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Abstract: The anti-reflection film can effectively reduce the surface reflectivity of solar photovoltaics,
increase the transmittance of light, and improve the photoelectric conversion efficiency. The high
refractive index coating is an important part of the anti-reflection film. However, the traditional
metal oxide coating has poor stability and complicated processes. To address this issue, we pre-
pared two organic high refractive index (HRI) photopolymers by modifying epoxy acrylic acid with
4,4′-thiodibenzenethiol, which can be surface patterned by nanoimprinting to prepare antireflection
coatings. As a result, two modified photopolymers with high refractive index (n > 1.63), high optical
transmittance (T > 95%), and thermal stability (Tg > 100 ◦C) are obtained after curing. In particular,
the diphenyl sulfide photopolymer modified by ethyl isocyanate acrylate has a refractive index up
to 1.667 cured by UV light. Our work confirms that the organic HRI photopolymer can be obtained
by introducing high molar refractive index groups, with potential to be applied as a PV cell power
conversion efficiency material.

Keywords: refractive index; photopolymer; antireflection coatings; nanoimprinting; solar cells

1. Introduction

Solar power generation is a sustainable and clean energy source, and an important
way to obtain green hydrogen energy [1]. The surface packaging material for transmittance
of photovoltaic (PV) cells directly affects the PV light harvesting which converts incoming
solar photons to charge carriers [2]. In this way, transferring as much light as possible
into the cell can effectively improve the power conversion efficiency (PCE) [3]. Therefore,
antireflection coatings (ARCs) are applied on the surface of PV modules to suppress Fresnel
surface reflection losses. A single-layer low-refractive-index coating is the simplest anti-
reflection coating [4]. Recently, alternating layers of high-low refractive index films [5] have
also been reported for anti-reflection coatings, possessing a wider absorption bandwidth
and a range of incident angles to improve the short-circuit current of solar cells.

High refractive index photopolymers (HRIPs) are high refractive index polymers
(n > 1.5) that can be quickly cured under ultraviolet light (UV) irradiation [6]. This polymer
has been widely investigated for potential application in the field of advanced optical
device manufacturing, such as lenses [7], optical adhesives [8], holographic lenses [9],
intraocular lenses [10], anti-reflective coatings [11], and LED packaging materials [12,13].
The refractive index affects the propagation path of light; the higher the refractive index, the
thinner the material can be [14]. Therefore, high refractive index polymers have attracted
extensive attention due to the lightweight design requirements of advanced optical devices.

According to the Lorentz-Lorenz equation [15–17], the introduction of substituents
with high molar refraction and low molar volume can effectively increase the refractive
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index of photopolymer [18]. Benzene ring, sulfur atoms, phosphorus, beryllium, sele-
nium [19,20], and halogen atoms (except fluorine atoms) with higher molar refractivity
can increase the refractive index of the polymer. Ueda and colleagues have systemically
synthesized and characterized a series of sulfur-containing HRIPs, and found that steric
hindrance and molecular packing also affect the refractive index of polymers [21]. In addi-
tion, the introduction of nitrogen can increase the hydrogen bond density of the polymer to
improve the refractive index [22]. Many groups and atoms such as polysulfide [23], cyclic
sulfide [24], biphenyl [25], thianthrene [26], polyimide [27], poly(thiophosphate)s [28],
phenyl sulfide [29], carbazole [30,31], pyrimidine [30,31], fluorene [32], sulfone [21] and
triazines [33] have been widely studied to improve the refractive index of polymers.

Excessive doping of these functional elements can deepen the color of the polymer,
reduce optical transmission, or create problems of insolubility and poor processability.

Nano-composite high refractive index photopolymers are inorganic-organic hybrid
materials with high molar refractivity inorganic nanoparticles, such as ZrO2 [34], ZnS [35],
SiO2 [36,37], and TiO2 [6,38,39]. Sol-gel is a common surface treatment method reported to
improve the compatibility of inorganic-organic composite. The surface of nanoparticles and
organics are connected by chemical bonds, the composite HRIPs are transparent, and the
refractive index can be increased to 1.8. However, nanoparticles have issues of aggregation,
poor processability and low homogeneity [40]. Thus, the composite nanofilms prepared by
sol-gel have high roughness and porosity, which limit their application.

