Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = thermoelastic mechanics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2673 KiB  
Article
Process Parameters Optimization and Mechanical Properties of Additively Manufactured Ankle–Foot Orthoses Based on Polypropylene
by Sahar Swesi, Mohamed Yousfi, Nicolas Tardif and Abder Banoune
Polymers 2025, 17(14), 1921; https://doi.org/10.3390/polym17141921 - 11 Jul 2025
Viewed by 270
Abstract
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent [...] Read more.
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent balance between flexibility, chemical resistance, biocompatibility, and long-term durability. However, Additive Manufacturing (AM) of AFOs based on PP remains a major challenge due to its limited bed adhesion and high shrinkage, especially for making large parts such as AFOs. The primary innovation of the present study lies in the optimization of FFF 3D printing parameters for the fabrication of functional, patient-specific orthoses using PP, a material still underutilized in the AM of medical devices. Firstly, a thorough thermomechanical characterization was conducted, allowing the implementation of a (thermo-)elastic material model for the used PP filament. Thereafter, a Taguchi design of experiments (DOE) was established to study the influence of several printing parameters (extrusion temperature, printing speed, layer thickness, infill density, infill pattern, and part orientation) on the mechanical properties of 3D-printed specimens. Three-point bending tests were conducted to evaluate the strength and stiffness of the samples, while additional tensile tests were performed on the 3D-printed orthoses using a home-made innovative device to validate the optimal configurations. The results showed that the maximum flexural modulus of 3D-printed specimens was achieved when the printing speed was around 50 mm/s. The most significant parameter for mechanical performance and reduction in printing time was shown to be infill density, contributing 73.2% to maximum stress and 75.2% to Interlaminar Shear Strength (ILSS). Finally, the applicability of the finite element method (FEM) to simulate the FFF process-induced deflections, part distortion (warpage), and residual stresses in 3D-printed orthoses was investigated using a numerical simulation tool (Digimat-AM®). The combination of Taguchi DOE with Digimat-AM for polypropylene AFOs highlighted that the 90° orientation appeared to be the most suitable configuration, as it minimizes deformation and von Mises stress, ensuring improved quality and robustness of the printed orthoses. The findings from this study contribute by providing a reliable method for printing PP parts with improved mechanical performance, thereby opening new opportunities for its use in medical-grade additive manufacturing. Full article
(This article belongs to the Special Issue Latest Progress in the Additive Manufacturing of Polymeric Materials)
Show Figures

Figure 1

14 pages, 638 KiB  
Review
Motor Vehicle Brake Pad Wear—A Review
by Ştefan Voloacă, Alexandro Badea-Romero, Francisco Badea-Romero and Marius Florin Toma
Vehicles 2025, 7(2), 52; https://doi.org/10.3390/vehicles7020052 - 30 May 2025
Viewed by 693
Abstract
The paper offers an overview of the motor vehicle brake pad wear process. Considering the types of wear that occur between the pads and the disc, the study begins by presenting Archard’s fundamental wear law. It explains how the hardness and roughness of [...] Read more.
The paper offers an overview of the motor vehicle brake pad wear process. Considering the types of wear that occur between the pads and the disc, the study begins by presenting Archard’s fundamental wear law. It explains how the hardness and roughness of materials can influence the wear rate. Furthermore, the analysis describes factors influencing the wear coefficient, including chemical affinity between materials, surface quality, thermo-elastic instability (TEI) of the materials, and environmental effects. The paper also presents detection systems for brake pad wear, such as sensors-based monitoring and artificial neural networks (ANNs). These systems monitor brake pad wear in real time, thereby improving the driving safety by alerting the driver to the condition of the brake pads. The principles and systems analyzed form the basis for predictive maintenance, minimizing the risks of brake failure due to excessive wear. Full article
Show Figures

