Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = thermochemical degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5866 KiB  
Article
Multiscale Characterization of Thermo-Hydro-Chemical Interactions Between Proppants and Fluids in Low-Temperature EGS Conditions
by Bruce Mutume, Ali Ettehadi, B. Dulani Dhanapala, Terry Palisch and Mileva Radonjic
Energies 2025, 18(15), 3974; https://doi.org/10.3390/en18153974 - 25 Jul 2025
Viewed by 285
Abstract
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were [...] Read more.
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were evaluated: an ultra-low-density ceramic (ULD), a resin-coated sand (RCS), and two quartz-based silica sands. Experiments were conducted under simulated EGS conditions at 130 °C with daily thermal cycling over a 25-day period, using diluted site-specific Utah FORGE geothermal fluids. Static batch reactions were followed by comprehensive multi-modal characterization, including scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and micro-computed tomography (micro-CT). Proppants were tested in both granular and powdered forms to evaluate surface area effects and potential long-term reactivity. Results indicate that ULD proppants experienced notable resin degradation and secondary mineral precipitation within internal pore networks, evidenced by a 30.4% reduction in intragranular porosity (from CT analysis) and diminished amorphous peaks in the XRD spectra. RCS proppants exhibited a significant loss of surface carbon content from 72.98% to 53.05%, consistent with resin breakdown observed via SEM imaging. While the quartz-based sand proppants remained morphologically intact at the macro-scale, SEM-EDS revealed localized surface alteration and mineral precipitation. The brown sand proppant, in particular, showed the most extensive surface precipitation, with a 15.2% increase in newly detected mineral phases. These findings advance understanding of proppant–fluid interactions under low-temperature EGS conditions and underscore the importance of selecting proppants based on thermo-chemical compatibility. The results also highlight the need for continued development of chemically resilient proppant formulations tailored for long-term geothermal applications. Full article
Show Figures

Figure 1

15 pages, 4738 KiB  
Article
Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles
by Fernando A. Costa Oliveira, Manuel Sardinha, Joaquim M. Justino Netto, Miguel Farinha, Marco Leite, M. Alexandra Barreiros, Stéphane Abanades and Jorge Cruz Fernandes
Crystals 2025, 15(7), 629; https://doi.org/10.3390/cryst15070629 - 8 Jul 2025
Viewed by 359
Abstract
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their [...] Read more.
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their suitability in solar thermochemical cycles for CO2 and H2O splitting. Experiments were conducted using a 1.5 kW solar furnace to supply the high-temperature concentrated heat to a windowed reaction chamber to carry out thermal redox cycling under realistic on-sun conditions. The ceria coating on ceramic structures improved the thermal stability and redox efficiency while minimizing the quantity of the redox material involved. Crushing strength measurements showed that samples not directly exposed to the concentrated solar flux retained their mechanical performance after thermal cycling (~10 MPa), while those near the concentrated solar beam focus exhibited significant degradation due to thermal stresses and the formation of CexZr1−xO2 solid solutions (~1.5 MPa). A Weibull modulus of 8.5 was estimated, marking the first report of such a parameter for fused filament fabrication (FFF)-manufactured black zirconia with gyroid architecture. Failure occurred via a damage accumulation mechanism at both micro- and macro-scales. These findings support the viability of ceria-coated cellular ceramics for scalable solar fuel production and highlight the need for optimized reactor designs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