Therefore, regardless of organic or inorganic nanomaterials, the application prospect of
the final products is still determined by their storage stability, film-forming properties, and
optical transmission. Photopolymers are often prepared by using acrylate/methacrylate
modified monomers. The photopolymers prepared in this way have outstanding proper-
ties such as good compatibility, good film formation, short curing time and high optical
clarity [41], and this is a common synthetic route for some advanced optical materials.
However, this method will inevitably affect the refractive index of the product. Isocyanate
acrylate has isocyanic acid and C=C bond structure, which can replace acrylate to react with
functional monomers and introduce C=C bonds that can be light cured. At the same time,
the acrylate/methacrylate modified monomers can increase the hydrogen bond density of
the light-cured resin and improve its refractive index.

In the present work, the diphenyl sulfide epoxy resins are modified by acrylic acid and
isocyanate ethyl acrylate to prepare photopolymers with high refractive index and high
optical transmission. We finally succeed in obtaining two liquid diphenyl sulfide photopoly-
mers with a high refractive index (n > 1.63). Compared with acrylates, the photopolymer
modified with isocyanate acrylate has high optical transmittance, thermal stability, and
good film formation. The photopolymer was prepared into antireflection coatings (ARCs)
by a facile nanoimprinting technology, which proved its promising application prospects.

2. Materials and Methods
2.1. Materials

Epichlorohydrin (ECH, 99.7%), 4,4′-Thiodibenzenethiol (TDBT, 98%), acrylic acid (AA,
99%, contains 180–200 ppm MEHQ stabilizer), 2-isocyanatoethylacrylate (AOI, 98%), tetra-
butylammonium bromide (TABA, 99%), triphenylphosphine (TPP, 99%), ditin butyl dilau-
rate (DBTDL, 95%), 4-methoxyphenol (MEHQ, 99%) and photoinitiator-1173 (PI-1173, 97%)
were purchased from Aladdin Reagent Co., Ltd. (Shanghai, China) without further pu-
rification. Low Refractive Index Resin (H819@ QUINSON) and PET film (n = 1.5) were
purchased from Jincheng Technology Co., Ltd. (Shenzhen, China) and Zhonglian Electronic
Material Co., Ltd. (Changshu, China), respectively.

2.2. Synthesis of Thiodibenzenethiol Epoxy Resin

Diglycidyl ether of thiodibenzenethiol epoxy resin (DGETDBT) was synthesized in
two steps as shown in Figure 1, and the reaction route was the same as reported work
in [26]. The detailed process is shown in Figures 1 and 2.
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4,4-thiobisbenzenethiol (50 g, 0.2 mol) was stirred to dissolve epichlorohydrin (155 mL, 2 mol)
in a 500 mL single-necked round-bottom flask. Then tetra-n-butylammonium bromide
(TABA, 0.05 g) was added to the solution. The mixture reacted under a nitrogen atmosphere with
continuous stirring at 80 ◦C for 4 h. At the end of the reaction, the unreacted epichlorohydrin
was separated from the product using a rotary evaporator at 60 ◦C, and a pale-yellow liquid was
obtained (step 1).

The pale-yellow liquid was dissolved again by methyl isobutyl ketone (250 mL), then
NaOH (8 g, 0.2 mol) was added to the dissolved solution and the mixture reacted for 2 h
at 60 ◦C under a nitrogen atmosphere. After the reaction, NaOH was filtered out using
a Brinell funnel (∅ = 150 mm). To separate the methyl isobutyl ketone from the product,
the filtrate was vacuum distilled at 60 ◦C and the product was an orange oil. The oil was
washed to neutrality by adding a certain amount of potassium dihydrogen phosphate and
deionized water (50 ◦C), and then the product was separated from the water by extraction
with ethyl acetate at 30 ◦C. The extracted product was evaporated at 60 ◦C, and 30 g of
diphenyl sulfide epoxy resin was obtained (step 2).

