Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = thermal nanoimprint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4850 KiB  
Article
Anti-Biofilm Performance of Resin Nanopillars Inspired from Cicada Wing Surface for Staphylococcus spp.
by Satoka Matsumoto, Hiroaki Tatsuoka, Miki Yoshii, Toshihiro Nagao, Tomohiro Shimizu, Shoso Shingubara, Shigemitsu Tanaka and Takeshi Ito
Biomimetics 2024, 9(12), 739; https://doi.org/10.3390/biomimetics9120739 - 4 Dec 2024
Viewed by 1485
Abstract
The increase in infections derived from biofilms from Staphylococcal spp. prompted us to develop novel strategies to inhibit biofilm development. Nanoscale protrusion structures (nanopillars) observed on the wings of dragonflies and cicadas have recently gained notable attention owing to their physical, antimicrobial, and [...] Read more.
The increase in infections derived from biofilms from Staphylococcal spp. prompted us to develop novel strategies to inhibit biofilm development. Nanoscale protrusion structures (nanopillars) observed on the wings of dragonflies and cicadas have recently gained notable attention owing to their physical, antimicrobial, and bactericidal properties. Thus, they are not only expected to reduce the damage caused by chemical antimicrobial agents to human health and the environment, but also to serve as a potential countermeasure against the emergence of antimicrobial-resistant bacteria (ARB). In this study, we evaluated the anti-biofilm effects of cyclo-olefin polymer (COP) nanopillars by changing the wettability of surfaces ranging in height from 100 to 500 nm against Staphylococcus spp., such as Staphylococcus aureus NBRC 100910 (MSSA), Staphylococcus aureus JCM 8702 methicillin-resistant S. aureus (MRSA), and Staphylococcus epidermidis ATCC 35984. The results clearly show that the fabricated nanopillar structures exhibited particularly strong biofilm inhibition against MRSA, with inhibition rates ranging from 51.2% to 62.5%. For MSSA, anti-biofilm effects were observed only at nanopillar heights of 100–300 nm, with relatively low hydrophobicity, with inhibition rates ranging from 23.9% to 40.8%. Conversely, no significant anti-biofilm effect was observed for S. epidermidis in any of the nanopillar structures. These findings suggest that the anti-biofilm properties of nanopillars vary among bacteria of the same species. In other words, by adjusting the height of the nanopillars, selective anti-biofilm effects against specific bacterial strains can be achieved. Full article
Show Figures

Figure 1

13 pages, 7822 KiB  
Article
Optical Properties and Applications of Diffraction Grating Using Localized Surface Plasmon Resonance with Metal Nano-Hemispheres
by Tomoya Kubota, Shogo Tokimori, Kai Funato, Hiroaki Kawata, Tetsuya Matsuyama, Kenji Wada and Koichi Okamoto
Nanomaterials 2024, 14(19), 1605; https://doi.org/10.3390/nano14191605 - 5 Oct 2024
Cited by 1 | Viewed by 1792
Abstract
This study investigates the optical properties of diffraction gratings using localized surface plasmon resonance (LSPR) with metal nano-hemispheres. We fabricated metal nano-hemisphere gratings (MNHGS) with Ga, Ag, and Au and examined their wavelength-selective diffraction properties. Our findings show that these gratings exhibit peak [...] Read more.
This study investigates the optical properties of diffraction gratings using localized surface plasmon resonance (LSPR) with metal nano-hemispheres. We fabricated metal nano-hemisphere gratings (MNHGS) with Ga, Ag, and Au and examined their wavelength-selective diffraction properties. Our findings show that these gratings exhibit peak diffraction efficiencies at 300 nm, 500 nm, and 570 nm, respectively, corresponding to the LSPR wavelengths of each metal. The MNHGs were created through thermal nanoimprint and metal deposition, followed by annealing. The experimental and simulation results confirmed that the MNHGs selectively diffract light at their resonance wavelengths. Applying these findings to third-order nonlinear laser spectroscopy (MPT-TG method) enhances measurement sensitivity by reducing background noise through the selective diffraction of pump light while transmitting probe light. This innovation promises a highly sensitive method for observing subtle optical phenomena, enhancing the capabilities of nonlinear laser spectroscopy. Full article
(This article belongs to the Special Issue Progress of Nanoscale Materials in Plasmonics and Photonics)
Show Figures

