Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = thermal comfort in historical buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7764 KB  
Article
Perception of Environmental Comfort in Historic Museum Buildings Depending on the Method of Active Microclimate Control—A Case Study of the National Museum in Krakow
by Agnieszka Sadłowska-Sałęga, Weronika Burda and Karolina Moskal
Energies 2026, 19(1), 170; https://doi.org/10.3390/en19010170 - 28 Dec 2025
Viewed by 432
Abstract
Museums open to the public must reconcile heritage preservation requirements with energy-conscious microclimate management and visitors’ environmental experience. In historic buildings, indoor conditions are typically controlled primarily for preventive conservation, while opportunities for detailed assessment of human comfort are often limited by existing [...] Read more.
Museums open to the public must reconcile heritage preservation requirements with energy-conscious microclimate management and visitors’ environmental experience. In historic buildings, indoor conditions are typically controlled primarily for preventive conservation, while opportunities for detailed assessment of human comfort are often limited by existing monitoring systems and operational constraints. This study investigates visitors’ perceptions of thermal conditions and indoor air quality (IAQ) in two branches of the National Museum in Krakow (NMK) characterized by different microclimate-control strategies: the mechanically ventilated and air-conditioned Cloth Hall and the predominantly passively controlled Bishop Erazm Ciołek Palace. A pilot survey was conducted in spring 2023 to capture subjective assessments of thermal sensation and perceived IAQ. These perceptions were contextualized using long-term air temperature and relative humidity data (2013–2023) routinely monitored for conservation purposes. Environmental data were analyzed to assess the stability of indoor conditions and to provide background for interpreting survey responses, rather than to perform a normative evaluation of thermal comfort. The results indicate that visitors frequently perceived the indoor environment as slightly warm and reported lower air quality in the Palace, where air was often described as stale or stuffy. These perceptions occurred despite relatively small differences in monitored air temperature and relative humidity between the two buildings. The findings suggest that ventilation strategy, air exchange effectiveness, odor accumulation, room configuration, and lighting conditions may influence perceived environmental quality more strongly than temperature or humidity alone. Although limited in scope, this pilot study highlights the value of incorporating visitor perception into discussions of energy-conscious microclimate management in museums and indicates directions for further multidisciplinary research. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 4th Edition)
Show Figures

Figure 1

24 pages, 18322 KB  
Article
Impact of Winter Air Supply Strategies on Thermal Comfort in Yamen Buildings: A Case Study of the Jiangsu Provincial Judicial Commissioner’s Office
by Jie Wu, Yiyu Chen and Yi Deng
Atmosphere 2026, 17(1), 38; https://doi.org/10.3390/atmos17010038 - 26 Dec 2025
Viewed by 197
Abstract
The Jiangsu Provincial Judicial Commissioner’s Office, a significant official yamen and regional judicial-administrative center during the Ming and Qing dynasties, exemplifies one of the rare remaining instances of official architecture in Suzhou. Notwithstanding its historical continuity, the thermal and hygrothermal performance of its [...] Read more.
The Jiangsu Provincial Judicial Commissioner’s Office, a significant official yamen and regional judicial-administrative center during the Ming and Qing dynasties, exemplifies one of the rare remaining instances of official architecture in Suzhou. Notwithstanding its historical continuity, the thermal and hygrothermal performance of its high and large historical building areas is unable to meet modern thermal comfort standards. Due to the concept of heritage conservation, “restoring the original state”, changing the thermal properties of the building envelope is difficult. Therefore, this study adopts a combined simulation method using DesignBuilder and Fluent to explore the potential to improve the indoor thermal climate by optimizing the HVAC air supply system. Various situations with differing supply air angles, velocities, and outlet configurations are assessed, utilizing temperature fields, velocity fields, and PMV-PPD indices as the primary evaluation criteria. The study’s findings demonstrate that air supply configurations have a substantial impact on the distribution of comfortable zones. The judicious selection of supply angles, velocities, and outlet arrangements can effectively mitigate vertical temperature stratification and enhance thermal comfort in the primary activity areas. The results offer technical guidance for optimizing HVAC operations in high and large historical buildings while preserving their original architectural characteristics. Full article
(This article belongs to the Special Issue Ventilation and Indoor Air Quality)
Show Figures