To remove impurities from the resin product and further purify the resin, the product
DGETDBT of step 2 needs to be purified. First, diphenyl sulfide epoxy resin (30 g) was
completely dissolved in 300 mL of anhydrous ethanol at 50 ◦C, and then the solution was
left to recrystallize at −5~0 ◦C for 6 h. After recrystallization, the crystals were quickly
separated by filtration with ethanol in a Buchner funnel at an ambient temperature of 10 ◦C.
Then the product was separated by silica gel column chromatography purification and
eluted with dichloromethane/methanol solution. Finally, the solution was spin-dried to
obtain 25 g of purified diphenyl sulfide epoxy resin for subsequent reactions.

2.3. Synthesis of EA-UV

The process is shown in Figure 3. Triphenylphosphine (0.01 g, 0.1 wt%) and 4-methoxyphenol
(0.01 g, 0.1 wt%) were dissolved in the purified diphenyl sulfide epoxy resin (10 g). The resin
mixture was heated in a three-necked flask with constant stirring. When the temperature rose
to 75 ◦C, acrylic acid (5.76 g, 0.08 mol) was added dropwise to the resin within 30 min through
a dropping funnel. After the addition of drops, the mixture in the flask was warmed up to
80 ◦C and the reaction was carried out under light-proof and nitrogen atmosphere conditions for
6 h to obtain ((thiobis(4,1-phenylene)) bis(sulfanediyl)) bis(2-hydroxypropane-3,1-diyl) diacrylate
(EA-UV) photopolymer.
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2.4. Synthesis of AOI-UV

The process is shown in Figure 4. Dibutyltin laurate (0.02 g, 0.2 wt%) and 4-methoxyphenol
(0.01 g, 0.1 wt%) were dissolved in the purified diphenyl sulfide epoxy resin (10 g). The resin
mixture was heated in a three-necked flask with constant stirring. When the temperature rose to
75 ◦C, ethyl isocyanate acrylate (9.58 g, 0.068 mol) was added dropwise to the resin via a dropping
funnel within 30 min. After that, the mixture in the flask was heated to 85 ◦C and the reaction
was carried out under light and nitrogen atmosphere for 6 h to obtain ((((thiobis(4,1-phenylene))
bis(sulfanediyl)) bis(meth-ylene)) bis(2-oxooxazolidine-5,3-diyl)) bis(ethane-2,1-diyl) diacrylate
(AOI-UV) photopolymer.

Energies 2022, 15, x FOR PEER REVIEW 4 of 14 
 

 

proof and nitrogen atmosphere conditions for 6 h to obtain ((thiobis(4,1-phenylene)) 
bis(sulfanediyl)) bis(2-hydroxypropane-3,1-diyl) diacrylate (EA-UV) photopolymer. 

 
Figure 3. Synthesis of EA-UV photopolymer. 

2.4. Synthesis of AOI-UV 
The process is shown in Figure 4. Dibutyltin laurate (0.02 g, 0.2 wt%) and 4-

methoxyphenol (0.01 g, 0.1 wt%) were dissolved in the purified diphenyl sulfide epoxy 
resin (10 g). The resin mixture was heated in a three-necked flask with constant stirring. 
When the temperature rose to 75 °C, ethyl isocyanate acrylate (9.58 g, 0.068 mol) was 
added dropwise to the resin via a dropping funnel within 30 min. After that, the mixture 
in the flask was heated to 85 °C and the reaction was carried out under light and nitrogen 
atmosphere for 6 h to obtain ((((thiobis(4,1-phenylene)) bis(sulfanediyl)) bis(meth-ylene)) 
bis(2-oxooxazolidine-5,3-diyl)) bis(ethane-2,1-diyl) diacrylate (AOI-UV) photopolymer. 

 
Figure 4. Synthesis of AOI-UV photopolymer. 