Figure 1

12 pages, 7479 KiB  
Article
A Rapid Fabrication Method of Large-Area MLAs with Variable Curvature for Retroreflectors Based on Thermal Reflow
by Yiqiu Yong, Si Chen, Hao Chen, Haixiong Ge and Zongbin Hao
Micromachines 2024, 15(7), 816; https://doi.org/10.3390/mi15070816 - 25 Jun 2024
Cited by 1 | Viewed by 1277
Abstract
Retroreflectors are an important optical component, but current retroreflector structures and manufacturing processes are relatively complex. This paper proposes a rapid, low-cost, large-area method for fabricating retroreflectors based on microlens arrays. Tunable microlens arrays with adjustable curvature, fill factor, and sizes were prepared [...] Read more.
Retroreflectors are an important optical component, but current retroreflector structures and manufacturing processes are relatively complex. This paper proposes a rapid, low-cost, large-area method for fabricating retroreflectors based on microlens arrays. Tunable microlens arrays with adjustable curvature, fill factor, and sizes were prepared using photolithography and thermal reflow techniques. Subsequently, a two-step nanoimprinting process was used to create a flexible reverse mold and transfer the structure onto the desired substrate. The microlens arrays, with a diameter of 30 μm, a period of 33 μm, a curvature radius ranging from 15.5 to 18.8 μm, and a fill factor ranging from 75.1% to 88.8%, were fabricated this way. In addition, the method also fabricated microlens arrays with diameters ranging from 10 to 80 μm. Retroreflectors were made by sputtering a layer of silver on the MLAs as a reflecting layer, and tests showed that the microlens-based retroreflector exhibited superior retroreflective performance with a wide-angle response of ±75°. Microlens-based retroreflectors have the advantages of simple operation and controllable profiles. The fabrication method in this paper is suitable for large-scale production, providing a new approach to retroreflector design. Full article
(This article belongs to the Special Issue Research Progress of Precision Polishing Technology)
Show Figures

Figure 1

17 pages, 5246 KiB  
Article
Nanoimprint Lithography for Next-Generation Carbon Nanotube-Based Devices
by Svitlana Fialkova, Sergey Yarmolenko, Arvind Krishnaswamy, Jagannathan Sankar, Vesselin Shanov, Mark J. Schulz and Salil Desai
Nanomaterials 2024, 14(12), 1011; https://doi.org/10.3390/nano14121011 - 11 Jun 2024
Cited by 5 | Viewed by 3024
Abstract
This research reports the development of 3D carbon nanostructures that can provide unique capabilities for manufacturing carbon nanotube (CNT) electronic components, electrochemical probes, biosensors, and tissue scaffolds. The shaped CNT arrays were grown on patterned catalytic substrate by chemical vapor deposition (CVD) method. [...] Read more.
This research reports the development of 3D carbon nanostructures that can provide unique capabilities for manufacturing carbon nanotube (CNT) electronic components, electrochemical probes, biosensors, and tissue scaffolds. The shaped CNT arrays were grown on patterned catalytic substrate by chemical vapor deposition (CVD) method. The new fabrication process for catalyst patterning based on combination of nanoimprint lithography (NIL), magnetron sputtering, and reactive etching techniques was studied. The optimal process parameters for each technique were evaluated. The catalyst was made by deposition of Fe and Co nanoparticles over an alumina support layer on a Si/SiO2 substrate. The metal particles were deposited using direct current (DC) magnetron sputtering technique, with a particle ranging from 6 nm to 12 nm and density from 70 to 1000 particles/micron. The Alumina layer was deposited by radio frequency (RF) and reactive pulsed DC sputtering, and the effect of sputtering parameters on surface roughness was studied. The pattern was developed by thermal NIL using Si master-molds with PMMA and NRX1025 polymers as thermal resists. Catalyst patterns of lines, dots, and holes ranging from 70 nm to 500 nm were produced and characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Vertically aligned CNTs were successfully grown on patterned catalyst and their quality was evaluated by SEM and micro-Raman. The results confirm that the new fabrication process has the ability to control the size and shape of CNT arrays with superior quality. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

