A Novel Lightweight Mechanical Metamaterial with a Tunable Thermal Expansion Coefficient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Metamaterials
2.2. Analytical Model
2.3. Finite Element Simulations
3. Results and Discussion
3.1. Relative Density
3.2. Coefficient of Thermal Expansion
3.3. Elastic Modulus
4. Conclusions
- (1)
- This study presents a dual-step hexagonal mechanical metamaterial, DTH, composed of Nylon and PVA. Its negative thermal expansion (NTE) properties arise from the thermal expansion mismatch between the two materials. The key structural parameters include the angle and the length ratio . By adjusting and , it is possible to achieve customizable thermal expansion behavior while maintaining lightweight characteristics.
- (2)
- Through a combination of theoretical analysis and numerical simulations, this study demonstrates that by appropriately adjusting and , the CTE of the DTH metamaterial can be tuned over a wide range, from +39.92 ppm/°C to −3640.6191 ppm/°C. This allows for the achievement of ZTE and a broader tunable range for NTE.
- (3)
- Through finite element analysis of the correlation between the relative density of the DTH metamaterial and its geometric parameters, it is observed that within optimal parameter ranges, by decreasing and , the relative density of the DTH metamaterial gradually decreases. The relative density of DTH is significantly less than 2%, demonstrating excellent lightweight properties.
- (4)
- Finite element analysis reveals a coupling relationship between the elastic modulus of the DTH metamaterial and its geometric parameters, allowing for precise control of its mechanical properties. This makes the material particularly suitable for engineering applications that require directional stiffness control.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yu, X.L.; Zhou, J.; Liang, H.Y.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Prog. Mater. Sci. 2018, 94, 114–173. [Google Scholar] [CrossRef]
- Peng, X.-L.; Bargmann, S. A design method for metamaterials: 3D transversely isotropic lattice structures with tunable auxeticity. Smart Mater. Struct. 2021, 31, 025011. [Google Scholar] [CrossRef]
- Cardoso, J.O.; Borges, J.P.; Velhinho, A. Structural metamaterials with negative mechanical/thermomechanical indices: A review. Prog. Nat. Sci. Mater. Int. 2021, 31, 801–808. [Google Scholar] [CrossRef]
- Shen, L.; Wang, Z.; Wang, X.; Wei, K. Negative Poisson’s ratio and effective Young’s modulus of a vertex-based hierarchical re-entrant honeycomb structure. Int. J. Mech. Sci. 2021, 206, 106611. [Google Scholar] [CrossRef]
- Kolken, H.M.A.; Zadpoor, A.A. Auxetic mechanical metamaterials. RSC Adv. 2017, 7, 5111–5129. [Google Scholar] [CrossRef]
- Liu, K.-J.; Liu, H.-T.; Li, J. Thermal Expansion and bandgap properties of bi-material triangle re-entrant honeycomb with adjustable Poisson’s ratio. Int. J. Mech. Sci. 2023, 242, 108015. [Google Scholar] [CrossRef]
- Yu, B.; Xu, Z.; Mu, R.; Wang, A.; Zhao, H. Design of large-scale space lattice structure with near-zero thermal Expansion metamaterials. Aerospace 2023, 10, 294. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.-T.; Zhang, Z.-Y. Stiffness characteristics for bi-directional tunable thermal Expansion metamaterial based on bi-material triangular unit. Int. J. Mech. Sci. 2023, 241, 107983. [Google Scholar] [CrossRef]
- Wang, H.; Yu, H.; Wang, X.; Zhou, H.; Lei, H.; Chen, M.; Guo, X. Load-bearing sandwiched metastructure with zero thermal-induced warping and high resonant frequency: Mechanical designs, theoretical predictions, and Experimental demonstrations. Mech. Mater. 2023, 177, 104531. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, X.; Chen, J.; Han, Z.; Wei, K. Program multi-directional thermal Expansion in a series of bending dominated mechanical metamaterials. Thin-Walled Struct. 2022, 174, 109147. [Google Scholar] [CrossRef]
- Berger, J.; Mercer, C.; McMeeking, R.M.; Evans, A.G. The design of bonded bimaterial lattices that combine low thermal Expansion with high stiffness. J. Am. Ceram. Soc. 2011, 94, s42–s54. [Google Scholar] [CrossRef]