2.5. Preparation of Film 
Photoinitiator-1173 (0.3 wt%) was added into photopolymers (EA-UV/AOI-UV), and 

then the photocurable resin can be obtained after stirring in the dark at room temperature 
for 30 min. Photocurable resin was dropped onto a clean glass and scraped into a 
continuous 25 μm coating with SZQ squeegee. After 1 min of irradiation with 365 nm UV 
light, the films with thicknesses of 25 μm were successfully prepared and used for better 
refractive index, transmittance and thermal properties [42]. 

2.6. Preparation of ARCs Film 
Antireflection coatings (ARCs) [43] consists of a specialized optical clear film offering 

broadband spectral range, reducing the reflection of ambient light on the display interface 
and improving the light-harvesting in photovoltaic (PV) cells’ surface. 

The embossing process of the film is shown in Figure 5. The Si mold was placed on 
the cradle of the nano-imprinter, and 1.5 mL photocurable HRIP was dropped onto the 
surface of the mold, and then the PET film was covered on the surface of the HRIP to 
avoid air bubbles. Next, a UV-enabled NIL using a Nanonex NX-B200 was applied, where 
the pattern duplication occurred when the HRIP was embossed at a certain pressure and 
then cured using UV light before demolding. After HRIP demolding, low refractive index 
photopolymer (H819@ Quinson) was dropped onto the pattern surface of the cured HRIP 
film, and then the PET film was covered on the surface of the photopolymer. Repeat the 
above embossing procedure to finally obtain high-low refractive index composite ARCs. 

The embossing and molding procedure used is: Step 1, air in the empty bin was 
extracted by a vacuum pump, then low-pressure nitrogen (100–110 PSI) was filled into it, 
and the upper and lower covers of the bracket were pushed together (30 s); Step 2, high-
pressure nitrogen was filled into the bin, and the pressure was gradually increased to 200 
PSI within 1 min; Step 3, high-pressure nitrogen was maintained for 1 min, and the UV 
resin was completely laminated to the mold to start imprinting; Step 4, 365 nm UV-LED 
lamp was turned on and light curing was performed for 1 min [44]. 

Figure 4. Synthesis of AOI-UV photopolymer.

2.5. Preparation of Film

Photoinitiator-1173 (0.3 wt%) was added into photopolymers (EA-UV/AOI-UV), and
then the photocurable resin can be obtained after stirring in the dark at room temperature for
30 min. Photocurable resin was dropped onto a clean glass and scraped into a continuous
25 µm coating with SZQ squeegee. After 1 min of irradiation with 365 nm UV light, the
films with thicknesses of 25 µm were successfully prepared and used for better refractive
index, transmittance and thermal properties [42].

2.6. Preparation of ARCs Film

Antireflection coatings (ARCs) [43] consists of a specialized optical clear film offering
broadband spectral range, reducing the reflection of ambient light on the display interface
and improving the light-harvesting in photovoltaic (PV) cells’ surface.

The embossing process of the film is shown in Figure 5. The Si mold was placed on
the cradle of the nano-imprinter, and 1.5 mL photocurable HRIP was dropped onto the
surface of the mold, and then the PET film was covered on the surface of the HRIP to
avoid air bubbles. Next, a UV-enabled NIL using a Nanonex NX-B200 was applied, where
the pattern duplication occurred when the HRIP was embossed at a certain pressure and
then cured using UV light before demolding. After HRIP demolding, low refractive index
photopolymer (H819@ Quinson) was dropped onto the pattern surface of the cured HRIP
film, and then the PET film was covered on the surface of the photopolymer. Repeat the
above embossing procedure to finally obtain high-low refractive index composite ARCs.
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The embossing and molding procedure used is: Step 1, air in the empty bin was
extracted by a vacuum pump, then low-pressure nitrogen (100–110 PSI) was filled into
it, and the upper and lower covers of the bracket were pushed together (30 s); Step 2,
high-pressure nitrogen was filled into the bin, and the pressure was gradually increased to
200 PSI within 1 min; Step 3, high-pressure nitrogen was maintained for 1 min, and the UV
resin was completely laminated to the mold to start imprinting; Step 4, 365 nm UV-LED
lamp was turned on and light curing was performed for 1 min [44].