11 pages, 3448 KiB  
Article
Nanoimprinted TiO2 Metasurfaces with Reduced Meta-Atom Aspect Ratio and Enhanced Performance for Holographic Imaging
by Kaiyu Zhang, Yuqi Lin, Yang Qiu, Xingyan Zhao, Shaonan Zheng, Yuan Dong, Qize Zhong and Ting Hu
Materials 2024, 17(10), 2273; https://doi.org/10.3390/ma17102273 - 11 May 2024
Cited by 1 | Viewed by 1931
Abstract
Metasurface holograms, with the capability to manipulate spatial light amplitudes and phases, are considered next-generation solutions for holographic imaging. However, conventional fabrication approaches for meta-atoms are heavily dependent on electron-beam lithography (EBL), a technique known for its expensive and time-consuming nature. In this [...] Read more.
Metasurface holograms, with the capability to manipulate spatial light amplitudes and phases, are considered next-generation solutions for holographic imaging. However, conventional fabrication approaches for meta-atoms are heavily dependent on electron-beam lithography (EBL), a technique known for its expensive and time-consuming nature. In this paper, a polarization-insensitive metasurface hologram is proposed using a cost-effective and rapid nanoimprinting method with titanium dioxide (TiO2) nanoparticle loaded polymer (NLP). Based on a simulation, it has been found that, despite a reduction in the aspect ratio of meta-atoms of nearly 20%, which is beneficial to silicon master etching, NLP filling, and the mold release processes, imaging efficiency can go up to 54% at wavelength of 532 nm. In addition, it demonstrates acceptable imaging quality at wavelengths of 473 and 671 nm. Moreover, the influence of fabrication errors and nanoimprinting material degradation in terms of residual layer thickness, meta-atom loss or fracture, thermal-induced dimensional variation, non-uniform distribution of TiO2 particles, etc., on the performance is investigated. The simulation results indicate that the proposed device exhibits a high tolerance to these defects, proving its applicability and robustness in practice. Full article
(This article belongs to the Special Issue Advances in Metasurface Optics and Devices)
Show Figures

Figure 1

14 pages, 2656 KiB  
Article
Fabrication Technology of Self-Dissolving Sodium Hyaluronate Gels Ultrafine Microneedles for Medical Applications with UV-Curing Gas-Permeable Mold
by Rio Yamagishi, Sayaka Miura, Kana Yabu, Mano Ando, Yuna Hachikubo, Yoshiyuki Yokoyama, Kaori Yasuda and Satoshi Takei
Gels 2024, 10(1), 65; https://doi.org/10.3390/gels10010065 - 15 Jan 2024
Cited by 11 | Viewed by 2960
Abstract
Microneedles are of great interest in diverse fields, including cosmetics, drug delivery systems, chromatography, and biological sensing for disease diagnosis. Self-dissolving ultrafine microneedles of pure sodium hyaluronate hydrogels were fabricated using a UV-curing TiO2-SiO2 gas-permeable mold polymerized by sol-gel hydrolysis [...] Read more.
Microneedles are of great interest in diverse fields, including cosmetics, drug delivery systems, chromatography, and biological sensing for disease diagnosis. Self-dissolving ultrafine microneedles of pure sodium hyaluronate hydrogels were fabricated using a UV-curing TiO2-SiO2 gas-permeable mold polymerized by sol-gel hydrolysis reactions in nanoimprint lithography processes under refrigeration at 5 °C, where thermal decomposition of microneedle components can be avoided. The moldability, strength, and dissolution behavior of sodium hyaluronate hydrogels with different molecular weights were compared to evaluate the suitability of ultrafine microneedles with a bottom diameter of 40 μm and a height of 80 μm. The appropriate molecular weight range and formulation of pure sodium hyaluronate hydrogels were found to control the dissolution behavior of self-dissolving ultrafine microneedles while maintaining the moldability and strength of the microneedles. This fabrication technology of ultrafine microneedles expands their possibilities as a next-generation technique for bioactive gels for controlling the blood levels of drugs and avoiding pain during administration. Full article
(This article belongs to the Special Issue Global Excellence in Bioactive Gels)
Show Figures