Figure 1

42 pages, 6895 KB  
Article
Comparative Assessment of Climate-Responsive Design and Occupant Behaviour Across Türkiye’s Building Typologies for Enhanced Utilisation and Performance
by Oluwagbemiga Paul Agboola
Buildings 2026, 16(1), 18; https://doi.org/10.3390/buildings16010018 - 19 Dec 2025
Viewed by 405
Abstract
This study evaluates and compares the sustainability performance of selected historic, commercial, and institutional buildings in Istanbul to identify effective climate-responsive and energy-efficient design strategies. The objectives are to assess performance using LEED-based criteria, examine variations across building typologies, and outline implications for [...] Read more.
This study evaluates and compares the sustainability performance of selected historic, commercial, and institutional buildings in Istanbul to identify effective climate-responsive and energy-efficient design strategies. The objectives are to assess performance using LEED-based criteria, examine variations across building typologies, and outline implications for future sustainable design. Using an evaluation matrix, responses from 175 experts were analysed across key LEED categories for seven case study buildings. The comparative assessment reveals notable variations in sustainability performance across the seven evaluated buildings. ERKE Green Academy consistently achieved the highest mean scores (≈4.40–4.60), particularly in Sustainable Sites, Water Efficiency, Energy and Atmosphere, and Indoor Environmental Quality. This strong performance reflects its integration of advanced green technologies, optimised daylighting strategies, biophilic elements, and smart system controls. Modern commercial towers, such as the Allianz Tower and Sapphire Tower, recorded strong mean scores (≈4.20–4.50) across categories related to Integrative Design, Energy Efficiency, and Materials and Resources. Their performance is largely driven by intelligent façade systems, double-skin envelopes, automated shading, and high-performance mechanical systems that enhance operational efficiency. In contrast, heritage buildings including Hagia Sophia and Sultan Ahmed Mosque demonstrated moderate yet stable performance levels (≈4.00–4.40). Their strengths were most evident in Indoor Environmental Quality, where passive systems such as thermal mass, natural ventilation, and inherent spatial configurations contribute significantly to occupant comfort. Overall, the findings underscore the complementary value of combining traditional passive strategies with modern smart technologies to achieve resilient, low-energy, and user-responsive architecture. This study is novel as it uniquely demonstrates how traditional passive design strategies and modern smart technologies can be integrated to enhance climate-responsive and energy-efficient performance across diverse building typologies. The study recommends enhanced indoor air quality strategies, occupant education on system use, and stronger policy alignment with LEED standards. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

37 pages, 6640 KB  
Article
Bridging Heritage Conservation and Energy Efficiency: Retrofitting Historic Social Housing in Mediterranean Cities
by Zoe Kanetaki, Evgenia Tousi, Athina Mela, Eleni Kanetaki, Gianluca Pappaccogli and Emmanouel Proestakis
Atmosphere 2025, 16(12), 1321; https://doi.org/10.3390/atmos16121321 - 23 Nov 2025
Viewed by 826
Abstract
Historic social housing in Mediterranean cities faces the dual challenges of energy inefficiency and cultural preservation. This study presents a pilot methodological framework for energy retrofitting of historical residence buildings, using the Kaisariani Asia Minor refugee housing complex in Athens as a case [...] Read more.
Historic social housing in Mediterranean cities faces the dual challenges of energy inefficiency and cultural preservation. This study presents a pilot methodological framework for energy retrofitting of historical residence buildings, using the Kaisariani Asia Minor refugee housing complex in Athens as a case study. A bibliometric analysis revealed a research gap, as clusters concerning heritage retrofitting and social housing remain weakly connected, highlighting limited interdisciplinary integration between cultural conservation and energy-efficient design. The proposed framework combines historical analysis, energy consumption assessment, and technical evaluation to examine three retrofit scenarios that integrate thermal insulation, upgraded HVAC systems, renewable domestic hot water, and photovoltaic installations. Results demonstrate that substantial performance improvements can be achieved without compromising architectural authenticity. The most comprehensive scenario achieved a 97% reduction in primary energy demand, a 63–76% decrease in heating and cooling loads, and significant CO2 emission reductions, maintaining economic feasibility with a payback period of approximately ten years. The findings emphasize that conservation-compatible retrofitting can transform obsolete housing into low-energy buildings, fostering environmental, social, and cultural sustainability. Beyond quantitative energy gains, the study underlines the importance of integrating heritage values and community identity into urban regeneration strategies, offering a transferable model for Mediterranean municipalities seeking to align climate action with cultural continuity. Full article
Show Figures