Figure 1

21 pages, 4679 KiB  
Article
A Mathematical Modeling of Time-Fractional Maxwell’s Equations Under the Caputo Definition of a Magnetothermoelastic Half-Space Based on the Green–Lindsy Thermoelastic Theorem
by Eman A. N. Al-Lehaibi
Mathematics 2025, 13(9), 1468; https://doi.org/10.3390/math13091468 - 29 Apr 2025
Viewed by 298
Abstract
This study has established and resolved a new mathematical model of a homogeneous, generalized, magnetothermoelastic half-space with a thermally loaded bounding surface, subjected to ramp-type heating and supported by a solid foundation where these types of mathematical models have been widely used in [...] Read more.
This study has established and resolved a new mathematical model of a homogeneous, generalized, magnetothermoelastic half-space with a thermally loaded bounding surface, subjected to ramp-type heating and supported by a solid foundation where these types of mathematical models have been widely used in many sciences, such as geophysics and aerospace. The governing equations are formulated according to the Green–Lindsay theory of generalized thermoelasticity. This work’s uniqueness lies in the examination of Maxwell’s time-fractional equations via the definition of Caputo’s fractional derivative. The Laplace transform method has been used to obtain the solutions promptly. Inversions of the Laplace transform have been computed via Tzou’s iterative approach. The numerical findings are shown in graphs representing the distributions of the temperature increment, stress, strain, displacement, induced electric field, and induced magnetic field. The time-fractional parameter derived from Maxwell’s equations significantly influences all examined functions; however, it does not impact the temperature increase. The time-fractional parameter of Maxwell’s equations functions as a resistor to material deformation, particle motion, and the resulting magnetic field strength. Conversely, it acts as a catalyst for the stress and electric field intensity inside the material. The strength of the main magnetic field considerably influences the mechanical and electromagnetic functions; however, it has a lesser effect on the thermal function. Full article
Show Figures

Figure 1

26 pages, 8150 KiB  
Article
Coefficients of Thermal Expansion in Aligned Carbon Staple Fiber-Reinforced Polymers: Experimental Characterization with Numerical Investigation
by Julian Kupski, Lucian Zweifel, Miriam Preinfalck, Stephan Baz, Mohammad Hajikazemi and Christian Brauner
Polymers 2025, 17(8), 1088; https://doi.org/10.3390/polym17081088 - 17 Apr 2025
Viewed by 531
Abstract
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more [...] Read more.
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more sustainable alternative while balancing performance, cost-effectiveness, and environmental impact. Aligning staple fibers into tape-like structures enables similar applications to those of continuous-fiber-based products, while allowing control over fiber orientation distribution, fiber volume fraction, and length distribution, which are all critical factors influencing both mechanical and thermo-mechanical properties. This study focuses on the experimental characterization and numerical investigation of Coefficients of Thermal Expansion (CTEs) in aligned carbon staple fiber composites. The effects of fiber orientation and volume fraction on coefficients of thermal expansion under different fiber alignment parameters are analyzed, revealing distinct thermal expansion behavior compared to typical aligned unidirectional continuous carbon fiber composite laminates. Unlike continuous unidirectional laminates, which typically exhibit transversely isotropic behavior without tensile–shear coupling, staple fiber composites demonstrate different in-plane axial, transverse, and out-of-plane CTE characteristics. To explain these deviations, a modeling approach is introduced, incorporating detailed experimental information on fiber distributions and microstructural features rather than averaged fiber orientation values. This involves a multi-scale analysis based on a laminate analogy through which all composite thermo-elastic properties can be predicted, accounting for variations in fiber orientations, volume fractions, and tape thicknesses. It is shown that while the local variation of fiber volume fraction has a small effect on the homogenized value of the coefficients of thermal expansion, fiber misalignment, tape thickness, and asymmetry in fiber orientation distribution will significantly affect the measurements of CTEs. For the case of carbon staple fiber composites, the asymmetry in fiber orientation distribution significantly influences the measurements of axial CTE. Fiber orientation asymmetry causes tensile–shear coupling under mechanical and thermal loading, leading to an unbalanced laminate with in-plane shear–tensile deformation. This coupling disrupts uniform displacement, complicating strain measurements and the determination of composite properties. Full article
Show Figures