Graphical abstract

12 pages, 7818 KiB  
Article
Fabrication of High Aspect Ratio Nano-Channels by Thermal Nano-Imprinting and Parylene Deposition
by Kun Yang, Zhifu Yin and Lei Sun
Micromachines 2023, 14(7), 1430; https://doi.org/10.3390/mi14071430 - 16 Jul 2023
Viewed by 1801
Abstract
A low-cost method of fabrication of high aspect ratio nano-channels by thermal nano-imprinting and Parylene deposition is proposed. SU-8 photoresist nano-channels were first manufactured by thermal nano-imprinting, and Parylene deposition was carried out to reduce the width of the nano-channels and increase the [...] Read more.
A low-cost method of fabrication of high aspect ratio nano-channels by thermal nano-imprinting and Parylene deposition is proposed. SU-8 photoresist nano-channels were first manufactured by thermal nano-imprinting, and Parylene deposition was carried out to reduce the width of the nano-channels and increase the aspect ratio. During the process, the side walls of the SU-8 nano-channels were covered with the Parylene film, reducing the width of the nano-channels, and the depth of the channels increased due to the thickness of the Parylene film deposited on the surface of the SU-8 nano-channels, more so than that at the bottom. The influence of Parylene mass on the size of nano-channels was studied by theoretical analysis and experiments, and the deposition pressure of Parylene was optimized. The final high aspect ratio nano-channels are 46 nm in width and 746 nm in depth, of which the aspect ratio is 16. This simple and efficient method paves the way for the production of high aspect ratio nano-channels. Full article
Show Figures

Figure 1

16 pages, 3431 KiB  
Review
Thermal Nanoimprint Lithography—A Review of the Process, Mold Fabrication, and Material
by Noriyuki Unno and Tapio Mäkelä
Nanomaterials 2023, 13(14), 2031; https://doi.org/10.3390/nano13142031 - 8 Jul 2023
Cited by 35 | Viewed by 9240
Abstract
Micro- and nanopatterns perform unique functions and have attracted attention in various industrial fields, such as electronic devices, microfluidics, biotechnology, optics, sensors, and smart and anti-adhesion surfaces. To put fine-patterned products to practical use, low-cost patterning technology is necessary. Nanoimprint lithography (NIL) is [...] Read more.
Micro- and nanopatterns perform unique functions and have attracted attention in various industrial fields, such as electronic devices, microfluidics, biotechnology, optics, sensors, and smart and anti-adhesion surfaces. To put fine-patterned products to practical use, low-cost patterning technology is necessary. Nanoimprint lithography (NIL) is a promising technique for high-throughput nanopattern fabrication. In particular, thermal nanoimprint lithography (T-NIL) has the advantage of employing flexible materials and eliminating chemicals and solvents. Moreover, T-NIL is particularly suitable for compostable and recyclable materials, especially when applying biobased materials for use in optics and electronics. These attributes make T-NIL an eco-friendly process. However, the processing time of normal T-NIL is longer than that of ultraviolet (UV) NIL using a UV-curable resin because the T-NIL process requires heating and cooling time. Therefore, many studies focus on improving the throughput of T-NIL. Specifically, a T-NIL process based on a roll-to-roll web system shows promise for next-generation nanopatterning techniques because it enables large-area applications with the capability to process webs several meters in width. In this review, the T-NIL process, roll mold fabrication techniques, and various materials are introduced. Moreover, metal pattern transfer techniques using a combination of nanotransfer printing, T-NIL, and a reverse offset are introduced. Full article
(This article belongs to the Special Issue Advance in Nanoimprint Technology)
Show Figures

Figure 1

25 pages, 3112 KiB  
Review
Applications of Molecular Imprinting Technology in the Study of Traditional Chinese Medicine
by Yue Zhang, Guangli Zhao, Kaiying Han, Dani Sun, Na Zhou, Zhihua Song, Huitao Liu, Jinhua Li and Guisheng Li
Molecules 2023, 28(1), 301; https://doi.org/10.3390/molecules28010301 - 30 Dec 2022
Cited by 29 | Viewed by 4676
Abstract
Traditional Chinese medicine (TCM) is one of the most internationally competitive industries. In the context of TCM modernization and internationalization, TCM-related research studies have entered a fast track of development. At the same time, research of TCM is also faced with challenges, such [...] Read more.
Traditional Chinese medicine (TCM) is one of the most internationally competitive industries. In the context of TCM modernization and internationalization, TCM-related research studies have entered a fast track of development. At the same time, research of TCM is also faced with challenges, such as matrix complexity, component diversity and low level of active components. As an interdisciplinary technology, molecular imprinting technology (MIT) has gained popularity in TCM study, owing to the produced molecularly imprinted polymers (MIPs) possessing the unique features of structure predictability, recognition specificity and application universality, as well as physical robustness, thermal stability, low cost and easy preparation. Herein, we comprehensively review the recent advances of MIT for TCM studies since 2017, focusing on two main aspects including extraction/separation and purification and detection of active components, and identification analysis of hazardous components. The fundamentals of MIT are briefly outlined and emerging preparation techniques for MIPs applied in TCM are highlighted, such as surface imprinting, nanoimprinting and multitemplate and multifunctional monomer imprinting. Then, applications of MIPs in common active components research including flavonoids, alkaloids, terpenoids, glycosides and polyphenols, etc. are respectively summarized, followed by screening and enantioseparation. Related identification detection of hazardous components from TCM itself, illegal addition, or pollution residues (e.g., heavy metals, pesticides) are discussed. Moreover, the applications of MIT in new formulation of TCM, chiral drug resolution and detection of growing environment are summarized. Finally, we propose some issues still to be solved and future research directions to be expected of MIT for TCM studies. Full article
(This article belongs to the Special Issue Molecularly Imprinted Materials: New Vistas and Challenge)
Show Figures