17 pages, 914 KiB  
Article
Characterization of Liquefaction Products from Lignocellulosic and Aquatic Biomass
by Telma Moreira, Maria Margarida Mateus, Luís C. Duarte and Maria Joana Neiva Correia
Biomass 2025, 5(2), 36; https://doi.org/10.3390/biomass5020036 - 13 Jun 2025
Viewed by 427
Abstract
Biomass liquefaction is a promising thermochemical route to convert lignocellulosic residues into bio-oil. This study evaluates the liquefaction behavior of 13 biomasses with varying particle sizes (0.3–2.0 mm) and moisture contents (5–11%) under mild solvolysis conditions. High-performance liquid chromatography (HPLC-RID) and thermogravimetric analysis [...] Read more.
Biomass liquefaction is a promising thermochemical route to convert lignocellulosic residues into bio-oil. This study evaluates the liquefaction behavior of 13 biomasses with varying particle sizes (0.3–2.0 mm) and moisture contents (5–11%) under mild solvolysis conditions. High-performance liquid chromatography (HPLC-RID) and thermogravimetric analysis (TGA) were used to characterize bio-oil composition and biomass properties, respectively. Maximum conversion (72%) was achieved for Miscanthus, while Ulva lactuca reached only 23% due to its low carbohydrate content. Hemicellulose-rich feedstocks showed higher yields, whereas high lignin content generally reduced conversion. Furfural was the main compound identified in the aqueous phase (up to 51 g/L), reflecting extensive pentose degradation. Laboratory and industrial-scale liquefaction of cork and eucalyptus revealed scale-dependent differences. Industrial cork bio-oil showed increased xylose (0.70 g/L) and furfural (0.40 g/L), while industrial eucalyptus exhibited elevated levels of acetic (0.46 g/L) and formic acids (0.71 g/L), indicating enhanced deacetylation and demethoxylation reactions. These findings offer valuable insights for optimizing feedstock selection and process conditions in biomass liquefaction. The valorization of lignocellulosic residues into bio-oil contributes to the development of scalable, low-carbon technologies aligned with circular economy principles and bio-based industrial strategies. Full article
Show Figures

Figure 1

19 pages, 2216 KiB  
Article
Study on the Design and Development of Advanced Inorganic Polymers for Thermal Energy Storage (TES) Systems
by Ioanna Giannopoulou, Loizos Georgiou, Konstantina Oikonomopoulou, Maria Spanou, Alexandros Michaelides and Demetris Nicolaides
Energies 2025, 18(12), 3107; https://doi.org/10.3390/en18123107 - 12 Jun 2025
Viewed by 523
Abstract
Thermal Energy Storage (TES) technologies improve solar power dispatchability by addressing the important challenge of energy intermittency. Sensible heat energy storage technology using materials based on Ordinary Portland Cement (OPC) is the simplest and most economical. However, the operation of these materials is [...] Read more.
Thermal Energy Storage (TES) technologies improve solar power dispatchability by addressing the important challenge of energy intermittency. Sensible heat energy storage technology using materials based on Ordinary Portland Cement (OPC) is the simplest and most economical. However, the operation of these materials is limited to temperatures below 400 °C due to the structural degradation of OPC at this temperature. This paper investigates the design and development of inorganic polymers based on Construction and Demolition Waste (CDW) as a sustainable, low-cost, and environmentally friendly alternative to OPC-based materials for high-temperature sensible TES applications. Based on the ternary systems Na2O-SiO2-Al2O3 and K2O-SiO2-Al2O3, representative compositions of CDW-based inorganic polymers were theoretically designed and evaluated using the thermochemical software FactSage 7.0. The experimental verification of the theoretically designed inorganic polymers confirmed that they can withstand temperatures higher than 500 and up to 700 °C. The optimized materials developed compressive strength around 20 MPa, which was improved with temperatures up to 500 °C and then decreased. Moreover, they presented thermal capacities from 600 to 1090 J kg−1 °C −1, thermal diffusivity in the range of 4.7–5.6 × 10−7 m2 s−1, and thermal conductivity from 0.6 to 1 W m−1 °C−1. These properties render the developed inorganic polymers significant candidates for TES applications. Full article
(This article belongs to the Special Issue Advanced Technologies and Materials for Thermal Energy Storage)
Show Figures