Figure 1

21 pages, 4005 KiB  
Article
A Novel Lightweight Mechanical Metamaterial with a Tunable Thermal Expansion Coefficient
by Zhedong Xie, Bing Tian, Yingbo Li, Chao Zhang, Yuxuan Liu and Hongyu Guo
Materials 2025, 18(8), 1761; https://doi.org/10.3390/ma18081761 - 11 Apr 2025
Viewed by 456
Abstract
In natural materials, thermal expansion is typically positive, and negative thermal expansion is rarely observed. The tunable thermal expansion properties of mechanical metamaterials offer a promising solution to challenges caused by rapid temperature fluctuations. Therefore, this study proposes a dual-material double-trapezoidal hexagonal mechanical [...] Read more.
In natural materials, thermal expansion is typically positive, and negative thermal expansion is rarely observed. The tunable thermal expansion properties of mechanical metamaterials offer a promising solution to challenges caused by rapid temperature fluctuations. Therefore, this study proposes a dual-material double-trapezoidal hexagonal mechanical metamaterial (DTH), and derives the thermoelastic equations that build the relationship between temperature, external force, and displacement. Through theoretical analysis and numerical simulation, the intrinsic mechanism between the CTE and geometric parameters of DTH is revealed. Through the synergistic effect of dual materials and structural design, this metamaterial not only achieves thermal expansion regulation but also enhanced lightweight performance. The results show that by controlling the geometric parameters of DTH, the adjustment of effective CTE and elastic modulus can be realized, and the metamaterial composed of positive CTE materials can achieve a range of thermal expansion behaviors, including near-zero CTE and negative CTE. The tunable thermal expansion range extends from +39.92 ppm/°C to −3640.6191 ppm/°C. The metamaterials proposed in this study are not only superior to traditional materials in terms of thermal expansion performance but also have the characteristics of light weight and simple structure. This multifunctional material achieves higher performance and adaptability in applications. Full article
Show Figures

Figure 1

18 pages, 17302 KiB  
Article
Mechanistic Study of Groove Parameters on the Thermoelastic Instability of Wet Clutch
by Zhigang Zhang, Zhihua Mu and Xiaoxia Yu
Lubricants 2025, 13(4), 150; https://doi.org/10.3390/lubricants13040150 - 30 Mar 2025
Cited by 1 | Viewed by 445
Abstract
The groove parameters on the friction base of wet clutches significantly affect the temperature distribution of the steel plates. However, existing methods have not thoroughly investigated the mechanisms by which these parameters influence the thermoelastic instability of wet clutches. To address this gap, [...] Read more.
The groove parameters on the friction base of wet clutches significantly affect the temperature distribution of the steel plates. However, existing methods have not thoroughly investigated the mechanisms by which these parameters influence the thermoelastic instability of wet clutches. To address this gap, a comprehensive co-simulation model of the friction sub-multi-physical field was developed to systematically examine the effects of groove inclination, groove density, and groove depth on the surface temperature and mechanical response of the steel plates. The results indicate that both the tilt angle of the grooves and the number of grooves substantially influence the surface temperature distribution of the steel plates. Specifically, increasing the number of grooves leads to a more concentrated distribution of high-temperature hot spots in the circumferential direction, gradually transitioning the surface temperature–hot spot pattern from isolated hot spots to a more uniform high-temperature tropical distribution, which subsequently reduces the maximum surface temperature. On the other hand, increasing the groove inclination angle causes the high-temperature distribution to shift from localized hot spots to a more tropical pattern, with a relatively minor impact on the peak surface temperature. Furthermore, increasing the groove depth results in the dispersion of the high-temperature tropical zone in the circumferential direction, causing the maximum temperature to initially decrease and then increase. Full article
(This article belongs to the Special Issue Thermal Hydrodynamic Lubrication)
Show Figures