Figure 1

9 pages, 3332 KiB  
Article
Photoresist Microlens Arrays Fabricated by Nanoimprint Technique to Improve the Photoelectric Conversion Efficiency of Solar Cells
by Xuehua Zhang, Liangwei Lv, Xinwen Zhang and Fangren Hu
Coatings 2022, 12(12), 1812; https://doi.org/10.3390/coatings12121812 - 24 Nov 2022
Cited by 5 | Viewed by 2405
Abstract
Silicon solar cells have the advantages of non-toxicity, reliability, low price, and stability. Microlens arrays (MLAs) are widely used in solar cells to improve photoelectrical conversion efficiency (PCE). In this research, different MLAs mold was designed by a method of thermal reflow. Then [...] Read more.
Silicon solar cells have the advantages of non-toxicity, reliability, low price, and stability. Microlens arrays (MLAs) are widely used in solar cells to improve photoelectrical conversion efficiency (PCE). In this research, different MLAs mold was designed by a method of thermal reflow. Then the photoresist film MLAs structure was replicated on the surface of silicon solar cells through UV nanoimprint technology. The optical transmission and surface morphology of these photoresist films were respectively measured by using a UV spectrometer and an atomic force microscope. The surface morphology and imaging capabilities of photoresist film MLAs were respectively measured by using a scanning electron microscope and optical microscope. Finally, the photovoltaic performance of the silicon solar cell with the photoresist film MLAs was investigated, and the PCE value of the silicon solar cell improved from 11.53% for the sample without MLAs to 13.19% for the sample with the square MLAs and the PCE improvement is about 14.40%. All these results above show that the photoresist film MLAs can significantly improve the efficiency of silicon solar cells and have great application potential in the field of solar cells. Full article
Show Figures

Figure 1

17 pages, 6458 KiB  
Article
Quantum Dot-Based White Organic Light-Emitting Diodes Excited by a Blue OLED
by Krishn Das Patel, Fuh-Shyang Juang, Hao-Xuan Wang, Chong-Zhe Jian and Jia-You Chen
Appl. Sci. 2022, 12(13), 6365; https://doi.org/10.3390/app12136365 - 22 Jun 2022
Cited by 8 | Viewed by 3873
Abstract
In this study, white organic light-emitting diodes (OLEDs) consisting of red quantum dots (RQD) and green quantum dots (GQD) were investigated. These are the most exciting new lighting technologies that have grown rapidly in recent years. The white OLED development processes used consisted [...] Read more.
In this study, white organic light-emitting diodes (OLEDs) consisting of red quantum dots (RQD) and green quantum dots (GQD) were investigated. These are the most exciting new lighting technologies that have grown rapidly in recent years. The white OLED development processes used consisted of the following methods: (a) fabrication of a blue single-emitting layer OLED, (b) nanoimprinting into QD photoresists, and (c) green and red QD photoresists as color conversion layers (CCL) excited by blue OLEDs. To fabricate the blue OLED, the HATCN/TAPC pair was selected for the hole injection/transport layer on ITO and TPBi for the electron transport layer. For blue-emitting material, we used a novel polycyclic framework of thermally activated delayed fluorescence (TADF) material, ν-DABNA, which does not utilize any heavy metals and has a sharp and narrow (FWHM 28 nm) electroluminescence spectrum. The device structure was ITO/HATCN (20 nm)/TAPC (30 nm)/MADN: ν-DABNA (40 nm)/TPBi (30 nm)/LiF (0.8 nm)/Al (150 nm) with an emitting area of 1 cm × 1 cm. The current density, luminance, and efficiency of blue OLEDs at 8 V are 87.68 mA/cm2, 963.9 cd/m2, and 1.10 cd/A, respectively. Next, the bottom emission side of the blue OLED was attached to nanoimprinted RQD and GQD photoresists, which were excited by the blue OLED in order to generate an orange and a green color, respectively, and combined with blue light to achieve a nearly white light. In this study, two different excitation architectures were tested: BOLED→GQD→RQD and BOLED→RQD→GQD. The EL spectra showed that the BOLED→GQD→RQD architecture had stronger green emissions than BOLED→RQD→GQD because the blue OLED excited the GQD PR first then RQD PR. Due to the energy gap architectures in BOLED-GQD-RQD, the green QD absorbed part of the blue light emitted from the BOLED, and the remaining blue light penetrated the GQD to reach the RQD. These excited spectra were very close to the white light, which resulted in three peaks emitting at 460, 530, and 620 nm. The original blue CIE coordinates were (0.15, 0.07). After the excitation combination, the CIE coordinates were (0.42, 0.33), which was close to the white light position. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

