Enhancing Thermochemical Energy Storage Performance of Perovskite with Sodium Ion Incorporation
Abstract
:1. Introduction
2. Results and Discussion
2.1. DFT Calculations
2.2. Microstructural Structure and Composition
2.3. Heat Storage Performance
2.4. Surface Chemistry and Phase Evolution
2.5. Properties Evolution during Cycling
3. Materials and Methods
3.1. Computational Methods
3.2. Sample Preparation
3.3. Characterization
3.4. Thermodynamics Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sadeghi, G. Energy storage on demand: Thermal energy storage development, materials, design, and integration challenges. Energy Storage Mater. 2022, 46, 192–222. [Google Scholar] [CrossRef]
- Woods, J.; Mahvi, A.; Goyal, A.; Kozubal, E.; Odukomaiya, A.; Jackson, R. Rate capability and Ragone plots for phase change thermal energy storage. Nat. Energy 2021, 6, 295–302. [Google Scholar] [CrossRef]
- Sharan, P.; Turchi, C.; Kurup, P. Optimal design of phase change material storage for steam production using annual simulation. Solar Energy 2019, 185, 494–507. [Google Scholar] [CrossRef]
- Amy, C.; Seyf, H.R.; Steiner, M.A.; Friedman, D.J.; Henry, A. Thermal energy grid storage using multi-junction photovoltaics. Energy Environ. Sci. 2019, 12, 334–343. [Google Scholar] [CrossRef]
- Mavrigiannaki, A.; Ampatzi, E. Latent heat storage in building elements: A systematic review on properties and contextual performance factors. Renew. Sust. Energ. Rev. 2016, 60, 852–866. [Google Scholar] [CrossRef]
- Ling, Z.Y.; Zhang, Z.G.; Shi, G.Q.; Fang, X.M.; Wang, L.; Gao, X.N.; Fang, Y.T.; Xu, T.; Wang, S.F.; Liu, X.H. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew. Sust. Energ. Rev. 2014, 31, 427–438. [Google Scholar] [CrossRef]
- Yang, T.Y.; Kang, J.G.; Weisensee, P.B.; Kwon, B.; Braun, P.V.; Miljkovic, N.; King, W.P. A composite phase change material thermal buffer based on porous metal foam and low-melting-temperature metal alloy. Appl. Phys. Lett. 2020, 116, 071901. [Google Scholar] [CrossRef]
- Li, G. Sensible heat thermal storage energy and exergy performance evaluations. Renew. Sust. Energ. Rev. 2016, 53, 897–923. [Google Scholar] [CrossRef]
- Seyitini, L.; Belgasim, B.; Enweremadu, C.C. Solid state sensible heat storage technology for industrial applications-A review. J. Energy Storage 2023, 62, 106919. [Google Scholar] [CrossRef]
- Prasad, J.S.; Muthukumar, P.; Desai, F.; Basu, D.N.; Rahman, M.M. A critical review of high-temperature reversible thermochemical energy storage systems. Appl. Energ. 2019, 254, 113733. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, C.Y.; Markides, C.N.; Wang, H.; Li, W. Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review. Appl. Energ. 2020, 280, 115950. [Google Scholar] [CrossRef]
- Pan, Z.H.; Zhao, C.Y. Prediction of the effective thermal conductivity of packed bed with micro-particles for thermochemical heat storage. Sci. Bull. 2017, 62, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Han, X.Y.; Wang, L.; Ling, H.S.; Ge, Z.W.; Lin, X.P.; Dai, X.J.; Chen, H.S. Critical review of thermochemical energy storage systems based on cobalt, manganese, and copper oxides. Renew. Sust. Energ. Rev. 2022, 158, 112076. [Google Scholar] [CrossRef]
- Dizaji, H.B.; Hosseini, H. A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications. Renew. Sust. Energ. Rev. 2018, 98, 9–26. [Google Scholar] [CrossRef]