2.7. Testing and Characterization

The 1H-NMR spectra of the monomers were recorded on a Bruker Magnet System
AV400 MHz spectrometer in CDCl3-d. The sample mass was not less than 8 mg, the
sampling time was 2.11 s, and the number of scans was 18 [45].

Fourier transform infrared (FT-IR) spectroscopy (KBr pellets) was recorded on a Bruker
TENSOR 27 spectrometer. By comparing the change in the characteristic peak of the product
in the range of 4000~500 cm−1, the group change during the reaction can be determined [46].

In order to check the thermal stability of the photopolymer, thermogravimetric analysis
was performed on a NETZSCH-TG209F3 TGA thermal analyzer with 5~8 mg film samples
heated in flowing nitrogen (flow rate = 40 mL/min) at a heating rate of 10 ◦C/min from
30 ◦C to 800 ◦C [47].

The samples were measured twice on a DSC Q20 TA Instrument at a heating rate of
20 ◦C/min under a nitrogen atmosphere from 40 ◦C to 280 ◦C, with the first heating to
eliminate heat history and the second heating to measure Tg [48].

The refractive index of the cured photopolymer film was measured by abbe-3L refrac-
tometer (Type WYA-2W from Shanghai Optical Instrument Co., Shanghai, China). The
measuring range of the refractometer is n = 1.300~1.700.

Before testing, the refractive index of deionized water was measured to calibrate the
refractometer. After calibration, to avoid bubbles between the film and the prism, bromonaph-
thalene was used as the contact liquid to fully adhere to the prism. The object was measured
several times (at least three samples for each object) to calculate the average value [49].

A Shimadzu Spectrophotometer UV-2550 was also used for testing the transmission
of the photopolymer film with the thickness of 25 µm, and the measurement range of the
wavelength was between 200 nm and 900 nm [50].

Surface SEM images of the samples were obtained by applying a 3 kV voltage. A
Hitachi Field Emission Scanning Electron Microscope SU8010 was used to conduct mem-
brane tests and get results. When observing the cross section, the film needed to be brittle
fractured by liquid nitrogen [51].

3. Results and Discussion
3.1. Synthesis and Characterization of Photopolymers

As shown in Figure 6a, high refractive index diphenyl sulfide photopolymers were syn-
thesized in two steps. First, epoxy resin was obtained by modifying 4′4-thiobisthiophenol
with epichlorohydrin. Then two high refractive index light photopolymers EA-UV and
AOI-UV were obtained by modifying the epoxy resin with acrylic acid and isocyanate ethyl
acrylate. In the following, the chemical structures of epoxy resin, EA-UV and AOI-UV were
confirmed by 1H-NMR spectroscopies [52] and FT-IR spectroscopy. The results of 1H-NMR
spectroscopies have been moved to supporting information.

The epoxy resin, EA-UV and AOI-UV photopolymers were tested by FTIR spec-
troscopy to compare the structural changes before and after the substance reaction.

The FTIR spectra of DGETDBT epoxy resin and its monomer TDBT are shown in
Figure 6b. There is an absorption peak at 2600 cm−1 in the spectrum line of TDBT for its
S-H functional group, whereas the same peak is not found in that of DGETDBT, which
suggests that TDBT has been converted completely. The characteristic peaks of the three-
member ring ether group at 927 cm−1 and the peak representing the stretching vibration
of C-O-C at 1267 cm−1 of DGETDBT are both sought out in its FTIR spectrum. Further-
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more, the characteristic peaks of benzene ring skeleton vibration appear at 1448 cm−1 and
3000~3100 cm−1, indicating that diphenyl sulfide has been connected to epichlorohydrin.
The appearance of a broad absorption peak at 3474 cm−1 and the characteristic peak of
water at 1631 cm−1 indicate that a small amount of water has been absorbed by DGETDBT,
as reported by Anton et al.
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The FTIR spectra of UV-EA photopolymer and its monomer DGETDBT are given
in Figure 6c. By comparing the characteristic peaks of the products, it is found that the
characteristic peak of DGETBDT epoxy resin at 921 cm−1 has disappeared. The product
EA-UV shows a characteristic peak of C=O at 1720 cm−1 and a peak of C=C at 1630 cm−1.
In addition, the area of the carbonyl peak at 3400 cm−1 increases, which indicates that
acrylic acid has already been esterified with epoxy resin [53].