13 pages, 3210 KiB  
Article
High Refractive Index Diphenyl Sulfide Photopolymers for Solar Cell Antireflection Coatings
by Jingran Zhang, Baozhu Li, Heran Song, Chen Zhao, Songfeng Liang, Zhurong Dong and Jie Yu
Energies 2022, 15(11), 3972; https://doi.org/10.3390/en15113972 - 27 May 2022
Cited by 8 | Viewed by 3677
Abstract
The anti-reflection film can effectively reduce the surface reflectivity of solar photovoltaics, increase the transmittance of light, and improve the photoelectric conversion efficiency. The high refractive index coating is an important part of the anti-reflection film. However, the traditional metal oxide coating has [...] Read more.
The anti-reflection film can effectively reduce the surface reflectivity of solar photovoltaics, increase the transmittance of light, and improve the photoelectric conversion efficiency. The high refractive index coating is an important part of the anti-reflection film. However, the traditional metal oxide coating has poor stability and complicated processes. To address this issue, we prepared two organic high refractive index (HRI) photopolymers by modifying epoxy acrylic acid with 4,4′-thiodibenzenethiol, which can be surface patterned by nanoimprinting to prepare antireflection coatings. As a result, two modified photopolymers with high refractive index (n > 1.63), high optical transmittance (T > 95%), and thermal stability (Tg > 100 °C) are obtained after curing. In particular, the diphenyl sulfide photopolymer modified by ethyl isocyanate acrylate has a refractive index up to 1.667 cured by UV light. Our work confirms that the organic HRI photopolymer can be obtained by introducing high molar refractive index groups, with potential to be applied as a PV cell power conversion efficiency material. Full article
(This article belongs to the Special Issue Advanced Research on Fuel Cells and Hydrogen Energy Conversion)
Show Figures

Graphical abstract

9 pages, 6357 KiB  
Article
Organic–Inorganic Hybrid Film MLAs Built on the Silicon Solar Cells to Improve the Photoelectric Conversion Efficiency
by Xuehua Zhang, Yang Bi, Shun Liu, Wei Zhang and Fangren Hu
Coatings 2022, 12(3), 393; https://doi.org/10.3390/coatings12030393 - 16 Mar 2022
Cited by 3 | Viewed by 3046
Abstract
Light trapping micro-nano structures have been widely used to optimize the function of solar cell devices, especially microlens arrays (MLAs). In this article, we first prepared composite films by using sol-gel technology and the spin coating method, and then constructed heteromorphic MLAs on [...] Read more.
Light trapping micro-nano structures have been widely used to optimize the function of solar cell devices, especially microlens arrays (MLAs). In this article, we first prepared composite films by using sol-gel technology and the spin coating method, and then constructed heteromorphic MLAs on the surface of the composite films by using thermal reflow and UV nanoimprint technology; the substrate used was the silicon solar cell. Finally, the performance of the cells was improved. Optical transmission properties and surface morphology of the organic–inorganic hybrid films were detected by using a UV-Vis spectrometer and atomic force microscopy, respectively; it was revealed that the hybrid films had relatively excellent optical transmission performance in the visible light range. Surface structure of the hybrid film MLAs were detected by using SEM. At the same time, the optical imaging capabilities of MLAs were studied by using optical microscopy. Besides, the contact angles of the MLAs were also measured. It can be clearly seen that the prepared MLAs have a regular arrangement, clean appearance, and good imaging capabilities (from the actual test results). Finally, the various parameters of the silicon solar cells with hybrid film MLAs were studied. In addition, the power conversion efficiency (PCE) values increased by about 10.48% for the silicon solar cell with circular MLAs, compared to the silicon solar cell without a structure. The results show a concise and effective method to prepare organic–inorganic hybrid film MLAs on silicon solar cells, with significant improvement in photoelectric conversion efficiency. Full article
(This article belongs to the Topic Optical and Optoelectronic Materials and Applications)
Show Figures