- Wu, S.K.; Zhou, C.; Doroodchi, E.; Nellore, R.; Moghtaderi, B. A review on high-temperature thermochemical energy storage based on metal oxides redox cycle. Energ. Convers. Manag. 2018, 168, 421–453. [Google Scholar] [CrossRef]
- Andre, L.; Abanades, S.; Cassayre, L. Mixed Metal Oxide Systems Applied to Thermochemical Storage of Solar Energy: Benefits of Secondary Metal Addition in Co and Mn Oxides and Contribution of Thermodynamics. Appl. Sci. 2018, 8, 2618. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Sastre, D.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage. Phys. Chem. Chem. Phys. 2016, 18, 8039–8048. [Google Scholar] [CrossRef]
- Pelay, U.; Lu, L.A.; Fan, Y.L.; Stitou, D.; Rood, M. Thermal energy storage systems for concentrated solar power plants. Renew. Sust. Energ. Rev. 2017, 79, 82–100. [Google Scholar] [CrossRef]
- Pagkoura, C.; Karagiannakis, G.; Zygogianni, A.; Lorentzou, S.; Konstandopoulos, A.G. Cobalt oxide based honeycombs as reactors/heat exchangers for redox thermochemical heat storage in future CSP plants. Enrgy Proced. 2015, 69, 978–987. [Google Scholar] [CrossRef]
- Alonso, E.; Pérez-Rábago, C.; Licurgo, J.; Fuentealba, E.; Estrada, C.A. First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage. Solar Energy 2015, 115, 297–305. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Andre, L.; Abanades, S. Experimental assessment of oxygen exchange capacity and thermochemical redox cycle behavior of Ba and Sr series perovskites for solar energy storage. Solar Energy 2016, 134, 494–502. [Google Scholar] [CrossRef]
- Babiniec, S.M.; Coker, E.N.; Ambrosini, A.; Miller, J.E. ABO3 (A = La, Ba, Sr, K.; B = Co, Mn, Fe) Perovskites for Thermochemical Energy Storage. Aip Conf. Proc. 2016, 1734, 050006. [Google Scholar] [CrossRef]
- Vieten, J.; Bulfin, B.; Huck, P.; Horton, M.; Guban, D.; Zhu, L.Y.; Lu, Y.J.; Persson, K.A.; Roeb, M.; Sattler, C. Materials design of perovskite solid solutions for thermochemical applications. Energy Environ. Sci. 2019, 12, 1369–1384. [Google Scholar] [CrossRef]
- Sun, C.W.; Alonso, J.A.; Bian, J.J. Recent Advances in Perovskite-Type Oxides for Energy Conversion and Storage Applications. Adv. Energy Mater. 2021, 11, 2000459. [Google Scholar] [CrossRef]
- Popczun, E.J.; Tafen, D.; Natesakhawat, S.; Marin, C.M.; Nguyen-Phan, T.D.; Zhou, Y.Y.; Alfonso, D.; Lekse, J.W. Temperature tunability in Sr1-xCaxFeO3-δ for reversible oxygen storage: A computational and experimental study. J. Mater. Chem. A 2020, 8, 2602–2612. [Google Scholar] [CrossRef]
- Pena, M.A.; Fierro, J.L.G. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001, 101, 1981–2017. [Google Scholar] [CrossRef]
- Cai, R.X.; Bektas, H.; Wang, X.J.; McClintock, K.; Teague, L.; Yang, K.R.; Li, F.X. Accelerated Perovskite Oxide Development for Thermochemical Energy Storage by a High-Throughput Combinatorial Approach. Adv. Energy Mater. 2023, 13, 2203833. [Google Scholar] [CrossRef]
- Jin, F.; Xu, C.; Yu, H.Y.; Xia, X.; Ye, F.; Li, X.; Du, X.Z.; Yang, Y.P. CaCo0.05Mn0.95O3-δ: A Promising Perovskite Solid Solution for Solar Thermochemical Energy Storage. Acs Appl. Mater. Inter. 2021, 13, 3856–3866. [Google Scholar] [CrossRef] [PubMed]
- Lucio, B.; Romero, M.; Gonzalez-Aguilar, J. Analysis of solid-state reaction in the performance of doped calcium manganites for thermal storage. Solid. State Ion. 2019, 338, 47–57. [Google Scholar] [CrossRef]
- Yuan, P.; Xu, H.R.; Ning, Z.Y.; Xiao, G. Understanding thermochemical energy storage performance of Ba1-xSrxCoO3-δ perovskite system: A computational and experimental study. J. Energy Storage 2023, 61, 106695. [Google Scholar] [CrossRef]