After DGETDBT was modified by ethyl isocyanate (AOI), the change spectrum of its
characteristic peak is shown in Figure 6d. The characteristic peak of the three-member
ring ether group disappears at 927 cm−1, but the C=C peak appears at 1630 cm−1. The
characteristic peaks of AOI of -N=C=O at 2270 cm−1 and -O-C=N- at 1369 cm−1 disappear,
and the O=C-N< peak representing oxazolidinone appears at 1750 cm−1. This is the same
as the results reported in [54], which proves that the epoxy group and the isocyanate
group have fully reacted, and a C=C bond-terminated diphenyl sulfide epoxy isocyanate
light-curable resin containing an oxazolidinone structure is formed.

3.2. Thermal Properties

Glass transition temperature (Tg) and thermal decomposition temperature (Td) are
important parameters in the design and production of optical devices. According to the
experimental method in Section 2.6, two groups of high-refractive photopolymers were
tested by DSC and thermogravimetric analysis in the form of 25 µm films.
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The DSC test results of the cured films of the two photopolymers are shown in Figure 7.
The Tg of the EA-UV photopolymer is 107 ◦C, and the Tg of the AOI-UV photopolymer is
116 ◦C. The results indicate that the structure of oxazolidinone has improved the thermal
performance of photopolymers.
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The results of the thermogravimetric analysis are shown in Figure 8 and Table 1. The
results show that the EA-UV photopolymer film has two thermal weight loss steps, and
part of the prepolymer decomposes at 180 ◦C to 200 ◦C. The oxazolidinone structure of
the AOI-UV photopolymer film can improve the heat resistance of the polymer [55]. The
temperature of 1% thermal weight loss is 209.40 ◦C, which is 55 ◦C higher than that of
EA-UV resin. However, the main structure of both is diphenyl sulfide, so there is a 10%
heat loss around 290~300 ◦C, and the maximum thermal weight loss rate is between 370 ◦C
and 382 ◦C.

Energies 2022, 15, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 8. Thermal weight loss curves of high refractive index films. 

Table 1. Thermal weight loss test results of two high refractive index UV cured films. 

Film T1/°C T5/°C T10/°C T50/°C DTG/°C 
Residue 
@600 °C 

EA-UV 153.60 230.21 291.70 396.39 370.73 20.36% 
AOI-UV 209.40 274.42 301.80 400.31 382.38 23.00% 

3.3. Optical Properties 
The diphenyl sulfide structure with high molar refractive index will make the 

polymer film show a certain color, which will affect the display effect. Therefore, the 
optical transparency of the film in the visible region is a key factor in the field of optical 
applications. 

According to the method described in Section 2.7, the optical transmittance and 
refractive index of the films cured with two high refractive index resins (EA-UV and AOI-
UV) were tested using ultraviolet spectrometer and Abbe refractometer, respectively. 

The test results are shown in Figure 9 and Table 2. The EA-UV film has a refractive 
index of 1.633, with UV cut-off wavelength of 328 nm, a transmittance of 95.38% at 450 
nm, and the maximum transmittance of 99.83%. The AOI-UV film has a refractive index 
of 1.667, with UV cut-off wavelength of 318nm, a transmittance of 97.9% at 450 nm and 
the maximum transmittance of 99.86%. 

In particular, the molar refractive index of the AOI-UV is higher than -C-C- because 
of the large amount of -C-N< bonds contained in the isocyanate modification [57], which 
also increases the hydrogen bond density of the resin and results in a higher refractive 
index of AOI-UV relative to EA-UV. 

Figure 8. Thermal weight loss curves of high refractive index films.



Energies 2022, 15, 3972 8 of 13

Table 1. Thermal weight loss test results of two high refractive index UV cured films.