Figure 1

20 pages, 5677 KiB  
Article
Thermo-Mechanical Analysis for Composite Cylindrical Shells with Temperature-Dependent Material Properties Under Combined Thermal and Mechanical Loading
by Junjie Li, Hai Qian and Chunhua Lu
Materials 2025, 18(7), 1391; https://doi.org/10.3390/ma18071391 - 21 Mar 2025
Viewed by 444
Abstract
Composite laminated structures, comprising various engineering materials, are extensively utilized in engineering structures due to their superior design flexibility and enhanced mechanical performance. This study investigates the mechanical behavior of laminated cylindrical shells under combined thermal and mechanical loads. Using the theory of [...] Read more.
Composite laminated structures, comprising various engineering materials, are extensively utilized in engineering structures due to their superior design flexibility and enhanced mechanical performance. This study investigates the mechanical behavior of laminated cylindrical shells under combined thermal and mechanical loads. Using the theory of thermoelasticity, exact solutions are derived for temperature, displacement, and stress distributions in axisymmetric cylindrical shells with arbitrary numbers of layers and varying thicknesses, considering the temperature-dependent properties of the component materials. An iterative method and a slice model are introduced to address the interplay between temperature variations and material properties with the transfer matrix method on the basis of Fourier’s law of heat conduction. Stresses and displacements are used to formulate the state-space equation. Continuity conditions at the interfaces are applied to recursively establish the relationships between internal and external surfaces by the state-space method. Unique solutions for temperature, displacement, and stress, which are dependent on temperature, are determined by the surface conditions. The high accuracy and effectiveness of the proposed method are validated through convergence and comparative studies. Notably, neglecting temperature dependence leads to significant differences, with temperature increasing by 11.28%, displacement by 17.35%, and stress by 33.74%. Furthermore, the effects of surface temperature, thickness-to-radius ratio, layer numbers, and component materials on the temperature, displacement, and stress distributions within laminated cylindrical shells are thoroughly explored. Full article
Show Figures

Figure 1

11 pages, 2383 KiB  
Article
Experimental and Theoretical Study of the Thermal Shock Behavior of Insulating Refractory Materials
by Anabella Mocciaro, Ricardo Anaya, María Florencia Hernández, Diego Richard and Nicolás Maximiliano Rendtorff
Ceramics 2025, 8(1), 23; https://doi.org/10.3390/ceramics8010023 - 28 Feb 2025
Viewed by 1140
Abstract
This study investigates the thermal shock behavior of three Al2O3-SiO2 commercial insulating refractory materials (JM23, JM26, and JM28) used in high-temperature industries (>1000 °C). Thermal shock resistance was evaluated through experimental tests and compared with theoretical parameters (R, [...] Read more.
This study investigates the thermal shock behavior of three Al2O3-SiO2 commercial insulating refractory materials (JM23, JM26, and JM28) used in high-temperature industries (>1000 °C). Thermal shock resistance was evaluated through experimental tests and compared with theoretical parameters (R, R⁗, Rst) based on thermoelastic and thermomechanical models. The tests revealed that JM23 did not withstand thermal shock due to its fragility when in contact with water at room temperature, resulting in its immediate collapse. In contrast, JM26 and JM28 maintained their mechanical strength after several thermal shock cycles, although JM28 experienced a more significant decrease in compressive strength. The mechanical behavior under compression changed from semi-fragile to apparently plastic after severe heat treatments. Porosity analysis showed that JM26 had a lower pore size distribution, which contributed to its better thermal shock performance. Theoretical parameters were calculated, confirming that JM26 exhibited the highest resistance to thermal shock. These findings suggest that controlled porosity and microstructure are key factors in improving the thermal performance and durability of insulating refractory materials in high-temperature applications. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