- Yuan, P.; Gu, C.D.; Xu, H.R.; Ning, Z.Y.; Cen, K.F.; Xiao, G. Regulating thermochemical redox temperature via oxygen defect engineering for protection of solar molten salt receivers. Iscience 2021, 24, 103039. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.B.; Chen, Q.; Wang, D.; Guo, W.; Cheng, D.X.; Sha, Y.; Mokhtar, M.Z.; Jia, Z.Y.; Jacobs, J.; Thomas, A.G.; et al. Laser processing of Li-doped mesoporous TiO for ambient-processed mesoscopic perovskite solar cells. J. Mater. Chem. C 2024, 12, 2025–2036. [Google Scholar] [CrossRef]
- Yan, F.B.; Wu, J.R.; Ning, S.; Luo, F. Orienting Oxygen Vacancy Channels in Brownmillerite Strontium Ferrite Thin Films Using Strain: Implications for Facile Oxygen Ion Transport. Acs Appl. Nano Mater. 2024, 7, 7703–7708. [Google Scholar] [CrossRef]
- Jain, N.; Roy, A.; De, A. Ba-addition induced enhanced surface reducibility of SrTiO: Implications on catalytic aspects. Nanoscale Adv. 2019, 1, 4938–4946. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.L.; Wang, C.C.; Zhao, S.; Xue, F.; Li, L.; Cui, M.F.; Qiao, X.; Fei, Z.Y. Plasma-reconstructed LaMnO nanonetwork supported palladium catalyst for methane catalytic combustion. J. Environ. Chem. Eng. 2023, 11, 109825. [Google Scholar] [CrossRef]
- Peña, J.A.; Lorente, E.; Romero, E.; Herguido, J. Kinetic study of the redox process for storing hydrogen reduction stage. Catalysis Today 2006, 116, 439–444. [Google Scholar] [CrossRef]
- Wang, H.M.; Liu, G.C.; Veksha, A.; Dou, X.M.; Giannis, A.; Lim, T.T.; Lisak, G. Iron ore modified with alkaline earth metals for the chemical looping combustion of municipal solid waste derived syngas. J. Clean. Prod. 2021, 282, 124467. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Li, Y.L.; Guo, Q.; Zhang, L.; Qi, T. Promoting the reduction reactivity of magnetite by introducing trace-K-ions in hydrogen direct reduction. Int. J. Hydrogen Energy 2023, 48, 18177–18186. [Google Scholar] [CrossRef]
- Jackson, G.S.; Imponenti, L.; Albrecht, K.J.; Miller, D.C.; Braun, R.J. Inert and Reactive Oxide Particles for High-Temperature Thermal Energy Capture and Storage for Concentrating Solar Power. J. Sol. Energ.-T Asme 2019, 141, 021016. [Google Scholar] [CrossRef]
- Zhou, D.H.; Le, F.H.; Jia, W.; Chen, X.H. In Situ Exsolution of Ba(VO) Nanoparticles on a V-Doped BaCoO Perovskite Oxide with Enhanced Activity for Electrocatalytic Hydrogen Evolution. Inorg. Chem. 2023, 62, 8001–8009. [Google Scholar] [CrossRef]
- Carrillo, A.J.; Serrano, D.P.; Pizarro, P.; Coronado, J.M. Understanding Redox Kinetics of Iron-Doped Manganese Oxides for High Temperature Thermochemical Energy Storage. J. Phys. Chem. C 2016, 120, 27800–27812. [Google Scholar] [CrossRef]
- Chen, X.Y.; Kubota, M.; Yamashita, S.; Kita, H. Investigation of Sr-based perovskites for redox-type thermochemical energy storage media at medium-high temperature. J. Energy Storage 2021, 38, 102501. [Google Scholar] [CrossRef]
- Gokon, N.; Yawata, T.; Bellan, S.; Kodama, T.; Cho, H.S. Thermochemical behavior of perovskite oxides based on LaSr(Mn, Fe, Co)O and BaySrCoO redox system for thermochemical energy storage at high temperatures. Energy 2019, 171, 971–980. [Google Scholar] [CrossRef]
- Ertl, G. Reactions at surfaces: From atoms to complexity (Nobel lecture). Angew. Chem. Int. Edit 2008, 47, 3524–3535. [Google Scholar] [CrossRef]