Film T1/◦C T5/◦C T10/◦C T50/◦C DTG/◦C Residue
@600 ◦C

EA-UV 153.60 230.21 291.70 396.39 370.73 20.36%
AOI-UV 209.40 274.42 301.80 400.31 382.38 23.00%

In general, AOI-UV resin contains a five-membered heterocyclic structure of oxazo-
lidinone, so it has a higher crosslink density after curing [56], and its thermal performance
is improved compared to EA-UV.

3.3. Optical Properties

The diphenyl sulfide structure with high molar refractive index will make the polymer
film show a certain color, which will affect the display effect. Therefore, the optical trans-
parency of the film in the visible region is a key factor in the field of optical applications.

According to the method described in Section 2.7, the optical transmittance and
refractive index of the films cured with two high refractive index resins (EA-UV and
AOI-UV) were tested using ultraviolet spectrometer and Abbe refractometer, respectively.

The test results are shown in Figure 9 and Table 2. The EA-UV film has a refractive
index of 1.633, with UV cut-off wavelength of 328 nm, a transmittance of 95.38% at 450 nm,
and the maximum transmittance of 99.83%. The AOI-UV film has a refractive index of
1.667, with UV cut-off wavelength of 318nm, a transmittance of 97.9% at 450 nm and the
maximum transmittance of 99.86%.
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Figure 9. Comparison of optical transmission and photographs of high refractive index cured films.

Table 2. Comparative transmittance and refractive index of UV-curable films.

Film (25 µm) λcut-off (nm) 1 T450 (%) 2 Tmax (%) 3 Refractive Index

EA-UV 328 95.38 99.83 1.633
AOI-UV 318 97.9 99.86 1.667

1 cut-off wavelength in UV-vis transmission spectrum. 2 the transmittance at 450 nm in UV-vis transmission
spectrum. 3 the maximum transmittance in UV-vis transmission spectrum.

In particular, the molar refractive index of the AOI-UV is higher than -C-C- because of
the large amount of -C-N< bonds contained in the isocyanate modification [57], which also
increases the hydrogen bond density of the resin and results in a higher refractive index of
AOI-UV relative to EA-UV.

3.4. The Structure of ARCs Films

Antireflection coatings (ARCs), by multiple reflections of light within the yellow
absorbing layer (high refractive index), in turn enable the absorption of obliquely incident



Energies 2022, 15, 3972 9 of 13

ambient light. The display light emitted within the viewing angle range can be transmitted.
The basic principle is shown in Figure 10. Controlling the refractive index and structural
parameters of each layer can achieve low reflection of oblique incident light [58].
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Figure 10. Demonstration of light propagation in ARCs.

First, according to the optical properties of each material, the light transmittance,
refractive index, and thermal stability of AOI-UV were better than EA-UV, so AOI-UV was
selected as a high refractive index light-curing resin to prepare an ARCs film. Additional
PET film and low refractive index resin were selected from mature products in the market,
and the final film parameters for each layer are shown in Table 3.

Table 3. Refractive index and structural parameters of each layer of ARCs.

Film n Transmittance Critical Angle of Reflection

PET 1.5 ≥93%
69.639◦ 56.758◦Yellow Layer 1.67 ≥97%

Blue Layer 1.38 ≥93%

With reference to the optical parameters of each layer, the incidence angle of each
surface in the case of oblique incidence was calculated, and the size and angle of the
microstructure were designed according to the requirement of total reflection [59]. The
results show that total reflection on both surfaces can be achieved at β + 25.375◦ ≥ 56.758◦

and 2 × β + 25.375◦ ≥ 69.636◦. In other words, β ≥ 31.383◦ can make the light fully
reflected in the yellow absorbing layer achieve absorption.

Therefore, ARCs films were prepared using the above angularly designed mold
referring to the method described in Section 2.6. The SEM observation was performed on
the high refractive film with a single impression and the high-low-refractive film with two
impressions. As shown in Figure 11b, the high refractive index resin has a better release,
high image integrity and a significant prism angle after resin curing. Figure 11a indicates
that the single-layer high refractive resin after nanoimprinting shows the rainbow film
phenomenon at different angles. This shows that the prismatic structure and high refractive
index of the embossing produce interference with light.