Figure 1

26 pages, 3400 KB  
Article
Analysis of Retrofit Strategies of Mid-20th-Century Modern, Concrete Buildings
by Bernadett Csaszar, Richard O’Hegarty and Oliver Kinnane
Architecture 2025, 5(4), 108; https://doi.org/10.3390/architecture5040108 - 7 Nov 2025
Viewed by 989
Abstract
Reusing existing buildings is a valid response to the architectural challenge associated with addressing climate change and can aid the regeneration of the historic built environment. This demands sensitive architectural conservation strategies that improve thermal comfort, indoor environmental quality, and energy efficiency. In [...] Read more.
Reusing existing buildings is a valid response to the architectural challenge associated with addressing climate change and can aid the regeneration of the historic built environment. This demands sensitive architectural conservation strategies that improve thermal comfort, indoor environmental quality, and energy efficiency. In addition, energy retrofit solutions that balance performance improvements with the conservation of cultural and architectural values are needed to achieve higher performance while preserving cultural heritage, architectural features, and identity. Energy retrofits of post-war, mid-20th-century buildings pose particular challenges, including low ceiling heights, full-height windows, external decorative components, and other structural aspects, as these features hinder thermal upgrades. Concrete buildings from this period are frequently demolished due to limited guidance on effective retrofit methods. This study explores the most effective energy retrofit strategies for balancing energy efficiency with conservation requirements in such buildings, and assesses the risks associated with condensation and thermal bridging arising from internal insulation strategies. This paper examines internal insulation as a retrofit solution, where external insulation is not feasible. Internal wall insulation (IWI) reduces overall heat loss but concentrates thermal transfer at uninsulated junctions, thereby increasing the risk of condensation. In the simulated case, a relatively thin, short strip of slab insulation, combined with wall insulation, significantly reduced condensation and mould risk, suggesting a potential solution for mid-century building types. The analysis shows that applying insulation asymmetrically worsens conditions on the uninsulated side. Full-height window replacement, coupled with internal slab insulation, results in the most significant improvement; however, slab insulation alone can mitigate condensation risks where window replacement is not permitted. Findings highlight that partial insulation at balconies, parapets, and roof junctions is minimally effective, reinforcing the importance of integrated internal strategies for successful retrofits. Full article
(This article belongs to the Special Issue Strategies for Architectural Conservation and Adaptive Reuse)
Show Figures

Figure 1

39 pages, 14066 KB  
Article
Climatic Adaptability of Transitional Space in Traditional Courtyard Dwellings of Jinhua: A Case Study of the Lu Residence in Dongyang
by Jiaqi Wang, Huijie Liu and Li Bao
Buildings 2025, 15(21), 3999; https://doi.org/10.3390/buildings15213999 - 5 Nov 2025
Cited by 1 | Viewed by 505
Abstract
Amid the combined pressures of global carbon-reduction in architecture and the imperative of cultural heritage conservation, new courtyard-style buildings in hot-summer and cold-winter regions face a dual challenge of reconciling historical morphological constraints with contemporary comfort requirements. At the same time, the prevailing [...] Read more.
Amid the combined pressures of global carbon-reduction in architecture and the imperative of cultural heritage conservation, new courtyard-style buildings in hot-summer and cold-winter regions face a dual challenge of reconciling historical morphological constraints with contemporary comfort requirements. At the same time, the prevailing energy-efficiency codes in these regions, emphasizing high airtightness and strong insulation, have revealed shortcomings such as poor indoor air quality and insufficient summer ventilation. This study takes the Lu Residence in Dongyang, Jinhua, Zhejiang Province, as the primary case. It systematically examines the coupling mechanisms between the geometric configurations of transitional space in traditional courtyard dwellings and their environmental physical parameters using field surveys, multi-parameter environmental monitoring, and computer simulations. The results identify the optimal orientations and geometric parameters that balance summer ventilation with winter thermal buffering in hot-summer and cold-winter regions. The primary conclusions of this research are as follows: (1) The optimal orientation for axial buildings lies between 15° west of south and 15° east of south, as well as 30–60° east or west of south, with an angle of 45–60° in relation to the prevailing annual wind direction for all buildings. (2) The optimal height-to-width ratio of the courtyard is less than 1:2.5, while the range of the length-to-width ratio extends from 1:0.5 to 1:0.7. (3) The optimal eave depth varies from 900 to 1500 mm, effectively balancing winter heat retention and summer shading; however, a depth of 2400 mm is primarily advantageous for shading purposes. Furthermore, these findings are applied to the design of a new guesthouse within the conservation area of the Xu Zhen Er Gong Ancestral Hall in Yongkang, establishing a climate–geometry matching mechanism for transitional spaces. The study demonstrates that transitional space can serve as effective passive regulators, offering a scientific and sustainable pathway for the adaptive continuation of traditional courtyard architecture. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

