Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,215)

Search Parameters:
Keywords = thermal response tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2584 KiB  
Article
Precise and Continuous Biomass Measurement for Plant Growth Using a Low-Cost Sensor Setup
by Lukas Munser, Kiran Kumar Sathyanarayanan, Jonathan Raecke, Mohamed Mokhtar Mansour, Morgan Emily Uland and Stefan Streif
Sensors 2025, 25(15), 4770; https://doi.org/10.3390/s25154770 (registering DOI) - 2 Aug 2025
Abstract
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent [...] Read more.
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent cultivation. Traditional biomass measurement methods, such as destructive sampling, are time-consuming and unsuitable for high-frequency monitoring. In contrast, image-based estimation using computer vision and deep learning requires frequent retraining and is sensitive to changes in lighting or plant morphology. This work introduces a low-cost, load-cell-based biomass monitoring system tailored for vertical farming applications. The system operates at the level of individual growing trays, offering a valuable middle ground between impractical plant-level sensing and overly coarse rack-level measurements. Tray-level data allow localized control actions, such as adjusting light spectrum and intensity per tray, thereby enhancing the utility of controllable LED systems. This granularity supports layer-specific optimization and anomaly detection, which are not feasible with rack-level feedback. The biomass sensor is easily scalable and can be retrofitted, addressing common challenges such as mechanical noise and thermal drift. It offers a practical and robust solution for biomass monitoring in dynamic, growing environments, enabling finer control and smarter decision making in both commercial and research-oriented vertical farming systems. The developed sensor was tested and validated against manual harvest data, demonstrating high agreement with actual plant biomass and confirming its suitability for integration into vertical farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

19 pages, 4045 KiB  
Article
Response Surface Optimization Design for High-Speed Ball Bearing Double-Lip Seals Considering Wear Characteristics
by Hengdi Wang, Yulu Yue, Yongcun Cui, Lina Lou and Chang Li
Lubricants 2025, 13(8), 343; https://doi.org/10.3390/lubricants13080343 (registering DOI) - 1 Aug 2025
Abstract
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to [...] Read more.
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to wear as indicators to evaluate sealing performance, this study analyzed the influence of lip seal structural parameters on sealing performance, performed response surface optimization of the seal structure parameters and conducted a comparative test on lip seals before and after optimization. The research results show that the contact pressure at the main lip of the lip seal was the greatest, which was 0.79 MPa, and the volume loss due to wear lip seal was 7.94 × 10−7 mm3. Optimal sealing performance is achieved when the seal lip inclination angle is 41.68°, the middle width of the lip seal is 0.153 mm, the main lip height is 0.179 mm, the spring center distance is 0.37 mm and the radial interference is 0.0034 mm. After optimization, the grease leakage rate of the sealing ring decreased by 48% compared to before optimization. Full article
Show Figures