Energies 2022, 15, 3972 10 of 13Energies 2022, 15, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 11. Microstructure and display effect of ARCs. (a) Display effect of single-layer high 
refractive resin after nanoimprinting. (b) SEMs of single-layer high refractive resin after 
nanoimprinting. (c,d) Microstructure of high-low refractive index composite ARCs films. 

4. Conclusions 
In this paper, high refractive index epoxy resins with diphenyl sulfide structure were 

prepared by the reaction of highly active hydrogen of -SH with epichlorohydrin. Two high 
refractive index and high optical transmission photopolymers were prepared through the 
modification of epoxy resins with acrylic acid and isocyanate, and the structure of the both 
products were verified by FTIR and 1H-NMR.The soft, colorless and transparent films 
were obtained by curing two photopolymers, which have excellent optical properties in 
the visible region, especially with optical transmittance over 95% at 450 nm, and the 
refractive index over 1.63. Besides, both films exhibited good thermal stability with glass 
transition temperatures above 100 °C and 1% thermal weight loss temperatures above 150 
°C. 

In particular, the refractive index of AOI-UV films with oxazolidinone structure was 
up to 1.667, and 1% thermal weight loss temperatures were all above 200 °C. This 
indicated that the oxazolidinone structure and hydrogen bonding contributed to the 
improvement of the refractive index and thermal stability of the photopolymer. 

Finally, AOI-UV photopolymer with excellent thermal properties, high refractive 
index and optical transmittance was prepared into well-structured and fully patterned 
prismatic gratings film using a nano-imprinting technique and antireflection coatings 
(ARCs) principle. The effect of AOI-UV photopolymer in the molding of micro and nano 
structures was explored, and the results showed that the photopolymer was well suited 
as optical film for applications in advanced electronic devices and optical equipment. 
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(c,d) Microstructure of high-low refractive index composite ARCs films.

High-low refractive index composite ARCs films were obtained by nanoimprinting
the low-refractive index resin onto the patterned side of the high-refractive index film. The
cross-section of the film was observed using SEM, and the results are shown in Figure 11c,d.
The high and low refractive index resins are tightly fit, the overall embossing effect is good,
the prism structure is obvious, and the angle is clear and greater than 32◦, in accordance
with the expected design.

4. Conclusions

In this paper, high refractive index epoxy resins with diphenyl sulfide structure were
prepared by the reaction of highly active hydrogen of -SH with epichlorohydrin. Two high
refractive index and high optical transmission photopolymers were prepared through the
modification of epoxy resins with acrylic acid and isocyanate, and the structure of the
both products were verified by FTIR and 1H-NMR.The soft, colorless and transparent films
were obtained by curing two photopolymers, which have excellent optical properties in the
visible region, especially with optical transmittance over 95% at 450 nm, and the refractive
index over 1.63. Besides, both films exhibited good thermal stability with glass transition
temperatures above 100 ◦C and 1% thermal weight loss temperatures above 150 ◦C.

In particular, the refractive index of AOI-UV films with oxazolidinone structure was
up to 1.667, and 1% thermal weight loss temperatures were all above 200 ◦C. This indicated
that the oxazolidinone structure and hydrogen bonding contributed to the improvement of
the refractive index and thermal stability of the photopolymer.



Energies 2022, 15, 3972 11 of 13

Finally, AOI-UV photopolymer with excellent thermal properties, high refractive
index and optical transmittance was prepared into well-structured and fully patterned
prismatic gratings film using a nano-imprinting technique and antireflection coatings
(ARCs) principle. The effect of AOI-UV photopolymer in the molding of micro and nano
structures was explored, and the results showed that the photopolymer was well suited as
optical film for applications in advanced electronic devices and optical equipment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/en15113972/s1, Figure S1: 1H-NMR spectra of DGETDBT; Figure S2:
1H-NMR spectra of EA-UV; Figure S3: 1H-NMR spectra of AOI-UV.
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