Figure 1

15 pages, 2090 KiB  
Article
Reversible Photo-Induced Reshaping of Imprinted Microstructures Using a Low Molecular Azo Dye
by Burhan Kaban, Sekvan Bagatur, Marcus Soter, Hartmut Hillmer and Thomas Fuhrmann-Lieker
Polymers 2022, 14(3), 586; https://doi.org/10.3390/polym14030586 - 31 Jan 2022
Cited by 2 | Viewed by 3333
Abstract
A blend of low molecular azo glass (AZOPD) and polystyrene (PS) were used for the systematic investigation of photo-induced stretching and recovery of nanoimprinted structures. For this purpose, light and heat was used as recovery stimuli. The AZOPD/PS microstructures, fabricated with thermal nanoimprint [...] Read more.
A blend of low molecular azo glass (AZOPD) and polystyrene (PS) were used for the systematic investigation of photo-induced stretching and recovery of nanoimprinted structures. For this purpose, light and heat was used as recovery stimuli. The AZOPD/PS microstructures, fabricated with thermal nanoimprint lithography (tNIL), comprises three different shapes (circles, crosses and squares) and various concentrations of AZOPD fractions. The results show a concentration-dependent reshaping. Particularly the sample with 43 w-% of the AZOPD fraction have shown the best controllable recovery for the used parameters. A possible explanation for shape recovery might be the stabilizing effect of the PS-matrix. Full article
(This article belongs to the Special Issue Advances in Multifunctional Polymer-Matrix Composites)
Show Figures

Figure 1

11 pages, 8233 KiB  
Article
Contact Angle and Cell Adhesion of Micro/Nano-Structured Poly(lactic-co-glycolic acid) Membranes for Dental Regenerative Therapy
by Naoyuki Kaga, Hiroki Fujimoto, Sho Morita, Yuichiro Yamaguchi and Takashi Matsuura
Dent. J. 2021, 9(11), 124; https://doi.org/10.3390/dj9110124 - 20 Oct 2021
Cited by 13 | Viewed by 3499
Abstract
Biodegradable membranes are used in regenerative dentistry for guided tissue regeneration (GTR) and guided bone regeneration (GBR). In this study, patterned poly(lactic-co-glycolic acid) (PLGA) membranes with groove, pillar, and hole structures were successfully fabricated by thermal nanoimprinting. Their surfaces were evaluated [...] Read more.
Biodegradable membranes are used in regenerative dentistry for guided tissue regeneration (GTR) and guided bone regeneration (GBR). In this study, patterned poly(lactic-co-glycolic acid) (PLGA) membranes with groove, pillar, and hole structures were successfully fabricated by thermal nanoimprinting. Their surfaces were evaluated for topography by scanning electron microscopy and laser microscopy, for hydrophobicity/hydrophilicity by contact angle analysis, and for MC3T3-E1 cell adhesion. The sizes of the patterns on the surfaces of the membranes were 0.5, 1.0, and 2.0 μm, respectively, with the height/depth being 1.0 μm. The pillared and holed PLGA membranes were significantly more hydrophobic than the non-patterned PLGA membranes (p < 0.05). However, the 0.5 μm- and 1.0 μm-grooved PLGA membranes were significantly more hydrophilic than the non-patterned PLGA membranes (p < 0.05). The 0.5 μm-grooved, pillared, and holed membranes exhibited significantly superior adhesion to the MC3T3-E1 cells than the non-patterned PLGA (p < 0.05). These results suggest that patterned PLGA membranes can be clinically used for GTR and GBR in the dental regeneration field. Full article
(This article belongs to the Special Issue Tissue Engineering Approaches for Regenerative Dentistry)
Show Figures

Figure 1

Back to TopTop