Figure 1

32 pages, 2261 KiB  
Article
Influence of Superplasticizers on the Diffusion-Controlled Synthesis of Gypsum Crystals
by F. Kakar, C. Pritzel, T. Kowald and M. S. Killian
Crystals 2025, 15(8), 709; https://doi.org/10.3390/cryst15080709 (registering DOI) - 31 Jul 2025
Abstract
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and [...] Read more.
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and 120P—affect nucleation, growth kinetics, morphology, and thermal behavior. The superplasticizers, selected for their surface-active properties, were hypothesized to influence crystallization via interfacial interactions. Ion diffusion was maintained quasi-steadily for 12 weeks, with crystal evolution tracked weekly by macro-photography; scanning electron microscopy and thermogravimetric/differential scanning were performed at the final stage. All admixtures delayed nucleation in a concentration-dependent manner. Lower dosages (0.5–1.0 wt%) yielded platy-to-prismatic morphologies and higher dehydration enthalpies, indicating more ordered lattice formation. In contrast, higher dosages (1.5–2.0 wt%) produced denser, irregular crystals and shifted dehydration to lower temperatures, suggesting structural defects or increased hydration. Among the additives, 120P showed the strongest inhibitory effect, while 111P at 0.5 wt% resulted in the most uniform crystals. These results demonstrate that ViscoCrete® superplasticizers can modulate gypsum crystallization and thermal properties. Full article
(This article belongs to the Section Macromolecular Crystals)
22 pages, 7391 KiB  
Article
Advanced Sustainable Epoxy Composites from Biogenic Fillers: Mechanical and Thermal Characterization of Seashell-Reinforced Composites
by Celal Kıstak, Cenk Yanen and Ercan Aydoğmuş
Appl. Sci. 2025, 15(15), 8498; https://doi.org/10.3390/app15158498 (registering DOI) - 31 Jul 2025
Viewed by 58
Abstract
Tidal seashell waste represents an abundant, underutilized marine resource that poses environmental disposal challenges but offers potential as a sustainable bio-filler in epoxy composites. This study investigates its incorporation into bio-based epoxy systems to reduce reliance on non-renewable materials and promote circular economy [...] Read more.
Tidal seashell waste represents an abundant, underutilized marine resource that poses environmental disposal challenges but offers potential as a sustainable bio-filler in epoxy composites. This study investigates its incorporation into bio-based epoxy systems to reduce reliance on non-renewable materials and promote circular economy objectives. Processed seashell powder was blended into epoxy formulations, and response surface methodology was applied to optimize filler loading and resin composition. Comprehensive characterization included tensile strength, impact resistance, hardness, density, and thermal conductivity testing, along with microscopy analysis to evaluate filler dispersion and interfacial bonding. The optimized composites demonstrated improved hardness, density, and thermal stability while maintaining acceptable tensile and impact strength. Microscopy confirmed uniform filler distribution at optimal loadings but revealed agglomeration and void formation at higher contents, which can reduce interfacial bonding efficiency. These findings highlight the feasibility of valorizing marine waste as a reinforcing filler in sustainable composite production, supporting environmental goals and offering a scalable approach for the development of durable, lightweight materials suitable for structural, coating, and industrial applications. Full article
Show Figures

Figure 1

19 pages, 4397 KiB  
Article
Thermal History-Dependent Deformation of Polycarbonate: Experimental and Modeling Insights
by Maoyuan Li, Haitao Wang, Guancheng Shen, Tianlun Huang and Yun Zhang
Polymers 2025, 17(15), 2096; https://doi.org/10.3390/polym17152096 - 30 Jul 2025
Viewed by 178
Abstract
The deformation behavior of polymers is influenced not only by service conditions such as temperature and the strain rate but also significantly by the formation process. However, existing simulation frameworks typically treat injection molding and the in-service mechanical response separately, making it difficult [...] Read more.
The deformation behavior of polymers is influenced not only by service conditions such as temperature and the strain rate but also significantly by the formation process. However, existing simulation frameworks typically treat injection molding and the in-service mechanical response separately, making it difficult to capture the impact of the thermal history on large deformation behavior. In this study, the deformation behavior of injection-molded polycarbonate (PC) was investigated by accounting for its thermal history during formation, achieved through combined experimental characterization and constitutive modeling. PC specimens were prepared via injection molding followed by annealing at different molding/annealing temperatures and durations. Uniaxial tensile tests were conducted using a Zwick universal testing machine at strain rates of 10−3–10−1 s−1 and temperatures ranging from 293 K to 353 K to obtain stress–strain curves. The effects of the strain rate, testing temperature, and annealing conditions were thoroughly examined. Building upon a previously proposed phenomenological model, a new constitutive framework incorporating thermal history effects during formation was developed to characterize the large deformation behavior of PC. This model was implemented in ABAQUS/Explicit using a user-defined material subroutine. Predicted stress–strain curves exhibit excellent agreement with the experimental data, accurately reproducing elastic behavior, yield phenomena, and strain-softening and strain-hardening stages. Full article
Show Figures