49 pages, 17465 KB  
Article
Analysis of Thermal Comfort in Single-Story Courtyard Vernacular Dwellings in Rural China: Passive Design Strategies for Adapting to the Climate
by Chen Yang and Alamah Misni
Buildings 2025, 15(21), 3964; https://doi.org/10.3390/buildings15213964 - 3 Nov 2025
Viewed by 1460
Abstract
The building industry plays a significant role in global carbon emissions, contributing nearly half of the world’s greenhouse gas emissions during both construction and operation. Within the framework of the “double-low” strategy, addressing energy conservation, emission reduction, and climate adaptation in buildings has [...] Read more.
The building industry plays a significant role in global carbon emissions, contributing nearly half of the world’s greenhouse gas emissions during both construction and operation. Within the framework of the “double-low” strategy, addressing energy conservation, emission reduction, and climate adaptation in buildings has become a crucial area of research and practice. In northern China, vernacular dwellings have historically developed passive strategies for climate adaptation; however, their quantified thermal performance has not been thoroughly studied. This research focuses on single-story courtyard vernacular dwellings built in the 1990s, which are inspired by historical Siheyuan forms in Shatun Village, located in Handan, Hebei Province. The study specifically examines their thermal performance during the summer and the relationship between this performance and climate design strategies. To understand how building layout, envelopes, materials, and courtyard landscape design influence the microclimate, six measurement points were established within each dwelling to continuously collect environmental data, including air temperature, humidity, and wind speed. The RayMan model was used to calculate the mean radiant temperature (Tmrt) and physiological equivalent temperature (PET), with subsequent statistical analysis conducted using Origin Pro. The results showed that sustainable design strategies—such as high building envelopes, shaded vegetation, and low-albedo materials—contributed to maintaining a stable microclimate, with over 70% of daytime PET values remaining within a comfortable range. Night-time cooling and the increased humidity from courtyard vegetation significantly enhance thermal resilience. It is important to distinguish this from ambient humidity, which can hinder human evaporative cooling and increase heat stress during extreme heat. This research demonstrates that vernacular dwellings can achieve thermal comfort without relying on mechanical cooling systems. These findings provide strong empirical support for incorporating passive, courtyard-based climate strategies in contemporary rural housing worldwide, contributing to low-carbon and climate-resilient development beyond regional contexts. Full article
Show Figures

Figure 1

20 pages, 8803 KB  
Article
The Adaptive Block: Passive Cooling Adaptation Strategies for Urban Resilience
by Lama Natour, Attila Talamon and Rita Pongrácz
Urban Sci. 2025, 9(11), 455; https://doi.org/10.3390/urbansci9110455 - 1 Nov 2025
Viewed by 684
Abstract
Rising urban temperatures driven by the Urban Heat Island (UHI) effect highlight the need for architectural strategies that enhance thermal comfort while promoting environmental sustainability. In Budapest’s District 7, characterized by diverse multi-family historical buildings, existing studies predominantly address energy consumption for heating, [...] Read more.
Rising urban temperatures driven by the Urban Heat Island (UHI) effect highlight the need for architectural strategies that enhance thermal comfort while promoting environmental sustainability. In Budapest’s District 7, characterized by diverse multi-family historical buildings, existing studies predominantly address energy consumption for heating, leaving a gap in passive cooling research. The categorization of typologies derived from the Tabula database, the ZBR strategy, and architectural surveys of the old Jewish quarter is based on heating potential. While historic courtyards offer natural shading and ventilation possibilities, passive cooling strategies remain fragmented. To address this, the paper introduces the “Adaptive Block,” a mid-rise, modular typology integrating courtyard ventilation, dynamic shading, high-albedo surfaces, and low-conductivity insulation. Climate Consultant software is used to analyze passive cooling strategies based on climate data from a local meteorological station, the Budapest Meteorological Center station (WMO ID: 12840), which is an official national station. This serves as a preliminary step to guide future energy simulations by narrowing down the most effective design interventions. The Climate Consultant tool was applied not as a final performance simulation but as a Passive Strategy Pre-Assessment. This pre-assessment bridges regional climate data with building-scale adaptation by identifying which passive cooling options are climatically justified before typology-specific constraints are introduced. By combining the most promising adaptive features from existing typologies, the Adaptive Block presents a scalable framework that supports urban climate resilience while respecting architectural heritage. The findings contribute to adaptive urban design and invite further exploration of its applicability in other existing urban contexts. Full article
Show Figures