25 pages, 9993 KiB  
Article
Comprehensive Performance-Oriented Multi-Objective Optimization of Hemispherical Resonator Structural Parameters
by Xiaohao Liu, Xin Jin, Chaojiang Li, Yumeng Ma, Deshan Xu and Simin Guo
Micromachines 2025, 16(3), 287; https://doi.org/10.3390/mi16030287 - 28 Feb 2025
Viewed by 672
Abstract
The hemispherical resonant gyroscope is the highest-precision solid-state vibration gyroscope, widely applied in aviation, aerospace, marine, and other navigation fields. As the core component of the hemispherical resonant gyroscope, the design of its structural parameters directly influences the key performance parameters of the [...] Read more.
The hemispherical resonant gyroscope is the highest-precision solid-state vibration gyroscope, widely applied in aviation, aerospace, marine, and other navigation fields. As the core component of the hemispherical resonant gyroscope, the design of its structural parameters directly influences the key performance parameters of the resonator—specifically, the thermoelastic damping quality factor and the minimum frequency difference from interference modes—affecting the operational accuracy and lifespan of the gyroscope. However, existing research, both domestic and international, has not clarified the effect of structural parameters on performance laws. Thus, studying the mapping relationship between the resonator’s performance and structural parameters is essential for optimization. In this study, a hemispherical resonator with a midplane radius of 10 mm serves as the research object. Based on a high-precision finite element simulation model of an ideal hemispherical resonator, the mechanism of thermoelastic damping and the influence of structural parameters on performance are analyzed. A PSO-BP neural network mapping model is then developed to relate the resonator’s structural and performance parameters. Subsequently, the NSGA-II algorithm is applied to perform multi-objective mapping of these parameters, achieving an optimized resonator with a 4.61% increase in the minimum frequency difference from interference modes and a substantial improvement in thermoelastic damping of approximately 70.41%. The comprehensive, performance-oriented multi-objective optimization method for the structural parameters of hemispherical resonators proposed in this paper offers a cost-effective approach to high-performance design and optimization, and it can also be applied to other manufacturing processes under specific conditions. Full article
Show Figures

Figure 1

14 pages, 264 KiB  
Article
Strong Stability of the Thermoelastic Bresse System with Second Sound and Fractional Delay
by Khaled Zennir and Loay Alkhalifa
Axioms 2025, 14(3), 176; https://doi.org/10.3390/axioms14030176 - 27 Feb 2025
Viewed by 413
Abstract
The thermoelastic Bresse system is a mathematical model that describes the dynamic behavior of elastic beams accounting for both mechanical deformations and thermal effects. Incorporating concepts such as second sound and fractional delay into this system enhances its ability to model complex physical [...] Read more.
The thermoelastic Bresse system is a mathematical model that describes the dynamic behavior of elastic beams accounting for both mechanical deformations and thermal effects. Incorporating concepts such as second sound and fractional delay into this system enhances its ability to model complex physical phenomena. The paper studies a Bresse thermoelastic system with fractional delay and second sound. Firstly, we prove the existence and uniqueness of the solution for our system using semi-group theory. Additionally, we derive an exponential decay estimate for the associated semi-group utilizing suitable multiplier techniques. Full article
(This article belongs to the Special Issue Advancements in Applied Mathematics and Computational Physics)
31 pages, 993 KiB  
Article
Integral Representation for Three-Dimensional Steady-State Couple-Stress Size-Dependent Thermoelasticity
by Ali R. Hadjesfandiari, Arezoo Hajesfandiari and Gary F. Dargush
Mathematics 2025, 13(4), 638; https://doi.org/10.3390/math13040638 - 15 Feb 2025
Viewed by 482
Abstract
Boundary element methods provide powerful techniques for the analysis of problems involving coupled multi-physical response. This paper presents the integral equation formulation for the size-dependent thermoelastic response of solids under steady-state conditions in three dimensions. The formulation is based upon consistent couple stress [...] Read more.
Boundary element methods provide powerful techniques for the analysis of problems involving coupled multi-physical response. This paper presents the integral equation formulation for the size-dependent thermoelastic response of solids under steady-state conditions in three dimensions. The formulation is based upon consistent couple stress theory, which features a skew-symmetric couple-stress pseudo-tensor. For general anisotropic thermoelastic material, there is not only thermal strain deformation, but also thermal mean curvature deformation. Interestingly, in this size-dependent multi-physics model, the thermal governing equation is independent of the deformation. However, the mechanical governing equations depend on the temperature field. First, thermal and mechanical weak forms and reciprocal theorems are developed for this theory. Then, an integral equation formulation for three-dimensional size-dependent thermoelastic isotropic materials is derived, along with the corresponding singular infinite-space fundamental solutions or kernel functions. For isotropic materials, there is no thermal mean curvature deformation, and the thermoelastic effect is solely the result of thermal strain deformation. As a result, the size-dependent behavior is specified entirely by a single characteristic length scale parameter l, while the thermal coupling is defined in terms of the thermal expansion coefficient α, as in the classical theory of steady-state isotropic thermoelasticity. Full article
Show Figures

