Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,408)

Search Parameters:
Keywords = thermal products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7479 KiB  
Article
Development and Validation of a Custom-Built System for Real-Time Monitoring of In Vitro Rumen Gas Fermentation
by Zhen-Shu Liu, Bo-Yuan Chen, Jacky Peng-Wen Chan and Po-Wen Chen
Animals 2025, 15(15), 2308; https://doi.org/10.3390/ani15152308 - 6 Aug 2025
Abstract
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To [...] Read more.
While the Ankom RF system facilitates efficient high-throughput in vitro fermentation studies, its high cost and limited flexibility constrain its broader applicability. To address these limitations, we developed and validated a low-cost, modular gas monitoring system (FerME), assembled from commercially available components. To evaluate its performance and reproducibility relative to the Ankom RF system (Ankom Technology, Macedon, NY, USA), in vitro rumen fermentation experiments were conducted under strictly controlled and identical conditions. Whole rumen contents were collected approximately 2 h post-feeding from individual mid- or late-lactation dairy cows and immediately transported to the laboratory. Each fermenter received 50 mL of processed rumen fluid, 100 mL of anaerobically prepared artificial saliva buffer, and 1.2 g of the donor cow’s diet. Bottles were sealed with the respective system’s pressure sensors, flushed with CO2, and incubated in a 50 L water bath maintained at 39 °C. FerME (New Taipei City, Taiwan) and Ankom RF fermenters were placed side-by-side to ensure uniform thermal conditions. To assess the effect of filter bag use, an additional trial employed Ankom F57 filter bags (Ankom Technology, Macedon, NY, USA; 25 μm pore size). Trial 1 revealed no significant differences in cumulative gas production, volatile fatty acids (VFAs), NH3-N, or pH between systems (p > 0.05). However, the use of filter bags reduced gas output and increased propionate concentrations (p < 0.05). Trial 2, which employed filter bags in both systems, confirmed comparable results, with the FerME system demonstrating improved precision (CV: 4.8% vs. 13.2%). Gas composition (CH4 + CO2: 76–82%) and fermentation parameters remained consistent across systems (p > 0.05). Importantly, with 12 pressure sensors, the total cost of FerME was about half that of the Ankom RF system. Collectively, these findings demonstrate that FerME is a reliable, low-cost alternative for real-time rumen fermentation monitoring and could be suitable for studies in animal nutrition, methane mitigation, and related applications. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Graphical abstract

24 pages, 3479 KiB  
Article
Assessment of Low-Cost Sensors in Early-Age Concrete: Laboratory Testing and Industrial Applications
by Rocío Porras, Behnam Mobaraki, Zhenquan Liu, Thayré Muñoz, Fidel Lozano and José A. Lozano
Appl. Sci. 2025, 15(15), 8701; https://doi.org/10.3390/app15158701 (registering DOI) - 6 Aug 2025
Abstract
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. [...] Read more.
Concrete is an essential material in the construction industry due to its strength and versatility. However, its quality can be compromised by environmental factors during its fresh and early-age states. To address this vulnerability, various sensors have been implemented to monitor critical parameters. While high-precision sensors (e.g., piezoelectric and fiber optic) offer accurate measurements, their cost and fragility limit their widespread use in construction environments. In response, this study proposes a cost-effective, Arduino-based wireless monitoring system to track temperature and humidity in fresh and early-age concrete elements. The system was validated through laboratory tests on cylindrical specimens and industrial applications on self-compacting concrete New Jersey barriers. The sensors recorded temperature variations between 15 °C and 35 °C and relative humidity from 100% down to 45%, depending on environmental exposure. In situ monitoring confirmed the system’s ability to detect thermal gradients and evaporation dynamics during curing. Additionally, the presence of embedded sensors caused a tensile strength reduction of up to 37.5% in small specimens, highlighting the importance of sensor placement. The proposed solution demonstrates potential for improving quality control and curing management in precast concrete production with low-cost devices. Full article
Show Figures

Figure 1

23 pages, 3036 KiB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 - 6 Aug 2025
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