Figure 1

14 pages, 3712 KiB  
Article
Behavioral and Proteomics Studies on the Regulation of Response Speed in Mice by Whey Protein Hydrolysate Intervention
by Xinxin Ren, Chao Wu, Hui Hong, Yongkang Luo and Yuqing Tan
Nutrients 2025, 17(15), 2500; https://doi.org/10.3390/nu17152500 - 30 Jul 2025
Viewed by 86
Abstract
Background: Response speed refers to an individual’s ability to perceive and react to harmful stimuli, which can vary due to genetics, neural regulation, and environmental factors. Our previous study demonstrated that whey protein hydrolysate was a potential means to enhance cognitive function. Methods: [...] Read more.
Background: Response speed refers to an individual’s ability to perceive and react to harmful stimuli, which can vary due to genetics, neural regulation, and environmental factors. Our previous study demonstrated that whey protein hydrolysate was a potential means to enhance cognitive function. Methods: This study used a variety of behavioral methods to evaluate the functional effects of whey protein hydrolysate on improving reaction speed, and revealed its potential mechanisms through proteomics analysis. Results: The results showed that whey protein hydrolysate improved response speed in mice when tested against thermal pain, mechanical strength stimuli, and prepulse inhibition. Proteomic analysis of the hippocampus revealed changes in proteins related to arginine and proline metabolism, as well as neuroactive ligand–receptor interactions. Conclusions: These findings provide new insights into the neuromodulatory effects of whey protein hydrolysate and support its potential role in enhancing response speed and cognitive performance. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

15 pages, 3232 KiB  
Article
Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure
by Yiyang Xiong, Ruiwen Jiang, Yi Li and Peipeng Li
Materials 2025, 18(15), 3572; https://doi.org/10.3390/ma18153572 - 30 Jul 2025
Viewed by 164
Abstract
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using [...] Read more.
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using hybrid fibers. The flexural load–deflection response, strength, deformation capacity, toughness and microstructure are investigated by a thermal exposure test, bending test and microstructure observation. The results indicate that the plain geopolymer exhibits a continuously increasing flexural strength from 10 MPa at 20 °C to 25.9 MPa after 1000 °C exposure, attributed to thermally induced further geopolymerization and ceramic-like crystalline phase formation. Incorporating 5% wollastonite fibers results in slightly increased initial and residual flexural strength but comparable peak deflection, toughness and brittle failure. The binary 5% wollastonite and 1% basalt fibers in geopolymer obviously improve residual flexural strength exposed to 400–800 °C. The steel fibers show remarkable reinforcement on flexural behavior at 20–800 °C exposure; however, excessive steel fiber content such as 2% weakens flexural properties after 1000 °C exposure due to severe oxidation deterioration and thermal incompatibility. The wollastonite/basalt/steel fibers exhibit a positive synergistic effect on flexural strength and toughness of geopolymers at 20–600 °C. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

38 pages, 21337 KiB  
Article
Full-Scale Experimental Analysis of the Behavior of Electric Vehicle Fires and the Effectiveness of Extinguishing Methods
by Ana Olona and Luis Castejon
Fire 2025, 8(8), 301; https://doi.org/10.3390/fire8080301 (registering DOI) - 29 Jul 2025
Viewed by 239
Abstract
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely [...] Read more.
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely in this type of fire. This study carried out two full-scale fire experiments on electric vehicles to investigate response strategies to electric vehicle fires caused by thermal runaway. Centro Zaragoza provided technical advice for these tests, so that they could be carried out safely, controlling the risks. This advice has allowed Centro Zaragoza to analyze different response strategies to the fires in electric vehicles caused by thermal runaway. On the other hand, the propagation patterns of thermal runaway fires in electric vehicles were investigated. The early-phase effectiveness of fire blankets and other extinguishing measures was tested, and the temperature distributions inside the vehicle and the type of fire generated were measured. The results showed that fire blankets successfully extinguished flames by cutting off the oxygen supply. These findings contribute to the development of effective strategies for responding to electric vehicle fires, enabling the establishment of good practice for fire suppression in electric vehicles and their batteries. Full article
Show Figures