Figure 1

29 pages, 6704 KiB  
Article
Kinetic Analysis of Construction, Renovation, and Demolition (CRD) Wood Pyrolysis Using Model-Fitting and Model-Free Methods via Thermogravimetric Analysis
by Aravind Ganesan, Simon Barnabé, Younès Bareha, Simon Langlois, Olivier Rezazgui and Cyrine Boussabbeh
Energies 2025, 18(10), 2496; https://doi.org/10.3390/en18102496 - 12 May 2025
Viewed by 704
Abstract
The pyrolysis of non-recyclable construction, renovation, and demolition (CRD) wood waste is a complex thermochemical process involving devolatilization, diffusion, phase transitions, and char formation. CRD wood, a low-ash biomass containing 24–32% lignin, includes both hardwood and softwood components, making it a viable heterogeneous [...] Read more.
The pyrolysis of non-recyclable construction, renovation, and demolition (CRD) wood waste is a complex thermochemical process involving devolatilization, diffusion, phase transitions, and char formation. CRD wood, a low-ash biomass containing 24–32% lignin, includes both hardwood and softwood components, making it a viable heterogeneous feedstock for bioenergy production. Thermogravimetric analysis (TGA) of CRD wood residues was conducted at heating rates of 10, 20, 30, and 40 °C/min up to 900 °C, employing model-fitting (Coats–Redfern (CR)) and model-free (Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS), and Friedman (FM)) approaches to determine kinetic and thermodynamic parameters. The degradation process exhibited three stages, with peak weight loss occurring at 350–400 °C. The Coats–Redfern method identified diffusion and phase interfacial models as highly correlated (R2 > 0.99), with peak activation energy (Ea) at 30 °C/min reaching 114.96 kJ/mol. Model-free methods yielded Ea values between 172 and 196 kJ/mol across conversion rates (α) of 0.2–0.8. Thermodynamic parameters showed enthalpy (ΔH) of 179–192 kJ/mol, Gibbs free energy (ΔG) of 215–275 kJ/mol, and entropy (ΔS) between −60 and −130 J/mol·K, indicating an endothermic, non-spontaneous process. These results support CRD wood’s potential for biochar production through controlled pyrolysis. Full article
Show Figures

Figure 1

33 pages, 4339 KiB  
Review
Review of Electrochemical Systems for Grid Scale Power Generation and Conversion: Low- and High-Temperature Fuel Cells and Electrolysis Processes
by Tingke Fang, Annette von Jouanne and Alex Yokochi
Energies 2025, 18(10), 2493; https://doi.org/10.3390/en18102493 - 12 May 2025
Viewed by 837
Abstract
This review paper presents an overview of fuel cell electrochemical systems that can be used for clean large-scale power generation and energy storage as global energy concerns regarding emissions and greenhouse gases escalate. The fundamental thermochemical and operational principles of fuel cell power [...] Read more.
This review paper presents an overview of fuel cell electrochemical systems that can be used for clean large-scale power generation and energy storage as global energy concerns regarding emissions and greenhouse gases escalate. The fundamental thermochemical and operational principles of fuel cell power generation and electrolyzer technologies are discussed with a focus on high-temperature solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) that are best suited for grid scale energy generation. SOFCs and SOECs share similar promising characteristics and have the potential to revolutionize energy conversion and storage due to improved energy efficiency and reduced carbon emissions. Electrochemical and thermodynamic foundations are presented while exploring energy conversion mechanisms, electric parameters, and efficiency in comparison with conventional power generation systems. Methods of converting hydrocarbon fuels to chemicals that can serve as fuel cell fuels are also presented. Key fuel cell challenges are also discussed, including degradation, thermal cycling, and long-term stability. The latest advancements, including in materials selection research, design, and manufacturing methods, are also presented, as they are essential for unlocking the full potential of these technologies and achieving a sustainable, near zero-emission energy future. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