21 pages, 1779 KiB  
Article
Effect of Using Rotational and Static Kilns on the Properties of Eco-Friendly Lightweight Aggregates Made with Pumice Scraps and Spent Coffee Grounds
by Fabiana Altimari, Fernanda Andreola, Isabella Lancellotti, Carlos Javier Cobo-Ceacero, Teresa Cotes-Palomino, Carmen Martínez-García, Ana Belen López-García and Luisa Barbieri
Materials 2025, 18(15), 3692; https://doi.org/10.3390/ma18153692 - 6 Aug 2025
Abstract
In this work, lightweight aggregates (LWAs) were prepared from an Italian red clay, pumice scraps, and spent coffee grounds. Chemical and physical characterization was first performed on the raw materials and then on the finished products. By studying the thermal behavior of the [...] Read more.
In this work, lightweight aggregates (LWAs) were prepared from an Italian red clay, pumice scraps, and spent coffee grounds. Chemical and physical characterization was first performed on the raw materials and then on the finished products. By studying the thermal behavior of the materials, the correct firing temperature was evaluated. The obtained aggregates were fired in two different modes: in a rotary kiln and in a static kiln; the influence of the firing processes on the finished products was assessed. This study can be useful for industrially scaling up this process. Firing in a rotary kiln reduced the average diameter of the aggregates (negative expansion index), resulting in a higher compressive strength and dry particle density compared to an aggregate containing only clay. The pH and electrical conductivity values address their use in agronomy without causing problems to crops, while the higher compressive strength, density, and porosity values could allow their use in construction. Full article
Show Figures

Figure 1

15 pages, 1541 KiB  
Communication
Effect of Non-Thermal Treatments of Clear Apple Juice on Exogenous Pectinases
by Alberto Zavarise, Alema Puzović, Andres Felipe Moreno Barreto, Dario Pavon Vargas, Manfred Goessinger, Maja Mikulič Petkovšek, Massimiliano Rinaldi, Christian Haselmair-Gosch, Luca Cattani and Heidi Halbwirth
Beverages 2025, 11(4), 113; https://doi.org/10.3390/beverages11040113 - 6 Aug 2025
Abstract
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin [...] Read more.
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin esterase) commonly used in juice processing for clarification of juices. The inactivation of these enzymes after processing is mandatory by European law. Clear apple juice was treated with both non-thermal processing methods, as well as with thermal pasteurization as the standard method. For HPP, 3 pressures (250, 450, and 600 MPa) and different holding times (from 2 to 12 min) were tested. For PEF, 3 electric field intensities (10, 13, and 15 kV/cm) and different specific energy values (from 121 to 417 kJ/kg). Standard thermal pasteurization resulted in a complete inactivation of all tested pectinases. HPP treatment only showed marginal effects on polygalacturonase and pectin transeliminase at the highest pressure and holding times, which are beyond levels used in industrial settings. For PEF, dependence upon high electric field strength and specific energy values was evident; however, here too, the effect was only moderate at the levels attainable within the scope of this study. Assuming a continued linear relationship, usable results could be achieved in an industrial setting, albeit under more extreme conditions. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Graphical abstract

