.1 | 0.84 | [99] |
2017 | Sn0.97Cu0.03Se | Melting + high-pressure sintering | 823 | 325.1 | 35.0 | 0.39 | 3.7 | 0.79 | [165] |
2017 | Sn0.97Sm0.03Se | Melting + high pressure sintering | 823 | 250.0 | 33.6 | 0.32 | 2.1 | 0.55 | [161] |
2017 | Undoped polycrystalline SnSe | Hydrothermal + SPS | 850 | 280 | 48 | κ = 0.25 κlat = 0.19 | 4.0 | 1.3 | [174] |
2016 | K0.01Sn0.99Se | Mechanical alloying + SPS | 773 | 421.4 | 18.6 | 0.24 | 3.3 | 1.1 | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Md Aspan, R.; Fatima, N.; Mohamed, R.; Syafiq, U.; Ibrahim, M.A. An Overview of the Strategies for Tin Selenide Advancement in Thermoelectric Application. Micromachines 2021, 12, 1463. https://doi.org/10.3390/mi12121463
Md Aspan R, Fatima N, Mohamed R, Syafiq U, Ibrahim MA. An Overview of the Strategies for Tin Selenide Advancement in Thermoelectric Application. Micromachines. 2021; 12(12):1463. https://doi.org/10.3390/mi12121463
Chicago/Turabian StyleMd Aspan, Rosnita, Noshin Fatima, Ramizi Mohamed, Ubaidah Syafiq, and Mohd Adib Ibrahim. 2021. "An Overview of the Strategies for Tin Selenide Advancement in Thermoelectric Application" Micromachines 12, no. 12: 1463. https://doi.org/10.3390/mi12121463
APA StyleMd Aspan, R., Fatima, N., Mohamed, R., Syafiq, U., & Ibrahim, M. A. (2021). An Overview of the Strategies for Tin Selenide Advancement in Thermoelectric Application. Micromachines, 12(12), 1463. https://doi.org/10.3390/mi12121463