- Steeves, C.A.; Lucato, S.; He, M.; Antinucci, E.; Hutchinson, J.W.; Evans, A.G. Concepts for structurally robust materials that combine low thermal Expansion with high stiffness. J. Mech. Phys. Solids 2007, 55, 1803–1822. [Google Scholar] [CrossRef]
- Xu, H.; Farag, A.; Pasini, D. Multilevel hierarchy in bi-material lattices with high specific stiffness and unbounded thermal Expansion. Acta Mater. 2017, 134, 155–166. [Google Scholar] [CrossRef]
- Peng, X.-L.; Bargmann, S. A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal Expansion. Int. J. Mech. Sci. 2021, 190, 106021. [Google Scholar] [CrossRef]
- Wei, K.; Chen, H.; Pei, Y.; Fang, D. Planar lattices with tailorable coefficient of thermal Expansion and high stiffness based on dual-material triangle unit. J. Mech. Phys. Solids 2016, 86, 173–191. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Gupta, M.K.; Mittal, R.; Vaitheeswaran, G.; Kanchana, V. Lattice dynamics and negative thermal Expansion in layered mercury-based halides. Mater. Today Commun. 2022, 31, 103323. [Google Scholar] [CrossRef]
- Lightfoot, P.; Woodcock, D.A.; Maple, M.J.; Villaescusa, L.A.; Wright, P.A. The widespread occurrence of negative thermal Expansion in zeolites. J. Mater. Chem. 2001, 11, 212–216. [Google Scholar] [CrossRef]
- Perottoni, C.A.; da Jornada, J.A.H. Pressure-induced amorphization and negative thermal Expansion in ZrW2O8. Science 1998, 280, 886–889. [Google Scholar] [CrossRef]
- Sigmund, O.; Torquato, S. Design of materials with Extreme thermal Expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 1997, 45, 1037–1067. [Google Scholar] [CrossRef]
- Dong, K.; Peng, X.; Zhang, J.; Gu, B.; Sun, B. Temperature-dependent thermal Expansion behaviors of carbon fiber/epoxy plain woven composites: Experimental and numerical studies. Compos. Struct. 2017, 176, 329–341. [Google Scholar] [CrossRef]
- Wang, B.; Yan, J.; Cheng, G. Optimal structure design with low thermal directional Expansion and high stiffness. Eng. Optim. 2011, 43, 581–595. [Google Scholar] [CrossRef]
- Shi, J.X.; Shimoda, M. Free-form optimization of sandwich structures for controlling thermal displacement. Compos. Struct. 2016, 148, 39–49. [Google Scholar] [CrossRef]
- Jin, G.; Ye, T.; Ma, X.; Chen, Y.; Su, Z.; Xie, X. A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions. Int. J. Mech. Sci. 2013, 75, 357–376. [Google Scholar] [CrossRef]
- Baltacıoglu, A.K.; Akgöz, B.; Civalek, Ö. Nonlinear static response of laminated composite plates by discrete singular convolution method. Compos. Struct. 2010, 93, 153–161. [Google Scholar] [CrossRef]
- Tao, R.; Xi, L.; Wu, W.; Li, Y.; Liao, B.; Liu, L.; Leng, J.; Fang, D. 4D printed multi-stable metamaterials with mechanically tunable performance. Compos. Struct. 2020, 25, 112–663. [Google Scholar] [CrossRef]
- Timoshenko, S. Analysis of bi-metal thermostats. J. Opt. Soc. Am. 1925, 11, 233–255. [Google Scholar] [CrossRef]
- Lehman, J.; Lakes, R. Stiff lattices with zero thermal Expansion and enhanced stiffness via rib cross section optimization. Int. J. Mech. Mater. Des. 2013, 9, 213–225. [Google Scholar] [CrossRef]
- Lakes, R. Cellular solid structures with unbounded thermal Expansion. J. Mater. Sci. Lett. 1996, 15, 475–477. [Google Scholar] [CrossRef]
- Grima, J.N.; Farrugia, P.S.; Gatt, R.; Zammit, V. A system with adjustable positive or negative thermal Expansion. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 1585–1596. [Google Scholar] [CrossRef]
- He, X.B.; Yu, J.J.; Xie, Y. Bi-material re-entrant triangle cellular structures incorporating tailorable thermal Expansion and tunable Poisson’s ratio. J. Mech. Robot. 2019, 11, 061003. [Google Scholar] [CrossRef]
- Grima, J.N.; Gatt, R.; Ellul, B. A Finite Element Analysis on the Potential for Negative Thermal Expansion and Negative Compressibility of Triangular Building Blocks. 2009. Available online: https://www.um.edu.mt/library/oar/handle/123456789/106804 (accessed on 3 January 2025).