19 pages, 1493 KiB  
Article
Development of Biodegradable Foam Trays from Brewer’s Malt Bagasse and Potato Residues from Agricultural Crops
by Evelyn F. Vásquez-Bacilio, Cesar I. Mejia-Llontop, Carlos E. Tirado-Rodríguez, María de Fátima Arévalo-Oliva, Beetthssy Z. Hurtado-Soria, Eudes Villanueva, Gilbert Rodriguez, Delia Rita Tapia-Blácido and Elza Aguirre
Polymers 2025, 17(15), 2146; https://doi.org/10.3390/polym17152146 - 6 Aug 2025
Abstract
In light of the environmental impact of disposable products made from petroleum-based plastics, this study focused on developing biodegradable foam trays made from a starch (PS) derived from potato waste and beer malt flour (BMBF). The objective of this study was to evaluate [...] Read more.
In light of the environmental impact of disposable products made from petroleum-based plastics, this study focused on developing biodegradable foam trays made from a starch (PS) derived from potato waste and beer malt flour (BMBF). The objective of this study was to evaluate the effect of the concentration of BMBF on the physical and mechanical properties of potato starch-based foam trays prepared by the thermoforming process at temperatures of 150 °C (upper plate) and 145 °C (lower plate) for 5 min and 40 s. The results showed that increasing the BMBF concentration from 0 to 40% reduced the moisture content from 4.68% to 3.42%, increased the thickness from 2.63 cm to 4.77 cm, and decreased the density from 0.28 g.cm−3 to 0.15 g.cm−3. Meanwhile, the water absorption capacity increased from 38.7% to 69.7%. In terms of mechanical properties, increasing the BMBF concentration in the PS foam tray resulted in a decrease in hardness from 5.61 N to 2.87 N, a decrease in tensile strength from 2.92 MPa to 0.85 MPa, and a decrease in elongation from 1.42% to 0.59%. Meanwhile, fracturability increased from 2.04 mm to 3.68 mm. FTIR analysis revealed interactions between BMBF and PS in the composite foam tray. Thermogravimetric analysis (TGA) showed two thermal events: one between 20.96 °C and 172.89 °C, and another between 189.14 °C and 517.69 °C, with weight losses of 5.53% and 74.23%, leaving an ash residue of 20.24%. Differential calorimetry analysis (DSC) showed a glass transition at 152.88 °C and a melting at 185.94 °C, with an enthalpy of fusion of 74.11 J.g−1. Higher concentrations of BMBF (>10%) decreased the water resistance, mechanical strength, and flexibility of the PS foam trays. Therefore, a formulation of 90% PS and 10% BMBF was better for producing a foam tray with improved mechanical properties and water resistance, which could be used as a sustainable alternative to conventional single-use plastic. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 1579 KiB  
Article
Plasma-Treated Water Effect on Sporulating Bacillus cereus vs. Non-Sporulating Listeria monocytogenes Biofilm Cell Vitality
by Samantha Nestel, Robert Wagner, Mareike Meister, Thomas Weihe and Uta Schnabel
Appl. Microbiol. 2025, 5(3), 80; https://doi.org/10.3390/applmicrobiol5030080 - 5 Aug 2025
Abstract
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have [...] Read more.
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have compounding effects on the color, texture, flavor, and nutritional quality of the product or do not effectively reduce the pathogens that food can be exposed to. Some bacterial pathogens particularly possess traits and tactics that make them even more difficult to mitigate such as biofilm formation. Non-thermal plasma sanitation techniques, including plasma-treated water (PTW), have proven to be promising methods that significantly reduce pathogenic bacteria that food is exposed to. Published work reveals that PTW can effectively mitigate both gram-positive and gram-negative bacterial biofilms. This study presents a novel analysis of the differences in antimicrobial effects of PTW treatment between biofilm-forming gram-positive bacteria, commonly associated with foodborne illness, that are sporulating (Bacillus cereus) and non-sporulating (Listeria monocytogenes). After treatment with PTW, the results suggest the following hypotheses: (1) that the non-sporulating species experiences less membrane damage but a greater reduction in metabolic activity, leading to a possible viable but non-culturable (VBNC) state, and (2) that the sporulating species undergoes spore formation, which may subsequently convert into vegetative cells over time. PTW treatment on gram-positive bacterial biofilms that persist in food processing environments proves to be effective in reducing the proliferating abilities of the bacteria. However, the variance in PTW’s effects on metabolic activity and cell vitality between sporulating and non-sporulating species suggest that other survival tactics might be induced. This analysis further informs the application of PTW in food processing as an effective sanitation method. Full article
Show Figures