Figure 1

25 pages, 4948 KiB  
Article
Fractional Moore–Gibson–Thompson Heat Conduction for Vibration Analysis of Non-Local Thermoelastic Micro-Beams on a Viscoelastic Pasternak Foundation
by Yahya Ahmed, Adam Zakria, Osman Abdalla Adam Osman, Muntasir Suhail and Mohammed Nour A. Rabih
Fractal Fract. 2025, 9(2), 118; https://doi.org/10.3390/fractalfract9020118 - 13 Feb 2025
Cited by 4 | Viewed by 2674
Abstract
This study aims to investigate the behavior of viscoelastic materials exhibiting complex mechanical behavior characterized by both elastic and viscous properties. They are widely used in various engineering applications, such as structural components, transportation systems, energy storage devices, microelectromechanical systems (MEMS), and earthquake [...] Read more.
This study aims to investigate the behavior of viscoelastic materials exhibiting complex mechanical behavior characterized by both elastic and viscous properties. They are widely used in various engineering applications, such as structural components, transportation systems, energy storage devices, microelectromechanical systems (MEMS), and earthquake research and detection. Accurate modeling of viscoelastic behavior is crucial for predicting its performance under dynamic loading conditions. In this study, we modify the equations governing the thermoelastic resistance to describe the thermal variables of a thermoelastic micro-beam supported by a two-parameter Pasternak viscoelastic foundation by using a fractional Moore–Gibson–Thompson (MGT) model in the context of non-locality. The temperature, bending displacement, and moment were computed and graphically displayed using the Laplace transform method. Different theoretical approaches have been compared in order to explain how the phase delay affects physical phenomena. Numerical results show that the wave fluctuations of variables in thermoelastic micro-beams are slightly smaller for the studied model and that the speed of these plane waves depends on fractional and non-local parameters. Full article
Show Figures