Figure 1

22 pages, 5830 KiB  
Article
Design of and Experimental Study on Drying Equipment for Fritillaria ussuriensis
by Liguo Wu, Jiamei Qi, Liping Sun, Sanping Li, Qiyu Wang and Haogang Feng
Appl. Sci. 2025, 15(15), 8427; https://doi.org/10.3390/app15158427 - 29 Jul 2025
Viewed by 100
Abstract
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and [...] Read more.
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and drying rate of Fritillaria ussuriensis under different hot-air-drying conditions (45 °C, 55 °C, 65 °C) were compared and analyzed. Six common mathematical models were used to fit the moisture change law, and it was found that the cubic model was the most suitable for describing the drying characteristics of Fritillaria ussuriensis. The R2 values after fitting under the three temperature conditions were all greater than 0.99, and the maximum was achieved at 45 °C. Based on the principle of hot-air drying, a drying device for Fritillaria ussuriensis with a processing capacity of 15 kg/h was designed. It adopted a thermal circulation structure of inner and outer drying ovens, with the heating chamber separated from the drying chamber. The structural parameters were optimized based on Fluent simulation analysis. After optimization, the temperature of each layer was stable at 338 K ± 2 K, and the pressure field and velocity field were evenly distributed. The drying process parameters of Fritillaria ussuriensis were optimized based on response surface analysis, and the optimal process parameters were obtained as follows: inlet temperature: 338 K (65 °C), inlet air velocity: 3 m/s, and drying time: 10 h. The simulation results showed that the predicted moisture content of Fritillaria ussuriensis under the optimal working conditions was 12.58%, the temperature difference of Fritillaria ussuriensis at different positions was within 0.8 °C, and the humidity deviation was about 1%. A prototype of the drying device was built, and the drying test of Fritillaria ussuriensis was carried out. It was found that the temperature and moisture content of Fritillaria ussuriensis were consistent with the simulation results and met the design requirements, verifying the rationality of the device structure and the reliability of the simulation model. This design can significantly improve the distribution of the internal flow field and temperature field of the drying device, improve the drying quality and production efficiency of Fritillaria ussuriensis, and provide a technical reference for the Chinese herbal medicine-drying industry. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

22 pages, 13186 KiB  
Article
Detection of Steel Reinforcement in Concrete Using Active Microwave Thermography and Neural Network-Based Analysis
by Barbara Szymanik, Maja Kocoń, Sam Ang Keo, Franck Brachelet and Didier Defer
Appl. Sci. 2025, 15(15), 8419; https://doi.org/10.3390/app15158419 (registering DOI) - 29 Jul 2025
Viewed by 172
Abstract
Non-destructive evaluation of reinforced concrete structures is essential for effective maintenance and safety assessments. This study explores the combined use of active microwave thermography and deep learning to detect and localize steel reinforcement within concrete elements. Numerical simulations were developed to model the [...] Read more.
Non-destructive evaluation of reinforced concrete structures is essential for effective maintenance and safety assessments. This study explores the combined use of active microwave thermography and deep learning to detect and localize steel reinforcement within concrete elements. Numerical simulations were developed to model the thermal response of reinforced concrete subjected to microwave excitation, generating synthetic thermal images representing the surface temperature patterns of reinforced concrete, influenced by subsurface steel reinforcement. These images served as training data for a deep neural network designed to identify and localize rebar positions based on thermal patterns. The model was trained exclusively on simulation data and subsequently validated using experimental measurements obtained from large-format concrete slabs incorporating a structured layout of embedded steel reinforcement bars. Surface temperature distributions obtained through infrared imaging were compared with model predictions to evaluate detection accuracy. The results demonstrate that the proposed method can successfully identify the presence and approximate location of internal reinforcement without damaging the concrete surface. This approach introduces a new pathway for contactless, automated inspection using a combination of physical modeling and data-driven analysis. While the current work focuses on rebar detection and localization, the methodology lays the foundation for broader applications in non-destructive testing of concrete infrastructure. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