Graphical abstract

34 pages, 606 KiB  
Article
Role of Thermal Fluctuations in Nucleation of Three-Flavor Quark Matter
by Mirco Guerrini, Giuseppe Pagliara, Andrea Lavagno and Alessandro Drago
Universe 2025, 11(8), 258; https://doi.org/10.3390/universe11080258 - 5 Aug 2025
Abstract
We present a framework that aims to investigate the role of thermal fluctuations in matter composition and color superconductivity in the nucleation of three-flavor deconfined quark matter in the typical conditions of high-energy astrophysical systems related to compact stars. It is usually assumed [...] Read more.
We present a framework that aims to investigate the role of thermal fluctuations in matter composition and color superconductivity in the nucleation of three-flavor deconfined quark matter in the typical conditions of high-energy astrophysical systems related to compact stars. It is usually assumed that the flavor composition is locally fixed during the formation of the first seed of deconfined quark matter, since a weak interaction acts too slowly to re-equilibrate flavors. However, the matter composition fluctuates around its average equilibrium values at the typical temperatures of high-energy astrophysical processes. Here, we extend our previous two-flavor nucleation formalism to a three-flavor case. We develop a thermodynamic framework incorporating finite-size effects and thermal fluctuations in the local composition to compute the nucleation probability as the product of droplet formation and composition fluctuation rates. Moreover, we discuss the role of color superconductivity in nucleation, arguing that it can play a role only in systems larger than the typical coherence length of diquark pairs. We found that thermal fluctuations in the matter composition led to lowering the potential barrier between the metastable hadronic phase and the stable quark phase. Moreover, the formation of diquark pairs reduced the critical radius and thus the potential barrier in the low baryon density and temperature regime. Full article
(This article belongs to the Special Issue Compact Stars in the QCD Phase Diagram 2024)
Show Figures

Figure 1

14 pages, 1310 KiB  
Article
Enhancing Energy Efficiency of Electric Grade Isopropyl Alcohol Production Process by Using Noble Thermally Coupled Distillation Technology
by Neha Agarwal, Nguyen Nhu Nga, Le Cao Nhien, Raisa Aulia Hanifah, Minkyu Kim and Moonyong Lee
Energies 2025, 18(15), 4159; https://doi.org/10.3390/en18154159 - 5 Aug 2025
Abstract
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent [...] Read more.
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent feed that consists of IPA and water, along with other impurities. Modeling and energy optimization were performed for a conventional distillation train as a base case by using the rigorous process simulator Aspen Plus V12.1. To improve energy efficiency, various options for intensifying distillation were examined. The side-stream preconcentration column was subsequently replaced by a dividing wall column (DWC) with two side streams, i.e., a Kaibel column, reducing the total energy consumption of corresponding distillation columns by 9.1% compared to the base case. Further strengthening was achieved by combining two columns in the preconcentration process into a single Kaibel column, resulting in a 22.8% reduction in reboiler duty compared to the base case. Optimization using the response surface methodology identified key operating parameters, such as side-draw positions and stage design, which significantly influence both energy efficiency and separation quality. The intensified Kaibel setup offers significant energy efficiencies and simplified column design, suggesting enormous potential for process intensification in energy-intensive distillation processes at the industrial level, including the IPA purification process. Full article
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

88 pages, 15313 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
Show Figures