Figure 1

31 pages, 4739 KB  
Article
Operational Performance of an MVHR System in a Retrofitted Heritage Dwelling: Indoor Air Quality, Efficiency and Duct Constraints
by Catalina Giraldo-Soto, Zaloa Azkorra-Larrinaga, Amaia Uriarte, Naiara Romero-Antón and Moisés Odriozola-Maritorena
Sustainability 2025, 17(18), 8493; https://doi.org/10.3390/su17188493 - 22 Sep 2025
Cited by 2 | Viewed by 1081
Abstract
The integration of Mechanical Ventilation with Heat Recovery (MVHR) systems into heritage buildings poses a series of challenges, largely attributable to architectural constraints and conservation requirements. The present study offers an operational campaign of an MVHR system installed during the energy retrofit of [...] Read more.
The integration of Mechanical Ventilation with Heat Recovery (MVHR) systems into heritage buildings poses a series of challenges, largely attributable to architectural constraints and conservation requirements. The present study offers an operational campaign of an MVHR system installed during the energy retrofit of a protected residential heritage dwelling in Vitoria-Gasteiz, Spain. Although environmental monitoring was carried out throughout the year, representative spring, autumn and winter days of continuous operation were analysed, as the occupants frequently avoided using the system due to noise perception. This limitation highlights the importance of considering acoustic comfort and user acceptance as critical factors in the long-term viability of MVHR in heritage contexts. The system was assessed under real-life conditions using continuous environmental monitoring, with a focus on indoor air quality (IAQ), thermal efficiency, airflow balance, and pressure losses. Despite the acceptable mean apparent thermal effectiveness (0.74) and total useful efficiency (0.96), the system’s performance was found to be constrained by significant flow imbalance (up to 106%) and elevated pressure drops, which were attributed to the legacy of the duct geometry. The results obtained demonstrate IAQ improved overall, with mean CO2 concentrations below ~650 ppm across the analysed dataset; however, daily means occasionally exceeded 900–1000 ppm during high-occupancy periods and in the absence of spatially distributed demand control. These exceedances are consistent with the measured outdoor baseline (~400–450 ppm) and reflect the need for post-commissioning balancing and room-level sensing to sustain Category II performance in heritage dwellings. This study provides empirical evidence on the limitations and opportunities of MVHR deployment in historic retrofits, thus informing future guidelines for sustainable interventions in heritage contexts. Full article
Show Figures

Figure 1

30 pages, 7291 KB  
Article
Energy Criteria in Adaptive Reuse Decision-Making: A Hybrid DEMATEL-ANP Model for Selecting New Uses of a Historic Building in Poland
by Elżbieta Radziszewska-Zielina, Grzegorz Śladowski, Bartłomiej Szewczyk, Małgorzata Fedorczak-Cisak, Alicja Kowalska-Koczwara, Tadeusz Tatara and Krzysztof Barnaś
Energies 2025, 18(18), 5020; https://doi.org/10.3390/en18185020 - 21 Sep 2025
Viewed by 773
Abstract
Historic buildings make up a significant proportion of the existing building stock. Most are characterised by poor technical condition and high energy demand. In Poland, many historic buildings are still in use today, but it is also common to find these buildings subjected [...] Read more.
Historic buildings make up a significant proportion of the existing building stock. Most are characterised by poor technical condition and high energy demand. In Poland, many historic buildings are still in use today, but it is also common to find these buildings subjected to adaptive reuse. Adaptive reuse, often combined with modernisation, is problematic, especially in terms of finding a use that is optimal in the light of use-specific decision criteria. In previous studies, the authors used and developed the potential for the modelling and structural analysis of decision-making problems for the selection of new uses for historic buildings. In this paper, we present a test of this methodology on a Polish historic building. To further the application of our approach in sustainability-focused contexts, we performed the analysis using criteria focused on environmental and energy performance, in addition to other established criteria. In our study, the highest ranking use was a kindergarten, which scored 18% higher than the second-ranked alternative and over 90% higher than the lowest-ranked alternative. Full article
Show Figures