- Xu, H.; Pasini, D. Structurally efficient three-dimensional metamaterials with controllable thermal Expansion. Sci. Rep. 2016, 6, 34924. [Google Scholar] [CrossRef]
- Wei, K.; Peng, Y.; Wen, W.B.; Pei, Y.M.; Fang, D.N. Tailorable thermal Expansion of lightweight and robust dual-constituent triangular lattice material. J. Appl. Mech. 2017, 84, 101006. [Google Scholar] [CrossRef]
- Wei, K.; Peng, Y.; Qu, Z.L.; Zhou, H.; Pei, Y.M.; Fang, D.N. Lightweight composite lattice cylindrical shells with novel character of tailorable thermal Expansion. Int. J. Mech. Sci. 2018, 137, 77–85. [Google Scholar] [CrossRef]
- Wei, K.; Peng, Y.; Wang, K.Y.; Duan, S.Y.; Yang, X.J.; Wen, W.B. Three-dimensional lightweight lattice structures with large positive, zero and negative thermal Expansion. Compos. Struct. 2018, 188, 287–296. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y. Novel metamaterial structures with negative thermal Expansion and tunable mechanical properties. Int. J. Mech. Sci. 2024, 261, 108692. [Google Scholar] [CrossRef]
- Boatti, E.; Vasios, N.; Bertoldi, K. Origami metamaterials for tunable thermal Expansion. Adv. Mater. 2017, 29, 1700360. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.; Mackenzie, D.; Smith, C.W.; Evans, K.E. A generalised scale-independent mechanism for tailoring of thermal Expansivity: Positive and negative. Mech. Mater. 2008, 40, 351–361. [Google Scholar] [CrossRef]
- Chen, J.; Xu, W.; Wei, Z.; Wei, K.; Yang, X. Stiffness characteristics for a series of lightweight mechanical metamaterials with programmable thermal Expansion. Int. J. Mech. Sci. 2021, 202, 106527. [Google Scholar] [CrossRef]
- Zhang, K.; Wei, K.; Chen, J.; Liang, B.; Fang, D.; He, R. Stereolithography additive manufacturing of multi-ceramic triangle structures with tunable thermal Expansion. J. Eur. Ceram. Soc. 2021, 41, 2796–2806. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Wang, K.; Xu, W.; Wei, Z. Mechanical Performances and Coupling Design for the Mechanical Metamaterials with Tailorable Thermal Expansion. Mech. Mater. 2022, 165, 104176. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, J.; Wang, K.; Yu, Y.; Wei, K. Multimaterial additively manufactured metamaterials functionalized with customizable thermal Expansion in multiple directions. ACS Appl. Mater. Interfaces 2023, 15, 47434–47446. [Google Scholar] [CrossRef]
- Yu, H.; Wu, W.; Zhang, J.; Chen, J.; Liao, H.; Fang, D. Drastic tailorable thermal Expansion chiral planar and cylindrical shell structures Explored with finite element simulation. Compos. Struct. 2019, 210, 327–338. [Google Scholar] [CrossRef]
- Ye, W.; Zhou, Z.; Li, Q. Modelling and verification of a novel bi-material mechanical metamaterial cellular structure with tunable coefficient of thermal Expansion. Mater. Today Commun. 2022, 33, 104940. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Li, T.; Cao, S.; Wang, L. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal Expansion. Compos. Struct. 2018, 189, 586–597. [Google Scholar] [CrossRef]
- Li, Y.; Wan, Y.; Shen, Y.; Lu, X.; Meng, Y. Experimental demonstration of lightweight lattice metamaterials with controllable low thermal Expansion. Thin-Walled Struct. 2021, 159, 107112. [Google Scholar] [CrossRef]
- Tomoda, M.; Wright, O.B.; Matsuda, O. Nanoscale Thermoelastic Probing of Megahertz Thermal Diffusion. Appl. Phys. Lett. 2007, 91, 071911. [Google Scholar] [CrossRef]
- Dehoux, T.; Wright, O.B.; Li Voti, R.; Matsuda, O. Nanoscale Mechanical Contacts Probed with Ultrashort Acoustic and Thermal Waves. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 235409. [Google Scholar] [CrossRef]
- Matsuda, O.; Larciprete, M.C.; Li Voti, R.; Wright, O.B. Fundamentals of Picosecond Laser Ultrasonics. Ultrasonics 2015, 56, 3–20. [Google Scholar] [CrossRef]
- Wei, K.; Xiao, X.; Chen, J.; Wu, Y.; Li, M.; Wang, Z. Additively manufactured bi-material metamaterial to program a wide range of thermal Expansion. Mater. Des. 2020, 189, 109343. [Google Scholar] [CrossRef]
Material | Density (kg/m3) | Elastic Modulus (MPa) | Poisson Ratio | CTE (ppm/°C) |
---|---|---|---|---|
Nylon | 1150 | 928 | 0.34 | 102 |
PVA | 1310 | 1460 | 0.32 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Tian, B.; Li, Y.; Zhang, C.; Liu, Y.; Guo, H. A Novel Lightweight Mechanical Metamaterial with a Tunable Thermal Expansion Coefficient. Materials 2025, 18, 1761. https://doi.org/10.3390/ma18081761
Xie Z, Tian B, Li Y, Zhang C, Liu Y, Guo H. A Novel Lightweight Mechanical Metamaterial with a Tunable Thermal Expansion Coefficient. Materials. 2025; 18(8):1761. https://doi.org/10.3390/ma18081761
Chicago/Turabian StyleXie, Zhedong, Bing Tian, Yingbo Li, Chao Zhang, Yuxuan Liu, and Hongyu Guo. 2025. "A Novel Lightweight Mechanical Metamaterial with a Tunable Thermal Expansion Coefficient" Materials 18, no. 8: 1761. https://doi.org/10.3390/ma18081761
APA StyleXie, Z., Tian, B., Li, Y., Zhang, C., Liu, Y., & Guo, H. (2025). A Novel Lightweight Mechanical Metamaterial with a Tunable Thermal Expansion Coefficient. Materials, 18(8), 1761. https://doi.org/10.3390/ma18081761