Figure 1

23 pages, 5064 KiB  
Article
Study on Reasonable Well Spacing for Geothermal Development of Sandstone Geothermal Reservoir—A Case Study of Dezhou, Shandong Province, China
by Shuai Liu, Yan Yan, Lanxin Zhang, Weihua Song, Ying Feng, Guanhong Feng and Jingpeng Chen
Energies 2025, 18(15), 4149; https://doi.org/10.3390/en18154149 - 5 Aug 2025
Abstract
Shandong Province is rich in geothermal resources, mainly stored in sandstone reservoirs. The setting of reasonable well spacing in the early stage of large-scale recharge has not attracted enough attention. The problem of small well spacing in geothermal engineering is particularly prominent in [...] Read more.
Shandong Province is rich in geothermal resources, mainly stored in sandstone reservoirs. The setting of reasonable well spacing in the early stage of large-scale recharge has not attracted enough attention. The problem of small well spacing in geothermal engineering is particularly prominent in the sandstone thermal reservoir production area represented by Dezhou. Based on the measured data of temperature, flow, and water level, this paper constructs a typical engineering numerical model by using TOUGH2 software. It is found that when the distance between production and recharge wells is 180 m, the amount of production and recharge is 60 m3/h, and the temperature of reinjection is 30 °C, the temperature of the production well will decrease rapidly after 10 years of production and recharge. In order to solve the problem of thermal breakthrough, three optimization schemes are assumed: reducing the reinjection temperature to reduce the amount of re-injection when the amount of heat is the same, reducing the amount of production and injection when the temperature of production and injection is constant, and stopping production after the temperature of the production well decreases. However, the results show that the three schemes cannot solve the problem of thermal breakthrough or meet production demand. Therefore, it is necessary to set reasonable well spacing. Therefore, based on the strata near the Hydrological Homeland in Decheng District, the reasonable spacing of production and recharge wells is achieved by numerical simulation. Under a volumetric flux scenario ranging from 60 to 80 m3/h, the well spacing should exceed 400 m. For a volumetric flux between 80 and 140 m3/h, it is recommended that the well spacing be greater than 600 m. Full article
Show Figures

Figure 1

17 pages, 7024 KiB  
Article
Proteomic Analysis of Differentially Expressed Plasma Exosome Proteins in Heat-Stressed Holstein cows
by Shuwen Xia, Yingying Jiang, Wenjie Li, Zhenjiang An, Yangyang Shen, Qiang Ding and Kunlin Chen
Animals 2025, 15(15), 2286; https://doi.org/10.3390/ani15152286 - 5 Aug 2025
Viewed by 31
Abstract
Heat stress in dairy cows, caused by high temperature and humidity during summer, has led to significant declines in milk production and severe economic losses for farms. Exosomes—extracellular vesicles carrying bioactive molecules—are critical for intercellular communication and immunity but remain understudied in heat-stressed [...] Read more.
Heat stress in dairy cows, caused by high temperature and humidity during summer, has led to significant declines in milk production and severe economic losses for farms. Exosomes—extracellular vesicles carrying bioactive molecules—are critical for intercellular communication and immunity but remain understudied in heat-stressed Holstein cows. In this study, we extracted exosomes from three heat-stressed (HS) cows and three non-heat-stressed (Ctr) cows and employed proteomics to analyze plasma exosomes. We identified a total of 28 upregulated and 18 downregulated proteins in the HS group compared to the control group. Notably, we observed a significant upregulation of key protein groups, including cytoskeletal regulators, signaling mediators, and coagulation factors, alongside the downregulation of HP-25_1. These differentially expressed proteins demonstrate strong potential as heat stress biomarkers. GO and KEGG analyses linked the differentially expressed proteins to actin cytoskeleton regulation and endoplasmic reticulum pathways. Additionally, protein–protein interaction (PPI) analysis revealed the PI3K-Akt signaling pathway as a central node in the cellular response to heat stress. These findings establish plasma exosomes as valuable biospecimens, provide valuable insights into the molecular mechanisms of heat stress response, and may contribute to the development of precision breeding strategies for enhanced thermal resilience in dairy herds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