Figure 1

20 pages, 3068 KiB  
Article
Analytical Solutions for Thermo-Mechanical Coupling Bending of Cross-Laminated Timber Panels
by Chen Li, Shengcai Li, Kong Yue, Peng Wu, Zhongping Xiao and Biqing Shu
Buildings 2025, 15(1), 26; https://doi.org/10.3390/buildings15010026 - 25 Dec 2024
Viewed by 685
Abstract
This study presents analytical solutions grounded in three-dimensional (3D) thermo-elasticity theory to predict the bending behavior of cross-laminated timber (CLT) panels under thermo-mechanical conditions, incorporating the orthotropic and temperature-dependent properties of wood. The model initially utilizes Fourier series expansion based on heat transfer [...] Read more.
This study presents analytical solutions grounded in three-dimensional (3D) thermo-elasticity theory to predict the bending behavior of cross-laminated timber (CLT) panels under thermo-mechanical conditions, incorporating the orthotropic and temperature-dependent properties of wood. The model initially utilizes Fourier series expansion based on heat transfer theory to address non-uniform temperature distributions. By restructuring the governing equations into eigenvalue equations, the general solutions for stresses and displacements in the CLT panel are derived, with coefficients determined through the transfer matrix method. A comparative analysis shows that the proposed solution aligns well with finite element results while offering superior computational efficiency. The solution based on the plane section assumption closely matches the proposed solution for thinner panels; however, discrepancies increase as panel thickness rises. Finally, this study explores the thermo-mechanical bending behavior of the CLT panel and proposes a modified superposition principle. The parameter study indicates that the normal stress is mainly affected by modulus and thermal expansion coefficients, while the deflection of the panel is largely dependent on thermal expansion coefficients but less affected by modulus. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 5926 KiB  
Article
Thermoelastic Vibration of Nickel Film Irradiated by Femtosecond Laser: Molecular Dynamics Study
by Wanrong Zhao, Yucheng Gu, Zenan Yang and Zhen Zhang
Coatings 2025, 15(1), 1; https://doi.org/10.3390/coatings15010001 - 24 Dec 2024
Cited by 1 | Viewed by 708
Abstract
A detailed understanding of the physical essence of the interaction between a femtosecond laser and its target material remains an important and challenging goal. In this paper, the thermoelastic vibration behavior of nickel films irradiated by a femtosecond laser is studied by a [...] Read more.
A detailed understanding of the physical essence of the interaction between a femtosecond laser and its target material remains an important and challenging goal. In this paper, the thermoelastic vibration behavior of nickel films irradiated by a femtosecond laser is studied by a molecular dynamics method combined with a two-temperature model. The model fully defines the spatial distribution of laser energy, the photoelectron coupling, and the electron-lattice coupling, and elucidates the temperature and stress evolution within the nickel film under femtosecond laser irradiation. Furthermore, the whole process and the mechanism of thermoelastic vibration is revealed at the atomic level. The thermoelastic vibration is divided into two stages, including continuous expansion during the process of energy relaxation and periodic expansion and contraction after reaching thermal equilibrium. The elastic oscillation of thin films is driven by periodic changes in energy, including the energy of atomic thermal motion and collective atomic motion. The effect of pulse fluence on thermoelastic vibration is also discussed in detail to provide reasonable suggestions for limiting this effect. This study provides the theoretical foundation and a feasible method for a deeper understanding of the interaction mechanisms between femtosecond lasers and materials. Full article
(This article belongs to the Special Issue Laser Surface Treatment Technology—New Perspectives)
Show Figures

Figure 1

15 pages, 5488 KiB  
Article
Analysis of Vibration Energy Harvesting Performance of Thermo-Electro-Elastic Microscale Devices Based on Generalized Thermoelasticity
by Ailing He, Tianhu He, Bingdong Gu and Yuan Li
Actuators 2024, 13(12), 533; https://doi.org/10.3390/act13120533 - 23 Dec 2024
Cited by 2 | Viewed by 4216
Abstract
Piezoelectric material structures with an excellent mechatronic coupling property effectively promote self-power energy harvesting in micro-/nano-electro-mechanical systems (MEMS/NEMS). Therein, the characteristics of the microscale and multi-physical aspects effect significant influence on performance, such as attaining a fast response and high power density. It [...] Read more.
Piezoelectric material structures with an excellent mechatronic coupling property effectively promote self-power energy harvesting in micro-/nano-electro-mechanical systems (MEMS/NEMS). Therein, the characteristics of the microscale and multi-physical aspects effect significant influence on performance, such as attaining a fast response and high power density. It is difficult to use the classical mechanical and heat conduction models to effectively explain and analyze microscale physical field coupling behaviors. The purpose of this study is to develop the piezoelectric thermoelastic theoretical model, firstly considering the non-uniform physical field. The generalized equations governing thermo-electro-elastic vibration energy harvesting in a microbeam model were obtained based on Hamilton’s principle and the generalized thermoelastic theory was developed by considering thermopolarization and thermal hysteresis behavior. After that, the explicit expressions for voltage and output power were derived using the assumed-modes method; meanwhile, effects such as the piezo-flexoelectric aspect, size dependence, etc. are discussed in detail. It was found that thermal and microscale effects significantly promote the voltage and output power. The research is also helpful for the design and optimization of self-powered and high-performance micro/nano devices and systems. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

Back to TopTop