16 pages, 3614 KiB  
Article
Preparation of Cl-Doped g-C3N4 Photocatalyst and Its Photocatalytic Degradation of Rhodamine B
by Jing Zhang, Lixia Wang, Yang Li, Yuhong Huang, Renbin Song, Chen Cheng, Qian Luo, Ruiqi Zhai, Yijie Meng, Peixin Zhang, Qiang Ma and Yingjie Zhang
Molecules 2025, 30(9), 1910; https://doi.org/10.3390/molecules30091910 - 25 Apr 2025
Viewed by 830
Abstract
The increasing global demand for clean water is driving the development of advanced wastewater treatment technologies. Graphitic carbon nitride (g-C3N4) has emerged as an efficient photocatalyst for degrading organic pollutants, such as synthetic dyes, due to its exceptional thermo-chemical [...] Read more.
The increasing global demand for clean water is driving the development of advanced wastewater treatment technologies. Graphitic carbon nitride (g-C3N4) has emerged as an efficient photocatalyst for degrading organic pollutants, such as synthetic dyes, due to its exceptional thermo-chemical stability. However, its application is limited by an insufficient specific surface area, low photocatalytic efficiency, and an unclear degradation mechanism. In this study, we aimed to enhance g-C3N4 by doping it with elemental chlorine, resulting in a series of Cl-C3N4 photocatalysts with varying doping ratios, prepared via thermal polymerization. The photocatalytic activity of g-C3N4 was assessed by measuring the degradation rate of RhB. A comprehensive characterization of the Cl-C3N4 composites was conducted using SEM, XRD, XPS, PL, DRS, BET, EPR, and electrochemical measurements. Our results indicated that the optimized 1:2 Cl-C3N4 photocatalyst exhibited exceptional performance, achieving 99.93% RhB removal within 80 min of irradiation. TOC mineralization reached 91.73% after 150 min, and 88.12% removal of antibiotics was maintained after four cycles, demonstrating the excellent stability of the 1:2 Cl-C3N4 photocatalyst. Mechanistic investigations revealed that superoxide radicals (·O2) and singlet oxygen (1O2) were the primary reactive oxygen species responsible for the degradation of RhB in the chlorine-doped g-C3N4 photocatalytic system. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 5210 KiB  
Article
Pyrolysis and Combustion Kinetics of Garden Waste Pellets as Solid Biofuel for Thermochemical Energy Recovery
by Jonatan Gutiérrez and Juan F. Pérez
Materials 2025, 18(7), 1634; https://doi.org/10.3390/ma18071634 - 3 Apr 2025
Viewed by 462
Abstract
The fallen leaf has the potential to be energy-valorized in cities with sustainability goals. Thermochemical characterization of garden waste through pyrolysis and combustion kinetics will establish the reactivity of this lignocellulosic biomass as biofuel for thermochemical conversion processes for energy recovery. Herein, the [...] Read more.
The fallen leaf has the potential to be energy-valorized in cities with sustainability goals. Thermochemical characterization of garden waste through pyrolysis and combustion kinetics will establish the reactivity of this lignocellulosic biomass as biofuel for thermochemical conversion processes for energy recovery. Herein, the thermal degradation of two types of pellets produced from fallen leaf (pellets without glycerol PG0, and pellets with 5 wt% glycerol PG5) are characterized under inert and oxidative atmospheres using three different approaches: thermogravimetry (TG) and differential thermogravimetry (DTG) analyses, TG-based reactivity, and reaction kinetics from three model-free isoconversional methods. The model-free isoconversional methods are Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Friedman, which were applied for estimating the kinetic parameters, activation energy (Eα) and pre-exponential factor, using different heating rates (20, 30, and 40 °C/min) to ensure reliable data interpretation. The pyrolysis results showed that PG5 was more reactive compared to PG0 because the addition of glycerol during the pelletizing process increased the volatile matter and oxygen content in PG5. Likewise, the higher reactivity of PG5 under pyrolysis was determined by average activation energy (Eα) with an average value of 96.82 kJ/mol compared to 106.46 kJ/mol for PG0. During the combustion process, Eα was 90.70 kJ/mol and 90.29 kJ/mol for PG0 and PG5, respectively. Finally, both materials exhibited higher reactivity under an oxidative atmosphere. Therefore, according to our results, the pellets produced from leaf litter can be used as biofuels for thermochemical processes, highlighting that using glycerol as a binder favors the reactivity of the densified garden waste. Full article
Show Figures

Figure 1

41 pages, 2447 KiB  
Review
Addressing Plastic Waste Challenges in Africa: The Potential of Pyrolysis for Waste-to-Energy Conversion
by Milon Selvam Dennison, Sathish Kumar Paramasivam, Titus Wanazusi, Kirubanidhi Jebabalan Sundarrajan, Bubu Pius Erheyovwe and Abisha Meji Marshal Williams
Clean Technol. 2025, 7(1), 20; https://doi.org/10.3390/cleantechnol7010020 - 5 Mar 2025
Cited by 1 | Viewed by 4472
Abstract
Plastic waste poses a significant challenge in Africa and around the world, with its volume continuing to increase at an alarming rate. In Africa, an estimated 25–33% of daily waste is made up of plastic, posing a threat to the environment, marine life, [...] Read more.
Plastic waste poses a significant challenge in Africa and around the world, with its volume continuing to increase at an alarming rate. In Africa, an estimated 25–33% of daily waste is made up of plastic, posing a threat to the environment, marine life, and human health. One potential solution to this problem is waste-to-energy recycling, such as pyrolysis, which involves the conversion of waste materials into oil, char, and non-condensable gasses through a thermochemical process in the absence of oxygen. Given the abundance of waste in Africa and the continent’s energy challenges, pyrolysis offers a sustainable solution. This review delves into the concept of pyrolysis, its products, thermodynamics, and endothermic kinetics, presenting it as a promising way to address the plastic waste problem in Africa. Despite the African Union’s goal to recycle plastic waste, the continent faces significant barriers in achieving this target, including infrastructural, economic, and social difficulties. It is crucial to implement sustainable strategies for managing plastic waste in Africa to mitigate environmental degradation and promote a cleaner and healthier living environment. Pyrolysis technology is highlighted as a viable solution for plastic waste management, as it can convert plastic waste into valuable byproducts such as oil, char, and syngas. Case studies from countries like South Africa and Nigeria demonstrate the potential for scaling up pyrolysis to address waste management issues while generating energy and job opportunities. This review underscores the need for investment, regulatory support, and public awareness to overcome the challenges and unlock the full potential of pyrolysis in Africa. Embracing pyrolysis as a method for managing plastic waste could lead to significant environmental and economic benefits for the continent. Full article
Show Figures