- Mcintyre, N.S.; Cook, M.G. X-ray Photoelectron Studies on Some Oxides and Hydroxides of Cobalt, Nickel, and Copper. Anal. Chem. 1975, 47, 2208–2213. [Google Scholar] [CrossRef]
- Vasquez, R.P.; Rupp, M.; Gupta, A.; Tsuei, C.C. Electronic-Structure of Hgba2cacu2o6+Delta Epitaxial-Films Measured by X-ray Photoemission. Phys. Rev. B 1995, 51, 15657–15660. [Google Scholar] [CrossRef]
- Jia, C.H.; Xiang, X.P.; Zhang, J.; He, Z.Y.; Gong, Z.H.; Chen, H.J.; Zhang, N.; Wang, X.W.; Zhao, S.J.; Chen, Y. Shifting Oxygen Evolution Reaction Pathway via Activating Lattice Oxygen in Layered Perovskite Oxide. Adv. Funct. Mater. 2023, 33, 2301981. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, I.; Ahn, S.; Oh, S.; Im, H.; Bae, H.; Song, S.J.; Lee, C.W.; Jung, W.C.; Lee, K.T. On the Role of Bimetal-Doped BaCoO Perovskites as Highly Active Oxygen Electrodes of Protonic Ceramic Electrochemical Cells. Adv. Energy Mater. 2024, 14, 2304059. [Google Scholar] [CrossRef]
- Xiang, D.; Gu, C.D.; Xu, H.R.; Xiao, G. Self-Assembled Structure Evolution of Mn-Fe Oxides for High Temperature Thermochemical Energy Storage. Small 2021, 17, 2101524. [Google Scholar] [CrossRef]
- Pegios, N.; Bliznuk, V.; Theofanidis, S.A.; Galvita, V.V.; Marin, G.B.; Palkovits, R.; Simeonov, K. Ni nanoparticles and the Kirkendall effect in dry reforming of methane. Appl. Surf. Sci. 2018, 452, 239–247. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Shen, Q.W.; Zheng, Y.; Li, S.A.; Ding, H.R.; Xu, Y.Q.; Zheng, C.G.; Thern, M. Optimize process parameters of microwave-assisted EDTA method using orthogonal experiment for novel BaCoO3-delta perovskite. J. Alloys Compd. 2016, 658, 125–131. [Google Scholar] [CrossRef]
Compositions | T (°C) | pO2 | ΔHch (kJ/kg) | Approach | Reference |
---|---|---|---|---|---|
SrCoO3−δ | 400–1000 | 0.21–0.0001 | 48 | DSC | [42] |
SrFe0.2Co0.8O3−δ | 600–950 | 0.2–0.000001 | 45 | DSC | [21] |
Sr0.7Ba0.3CoO3−δ | 500–1100 | 0.21 (air) | 186 | DSC | [43] |
La0.3Sr0.7Co0.9Mn0.1O3−δ | 200–1250 | 0.9–0.001 | 245 | Van’t Hoff calculation | [22] |
BaCoO3−δ | 600–950 | 0.2–0.000001 | 292 | DSC | [21] |
BaMn0.15Co0.85O3−δ | 608–1050 | 0.21 (air) | 125 | DSC | [31] |
BaCoO3−δ | 600–1050 | 0.21 (air) | 202 | DSC | This work |
Na0.0625Ba0.9375CoO3−δ | 600–1050 | 0.21 (air) | 341 | DSC | This work |
Sample Name | Abbreviation |
---|---|
BaCoO3−δ | BC |
Na0.0625Ba0.9375CoO3−δ | NBC6.25 |
Na0.1Ba0.9CoO3−δ | NBC10 |
Na0.125Ba0.85CoO3−δ | NBC12.5 |
Na0.15Ba0.8CoO3−δ | NBC15 |
Na0.2Ba0.75CoO3−δ | NBC20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Z.; He, Y.; Zhu, P.; Chen, D.; Yang, F.; Zhou, J.; Xiao, G. Enhancing Thermochemical Energy Storage Performance of Perovskite with Sodium Ion Incorporation. Inorganics 2024, 12, 266. https://doi.org/10.3390/inorganics12100266
Ning Z, He Y, Zhu P, Chen D, Yang F, Zhou J, Xiao G. Enhancing Thermochemical Energy Storage Performance of Perovskite with Sodium Ion Incorporation. Inorganics. 2024; 12(10):266. https://doi.org/10.3390/inorganics12100266
Chicago/Turabian StyleNing, Zeyu, Yibin He, Peiwang Zhu, Dong Chen, Fan Yang, Jinsong Zhou, and Gang Xiao. 2024. "Enhancing Thermochemical Energy Storage Performance of Perovskite with Sodium Ion Incorporation" Inorganics 12, no. 10: 266. https://doi.org/10.3390/inorganics12100266
APA StyleNing, Z., He, Y., Zhu, P., Chen, D., Yang, F., Zhou, J., & Xiao, G. (2024). Enhancing Thermochemical Energy Storage Performance of Perovskite with Sodium Ion Incorporation. Inorganics, 12(10), 266. https://doi.org/10.3390/inorganics12100266