26 pages, 5455 KiB  
Article
Features of Thermal Stabilization of PVC Modified with Microstructured Titanium Phosphate
by Irina N. Vikhareva, Anton Abramian, Dragan Manojlović and Oleg Bol’shakov
Polymers 2025, 17(15), 2140; https://doi.org/10.3390/polym17152140 - 5 Aug 2025
Viewed by 46
Abstract
Poly(vinyl chloride) (PVC) undergoes thermal degradation during processing and operation, which necessitates the use of effective thermal stabilizers. The purpose of this work is to comprehensively evaluate the potential of new hierarchically structured titanium phosphates (TiP) with controlled morphology as thermal stabilizers of [...] Read more.
Poly(vinyl chloride) (PVC) undergoes thermal degradation during processing and operation, which necessitates the use of effective thermal stabilizers. The purpose of this work is to comprehensively evaluate the potential of new hierarchically structured titanium phosphates (TiP) with controlled morphology as thermal stabilizers of plasticized PVC, focusing on the effect of morphology and Ti/P ratio on their stabilizing efficiency. The thermal stability of the compositions was studied by thermogravimetric analysis (TGA) in both inert (Ar) and oxidizing (air) atmospheres. The effect of TiP concentration and its synergy with industrial stabilizers was analyzed. An assessment of the key degradation parameters is given: the temperature of degradation onset, the rate of decomposition, exothermic effects, and the carbon residue yield. In an inert environment, TiPMSI/TiPMSII microspheres demonstrated an optimal balance by increasing the temperature of degradation onset and the residual yield while suppressing the rate of decomposition. In an oxidizing environment, TiPR rods and TiPMSII microspheres provided maximum stability, enhancing resistance to degradation onset and reducing the degradation rate by 10–15%. Key factors of effectiveness include ordered morphology (spheres, rods); the Ti-deficient Ti/P ratio (~0.86), which enhances HCl binding; and crystallinity. The stabilization mechanism of titanium phosphates is attributed to their high affinity for hydrogen chloride (HCl), which catalyzes PVC chain scission, a catalyst for the destruction of the PVC chain. The unique microstructure of titanium phosphate provides a high specific surface area and, as a result, greater activity in the HCl neutralization reaction. The formation of a sol–phosphate framework creates a barrier to heat and oxygen. An additional contribution comes from the inhibition of oxidative processes and the possible interaction with unstable chlorallyl groups in PVC macromolecules. Thus, hierarchically structured titanium phosphates have shown high potential as multifunctional PVC thermostabilizers for modern polymer materials. Potential applications include the development of environmentally friendly PVC formulations with partial or complete replacement of toxic stabilizers, the optimization of thermal stabilization for products used in aggressive environments, and the use of hierarchical TiP structures in flame-resistant and halogen-free PVC-based compositions. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

25 pages, 3418 KiB  
Review
Review on the Theoretical and Practical Applications of Symmetry in Thermal Sciences, Fluid Dynamics, and Energy
by Nattan Roberto Caetano
Symmetry 2025, 17(8), 1240; https://doi.org/10.3390/sym17081240 - 5 Aug 2025
Viewed by 77
Abstract
This literature review explores the role of symmetry in thermal sciences, fluid dynamics, and energy applications, emphasizing the theoretical and practical implications. Symmetry is a fundamental tool for simplifying complex problems, enhancing computational efficiency, and improving system design across multiple engineering and physics [...] Read more.
This literature review explores the role of symmetry in thermal sciences, fluid dynamics, and energy applications, emphasizing the theoretical and practical implications. Symmetry is a fundamental tool for simplifying complex problems, enhancing computational efficiency, and improving system design across multiple engineering and physics domains. Thermal and fluid processes are applied in several modern energy use technologies, essentially involving the complex, multidimensional interaction of fluid mechanics and thermodynamics, such as renewable energy applications, combustion diagnostics, or Computational Fluid Dynamics (CFD)-based optimization, where symmetry is highly considered to simplify geometric parameters. Indeed, the interconnection between experimental analysis and the numerical simulation of processes is an important field. Symmetry operates as a unifying principle, its presence determining everything from the stability of turbulent flows to the efficiency of nuclear reactors, revealing hidden patterns that transcend scales and disciplines. Rotational invariance in pipelines; rotors of hydraulic, thermal, and wind turbines, and in many other cases, for instance, not only lowers computational cost but also guarantees that solutions validated in the laboratory can be effectively scaled up to industrial applications, demonstrating its crucial role in bridging theoretical concepts and real-world implementation. Thus, a wide range of symmetry solutions is exhibited in this research area, the results of which contribute to the development of science and fast information for decision making in industry. In this review, essential findings from prominent research were synthesized, highlighting how symmetry has been conceptualized and applied in these contexts. Full article
(This article belongs to the Special Issue Symmetry in Thermal Fluid Sciences and Energy Applications)
Show Figures

Figure 1

Back to TopTop