Graphical abstract

19 pages, 5129 KiB  
Article
Computational Thermochemistry for Modelling Oxidation During the Conveyance Tube Manufacturing Process
by Megan Kendall, Mark Coleman, Hollie Cockings, Elizabeth Sackett, Chris Owen and Michael Auinger
Metals 2024, 14(12), 1402; https://doi.org/10.3390/met14121402 - 7 Dec 2024
Cited by 1 | Viewed by 1043
Abstract
Conveyance tube manufacturing via a hot-finished, welded route is an energy-intensive process which promotes rapid surface oxidation. During normalisation at approximately 950 °C to homogenise the post-weld microstructure, an oxide mill scale layer grows on tube outer surfaces. Following further thermomechanical processing, there [...] Read more.
Conveyance tube manufacturing via a hot-finished, welded route is an energy-intensive process which promotes rapid surface oxidation. During normalisation at approximately 950 °C to homogenise the post-weld microstructure, an oxide mill scale layer grows on tube outer surfaces. Following further thermomechanical processing, there is significant yield loss of up to 3% of total feedstock due to scale products, and surface degradation due to inconsistent scale delamination. Delaminated scale is also liable to contaminate and damage plant tooling. The computational thermochemistry software, Thermo-Calc 2023b, with its diffusion module, DICTRA, was explored for its potential to investigate oxidation kinetics on curved geometries representative of those in conveyance tube applications. A suitable model was developed using the Stefan problem, bespoke thermochemical databases, and a numerical solution to the diffusion equation. Oxide thickness predictions for representative curved surfaces revealed the significance of the radial term in the diffusion equation for tubes of less than a 200 mm inner radius. This critical value places the conveyance tubes’ dimensions well within the range where the effects of a cylindrical coordinate system on oxidation, owing to continuous surface area changes and superimposed diffusion pathways, cannot be neglected if oxidation on curved surfaces is to be fully understood. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Figure 1

27 pages, 2052 KiB  
Review
Photocatalytic Composites Based on Biochar for Antibiotic and Dye Removal in Water Treatment
by Amra Bratovčić and Vesna Tomašić
Processes 2024, 12(12), 2746; https://doi.org/10.3390/pr12122746 - 3 Dec 2024
Cited by 4 | Viewed by 2530
Abstract
Many semiconductor photocatalysts are characterized by high photostability and non-toxicity but suffer from the limited excitation in the UV part of the spectrum and the fast recombination of the photogenerated electron–hole pairs. To improve the above properties, biochar-supported composite photocatalysts have recently attracted [...] Read more.
Many semiconductor photocatalysts are characterized by high photostability and non-toxicity but suffer from the limited excitation in the UV part of the spectrum and the fast recombination of the photogenerated electron–hole pairs. To improve the above properties, biochar-supported composite photocatalysts have recently attracted much attention. Compared with the pure photocatalyst, the biochar-enriched catalyst has superior specific surface area and high porosity, catalytic efficiency, stability, and recoverability. Biochar can be obtained from various carbon-rich plant or animal wastes by different thermochemical processes such as pyrolysis, hydrothermal carbonization, torrefaction, and gasification. The main features of biochar are its low price, non-toxicity, and the large number of surface functional groups. This paper systematically presents the latest research results on the method of preparation of various composites in terms of the choice of photoactive species and the source of biomass, their physico-chemical properties, the mechanism of the photocatalytic activity, and degradation efficiency in the treatment of organic contaminants (dyes and antibiotics) in an aquatic environment. Particular emphasis is placed on understanding the role of biochar in improving the photocatalytic activity of photoactive species. Full article
(This article belongs to the Special Issue Treatment and Remediation of Organic and Inorganic Pollutants)
Show Figures