15 pages, 3222 KiB  
Article
Process Optimization of Thawed Cloudy Huyou Juice Clarification Using a Composite of Carboxymethyl Chitosan and Sodium Alginate
by Peichao Zhang, Liang Zhang, Xiayu Liu, Yuxi Wang, Jiatong Xu, Pengfei Liu and Boyuan Guan
Foods 2025, 14(15), 2658; https://doi.org/10.3390/foods14152658 - 29 Jul 2025
Viewed by 129
Abstract
Cloudy huyou juice is increasingly popular for its unique flavor, but flocculent precipitation after cold storage and thawing affects its sensory quality and increases production costs. This study optimized the clarification of thawed cloudy huyou juice using a composite of carboxymethyl chitosan (CC) [...] Read more.
Cloudy huyou juice is increasingly popular for its unique flavor, but flocculent precipitation after cold storage and thawing affects its sensory quality and increases production costs. This study optimized the clarification of thawed cloudy huyou juice using a composite of carboxymethyl chitosan (CC) and sodium alginate (SA), prepared via ionic and covalent crosslinking. The composite was characterized by SEM, FTIR, and thermal analysis. Transmittance was used to evaluate clarification performance. The effects of dosage, adsorption time, and temperature were first assessed through single-factor experiments, followed by optimization using a Box–Behnken response surface methodology. The composite significantly improved clarity (p < 0.05), reaching 85.38% transmittance under optimal conditions: 22 mg dosage, 80 min time, and 38 °C. The composite dosage and temperature were the most influential factors. Reusability tests showed declining performance, with the transmittance dropping to 57.13% after five cycles, likely due to incomplete desorption of adsorbed compounds. These results suggest that the CC-SA composite is an effective and reusable clarifying agent with potential for industrial applications in turbid fruit juice processing. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

21 pages, 2695 KiB  
Article
Thermographic Investigation of Elastocaloric Behavior in Ni-Ti Sheet Elements Under Cyclic Bending
by Saeed Danaee Barforooshi, Gianmarco Bizzarri, Girolamo Costanza, Stefano Paoloni, Ilaria Porroni and Maria Elisa Tata
Materials 2025, 18(15), 3546; https://doi.org/10.3390/ma18153546 - 29 Jul 2025
Viewed by 200
Abstract
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior [...] Read more.
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior under controlled loading conditions. The experimental investigation employed passive thermography to analyze the thermal response of Ni-Ti sheets under two deflection configurations at 1800 rpm loading. Testing revealed consistent adiabatic temperature variations (ΔTad) of 4.14 °C and 4.26 °C for the respective deflections during heating cycles, while cooling phases demonstrated efficient thermal homogenization with temperature gradients decreasing from 4.13 °C to 0.13 °C and 4.43 °C to 0.68 °C over 60 s. These findings provide systematic thermal documentation of elastocaloric behavior in bending-loaded Ni-Ti sheet elements and quantitative data on the relationship between mechanical loading parameters and thermal gradients, enhancing the experimental understanding of elastocaloric phenomena in this configuration. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Winter Thermal Resilience of Lightweight and Ground-Coupled Mediumweight Buildings: An Experimental Study During Heating Outages
by Marta Gortych and Tadeusz Kuczyński
Energies 2025, 18(15), 4022; https://doi.org/10.3390/en18154022 - 29 Jul 2025
Viewed by 188
Abstract
Thermal resilience is critical for building safety in cold climates during heating outages. This study presents full-scale experimental data from two residential buildings in Poland, tested during the winter of 2024–2025 under both typical and extreme outdoor conditions. The buildings—a lightweight timber-frame structure [...] Read more.
Thermal resilience is critical for building safety in cold climates during heating outages. This study presents full-scale experimental data from two residential buildings in Poland, tested during the winter of 2024–2025 under both typical and extreme outdoor conditions. The buildings—a lightweight timber-frame structure and a mediumweight masonry structure with ground coupling—were exposed to multi-day heating blackouts, and their thermal responses were monitored at a high temporal resolution. Several resilience indicators were used, including the resistance time (RT), degree of disruption (DoD), and hours of safety threshold (HST). Additionally, two time-based metrics—the time to threshold (Tx) and temperature at X-hours (T(tx))—were introduced to improve classification in long-duration scenarios. The weighted unmet thermal performance (WUMTP) index was also implemented and validated using experimental data. The results show that thermal mass and ground coupling significantly improved passive resilience, enabling the mediumweight building to maintain temperatures above 15 °C for over 60 h without heating. This study provides new empirical evidence of passive survivability in blackout conditions and supports the development of time-sensitive assessment tools for cold climates. The findings may inform future updates to building codes and retrofit guidelines. Full article
Show Figures