Figure 1

30 pages, 9229 KiB  
Article
Waste-to-Energy Conversion of Rubberwood Residues for Enhanced Biomass Fuels: Process Optimization and Eco-Efficiency Evaluation
by Jannisa Kasawapat, Attaso Khamwichit and Wipawee Dechapanya
Energies 2024, 17(21), 5444; https://doi.org/10.3390/en17215444 - 31 Oct 2024
Cited by 2 | Viewed by 1608
Abstract
Torrefaction was applied to enhance the fuel properties of sawdust (SD) and bark wood (BW), biomass wastes from the rubberwood processing industry. Design Expert (DE) software was used in an experimental design to study the effects of affecting factors including torrefaction temperature and [...] Read more.
Torrefaction was applied to enhance the fuel properties of sawdust (SD) and bark wood (BW), biomass wastes from the rubberwood processing industry. Design Expert (DE) software was used in an experimental design to study the effects of affecting factors including torrefaction temperature and time as well as the biomass size towards the desirable properties such as HHV, mass yield, fixed carbon content, and eco-efficiency values. Promising results showed that the HHVs of the torrefied SD (25 MJ/kg) and BW (26 MJ/kg) were significantly increased when compared to preheated SD (17 MJ/kg) and preheated BW (17 MJ/kg) and in a range similar to that of coal (25–35 MJ/kg). The TGA, FTIR, biomass compositions, and O/C ratios suggested that thermochemical reactions played a significant role in the torrefaction at which thermal degradation coupled with possible in situ chemical reactions took place, to some extent. The optimal conditions of the torrefaction were identified at 320 °C and 30 min for SD, and 325 °C and 30 min for BW. The maximum HHVs at the optimal condition were 22, 23, and 20 MJ/kg while the eco-efficiency values were 29.18, 27.89, and 13.72 kJ/kg CO2_eq*THB for torrefied SD, torrefied BW, and coal, respectively. The findings of this study indicate that torrefied rubberwood residues enhanced HHV, eco-efficiency, and less contribution to CO2 emissions compared to fossil fuels. Full article
Show Figures

Graphical abstract

18 pages, 14342 KiB  
Article
Enhancing Thermochemical Energy Storage Performance of Perovskite with Sodium Ion Incorporation
by Zeyu Ning, Yibin He, Peiwang Zhu, Dong Chen, Fan Yang, Jinsong Zhou and Gang Xiao
Inorganics 2024, 12(10), 266; https://doi.org/10.3390/inorganics12100266 - 11 Oct 2024
Viewed by 1414
Abstract
Perovskite materials are promising for thermochemical energy storage due to their ability to undergo redox cycling over a wide temperature range. Although BaCoO3 exhibits excellent air cycling properties, its heat storage capacity in air remains suboptimal. This study introduces Na into the [...] Read more.
Perovskite materials are promising for thermochemical energy storage due to their ability to undergo redox cycling over a wide temperature range. Although BaCoO3 exhibits excellent air cycling properties, its heat storage capacity in air remains suboptimal. This study introduces Na into the lattice structure to enhance oxygen vacancy formation and mobility. DFT+U simulations of the surface structure of Na-doped BaCoO3−δ indicate that incorporating Na improves surface stability and facilitates the formation of surface oxygen vacancies. NaxBa1−xCoO3−δ compounds were synthesized using a modified sol–gel method, and their properties were investigated. The experimental results demonstrate that Na doping significantly enhances the redox activity of the material. The heat storage capacity increased by above 50%, with the Na0.0625Ba0.9375CoO3−δ solid solution achieving a heat storage density of up to 341.7 kJ/kg. XPS analysis reveals that Na doping increases the concentration of surface defect oxygen, leading to more active oxygen release sites at high temperatures. This enhancement in redox activity aligns with DFT predictions. During high-temperature cycling, the distribution of Na within the material becomes more uniform, and no performance degradation is observed after 300 cycles. Even after 450 cycles, Na0.0625Ba0.9375CoO3−δ retains over 96% of its initial redox activity, significantly outperforming fresh BaCoO3−δ. These findings elucidate the mechanism by which Na doping enhances the thermochemical heat storage performance of BaCoO3−δ and provide new insights for the design of perovskite-based materials. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

15 pages, 7026 KiB  
Article
Isoconversional Analysis of the Catalytic Pyrolysis of ABS, HIPS, PC and Their Blends with PP and PVC
by Maria-Anna Charitopoulou, Evangelia C. Vouvoudi and Dimitris S. Achilias
Polymers 2024, 16(16), 2299; https://doi.org/10.3390/polym16162299 - 14 Aug 2024
Viewed by 1258
Abstract
Thermochemical recycling of plastics in the presence of catalysts is often employed to facilitate the degradation of polymers. The choice of the catalyst is polymer-oriented, while its selection becomes more difficult in the case of polymeric blends. The present investigation studies the catalytic [...] Read more.
Thermochemical recycling of plastics in the presence of catalysts is often employed to facilitate the degradation of polymers. The choice of the catalyst is polymer-oriented, while its selection becomes more difficult in the case of polymeric blends. The present investigation studies the catalytic pyrolysis of polymers abundant in waste electric and electronic equipment (WEEE), including poly(acrylonitrile-butadiene-styrene) (ABS), high-impact polystyrene (HIPS) and poly(bisphenol-A carbonate) (PC), along with their blends with polypropylene (PP) and poly(vinyl chloride) (PVC). The aim is to study the kinetic mechanism and estimate the catalysts’ effect on the activation energy of the degradation. The chosen catalysts were Fe2O3 for ABS, Al-MCM-41 for HIPS, Al2O3 for PC, CaO for Blend A (comprising ABS, HIPS, PC and PP) and silicalite for Blend B (comprising ABS, HIPS, PC, PP and PVC). Thermogravimetric experiments were performed in a N2 atmosphere at several heating rates. Information on the degradation mechanism (degradation steps, initial and final degradation temperature, etc.) was attained. It was found that for pure (co)polymers, the catalytic degradation occurred in one-step, whereas in the case of the blends, two steps were required. For the estimation of the activation energy of those degradations, isoconversional kinetic models (integral and differential) were employed. In all cases, the catalysts used were efficient in reducing the estimated Eα, compared to the values of Eα obtained from conventional pyrolysis. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

16 pages, 1769 KiB  
Article
Analyzing HDPE Thermal and Catalytic Degradation in Hydrogen Atmosphere: A Model-Free Approach to the Activation Energy
by Cátia S. Costa, A. Fernandes, Marta Munoz, M. Rosário Ribeiro and João M. Silva
Catalysts 2024, 14(8), 514; https://doi.org/10.3390/catal14080514 - 9 Aug 2024
Cited by 2 | Viewed by 1866
Abstract
Despite the great interest in thermochemical processes for converting plastic waste into chemical feedstocks or fuels, their kinetics are still a less studied topic, especially under reductive conditions. In the present work, non-isothermal thermogravimetric analysis is used to study the thermal and catalytic [...] Read more.
Despite the great interest in thermochemical processes for converting plastic waste into chemical feedstocks or fuels, their kinetics are still a less studied topic, especially under reductive conditions. In the present work, non-isothermal thermogravimetric analysis is used to study the thermal and catalytic conversion of HDPE promoted by parent and metal-based H-USY (15) and H-ZSM-5 (11.5) zeolites under a reducing hydrogen atmosphere. Additionally, the respective kinetic parameters (apparent activation energy, Ea, and frequency factor, A) were determined by applying two distinct model-free methods: Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS). The results showed that Ea of the thermal degradation of HDPE has an average value of 227 kJ/mol for both methods. In the presence of H-USY (15) and H-ZSM-5 (11.5) zeolites, Ea is strongly reduced and is highly dependent on conversion. In the case of H-USY (15), Ea varies from 78 to 157 kJ/mol for the KAS method and from 83 to 172 kJ/mol for the FWO method. Slightly lower values are reported for H-ZSM-5, with Ea values in the range of 53–122 kJ/mol for KAS and 61–107 kJ/mol for FWO. The presence and type of the metal source (Ni, Pt, or Pd) also affect the kinetic parameters of the reaction. The mean Ea values follow the order: Ni > Pt ≈ Pd for H-USY (15) or H-ZSM-5 zeolites. Accordingly, both parent and metal-based H-USY (15) and H-ZSM-5 zeolites can significantly reduce energy consumption in HDPE hydrocracking, thus promoting a more sustainable conversion of plastic waste. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

Back to TopTop