Figure 1

22 pages, 3504 KiB  
Article
Improving Geometric Formability in 3D Paper Forming Through Ultrasound-Assisted Moistening and Radiative Preheating for Sustainable Packaging
by Heike Stotz, Matthias Klauser, Johannes Rauschnabel and Marek Hauptmann
J. Manuf. Mater. Process. 2025, 9(8), 253; https://doi.org/10.3390/jmmp9080253 - 26 Jul 2025
Viewed by 261
Abstract
In response to increasing sustainability demands, the packaging industry is shifting toward paper-based alternatives to replace polymer packaging. However, achieving complex, three-dimensional geometries comparable to plastics remains challenging due to the limited stretchability of paper. This study investigates advanced preconditioning techniques to enhance [...] Read more.
In response to increasing sustainability demands, the packaging industry is shifting toward paper-based alternatives to replace polymer packaging. However, achieving complex, three-dimensional geometries comparable to plastics remains challenging due to the limited stretchability of paper. This study investigates advanced preconditioning techniques to enhance the formability of paper materials for deep-draw packaging applications. A custom-built test rig was developed at Syntegon Technology GmbH to systematically evaluate the effects of ultrasound-assisted moistening and segmented radiative heating. Under optimized conditions, 2.67 s moistening, 70.00 °C punch temperature, and 2999 W radiation power, maximum stretchability increased from 13.00% to 26.93%. The results confirm the effectiveness of ultrasound in accelerating moisture uptake and radiation heating in achieving uniform thermal distribution across the paper substrate. Although prototype constraints, such as the absence of inline conditioning and real-time measurement, limit process stability and scalability, the findings provide a strong foundation for developing industrial 3D paper forming processes that support sustainable packaging innovation. Full article
Show Figures

Graphical abstract

19 pages, 6832 KiB  
Article
Study on the Optimization of Textured Coating Tool Parameters Under Thermal Assisted Process Conditions
by Xin Tong, Xiyue Wang, Xinyu Li and Baiyi Wang
Coatings 2025, 15(8), 876; https://doi.org/10.3390/coatings15080876 - 25 Jul 2025
Viewed by 243
Abstract
As manufacturing demands for challenging-to-machine metallic materials continue to evolve, the performance of cutting tools has emerged as a critical limiting factor. The synergistic application of micro-texture and coating in cutting tools can improve various properties. For the processing of existing micro-texture, because [...] Read more.
As manufacturing demands for challenging-to-machine metallic materials continue to evolve, the performance of cutting tools has emerged as a critical limiting factor. The synergistic application of micro-texture and coating in cutting tools can improve various properties. For the processing of existing micro-texture, because of the fast cooling and heating processing method of laser, there are defects such as remelted layer stacking and micro-cracks on the surface after processing. This study introduces a preheating-assisted technology aimed at optimizing the milling performance of textured coated tools. A milling test platform was established to evaluate the performance of these tools on titanium alloys under thermally assisted conditions. The face-centered cubic response surface methodology, as part of the central composite design (CCD) experimental framework, was employed to investigate the interaction effects of micro-texture preparation parameters and thermal assistance temperature on milling performance. The findings indicate a significant correlation between thermal assistance temperature and tool milling performance, suggesting that an appropriately selected thermal assistance temperature can enhance both the milling efficiency of the tool and the surface quality of the titanium alloy. Utilizing the response surface methodology, a multi-objective optimization of the textured coating tool-preparation process was conducted, resulting in the following optimized parameters: laser power of 45 W, scanning speed of 1576 mm/s, the number of scans was 7, micro-texture spacing of 130 μm, micro-texture diameter of 30 μm, and a heat-assisted temperature of 675.15 K. Finally, the experimental platform of optimization results is built, which proves that the optimization results are accurate and reliable, and provides theoretical basis and technical support for the preparation process of textured coating tools. It is of great significance to realize high-precision and high-quality machining of difficult-to-machine materials such as titanium alloy. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Figure 1

Back to TopTop