Figure 1

27 pages, 7352 KB  
Article
Indoor Microclimate Monitoring in Heritage Buildings: The Bologna University Library Case Study
by Andrea Boeri, Kristian Fabbri, Danila Longo and Rossella Roversi
Buildings 2025, 15(17), 3235; https://doi.org/10.3390/buildings15173235 - 8 Sep 2025
Viewed by 1329
Abstract
The indoor microclimate conditions of historical libraries play a pivotal role in ensuring the long-term preservation of their valuable collections, while also influencing the comfort and well-being of staff and visitors. These two objectives may be in contrast, as proved in extensive literature. [...] Read more.
The indoor microclimate conditions of historical libraries play a pivotal role in ensuring the long-term preservation of their valuable collections, while also influencing the comfort and well-being of staff and visitors. These two objectives may be in contrast, as proved in extensive literature. Microclimate monitoring is essential to evaluate which factors could expose the content of the library to a risk of damage and to design prevention measures. This paper presents the monitoring project, the systems and methodology, and the initial results of an experimental study on the indoor microclimate conditions of the University Library of Bologna (BUL), a very relevant cultural heritage building in the historic city center. The overall objective of the monitoring project is to gain knowledge of the specific microclimate conditions and the historical climate of the three main rooms of the BUL to define the right balance between the needs of conservation and the thermal comfort of staff, users, and visitors. The paper focuses on the short-term indoor monitoring assessment, carried out in the initial phase of the monitoring campaign. This phase, rarely addressed in the literature, is crucial because it enables the collection of results that can guide and orient the entire long-term monitoring campaign. The research results produced so far demonstrate the validity of the methodological approach and the monitoring framework, as well as the reliability of the related data. Moreover, they offer insights that can support the forthcoming inclusion of the BUL in a broader museum system. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

32 pages, 8958 KB  
Review
An Overview of Natural Cooling and Ventilation in Vernacular Architectures
by Amineddin Salimi, Ayşegül Yurtyapan, Mahmoud Ouria, Zihni Turkan and Nuran K. Pilehvarian
Wind 2025, 5(3), 21; https://doi.org/10.3390/wind5030021 - 29 Aug 2025
Cited by 2 | Viewed by 5058
Abstract
Natural cooling and ventilation have been fundamental principles in vernacular architecture for millennia, shaping sustainable building practices across diverse climatic regions. This paper examines the historical evolution, technological advancements, environmental benefits, and prospects of passive cooling strategies, with a particular focus on wind [...] Read more.
Natural cooling and ventilation have been fundamental principles in vernacular architecture for millennia, shaping sustainable building practices across diverse climatic regions. This paper examines the historical evolution, technological advancements, environmental benefits, and prospects of passive cooling strategies, with a particular focus on wind catchers. Originating in Mesopotamian, Egyptian, Caucasia, and Iranian architectural traditions, these structures have adapted over centuries to maximize air circulation, thermal regulation, and humidity control, ensuring comfortable indoor environments without reliance on mechanical ventilation. This study analyzes traditional wind catcher designs, highlighting their geometric configurations, airflow optimization, and integration with architectural elements such as courtyards and solar chimneys. Through a comparative assessment, this paper contrasts passive cooling systems with modern HVAC technologies, emphasizing their energy neutrality, low-carbon footprint, and long-term sustainability benefits. A SWOT analysis evaluates their strengths, limitations, opportunities for technological integration, and challenges posed by urbanization and regulatory constraints. This study adopts a comparative analytical method, integrating a literature-based approach with qualitative assessments and a SWOT analysis framework to evaluate passive cooling strategies against modern HVAC systems. Methodologically, the research combines historical review, typological classification, and sustainability-driven performance comparisons to derive actionable insights for climate-responsive design. The research is grounded in a comparative assessment of traditional and modern cooling strategies, supported by typological analysis and evaluative frameworks. Looking toward the future, the research explores hybrid adaptations incorporating solar energy, AI-driven airflow control, and retrofitting strategies for smart cities, reinforcing the enduring relevance of vernacular cooling techniques in contemporary architecture. By bridging historical knowledge with innovative solutions, this paper contributes to ongoing discussions on climate-responsive urban planning and sustainable architectural development. Full article
Show Figures

Figure 1

27 pages, 7951 KB  
Article
The Influence of Traditional Residential Skywell Forms on Building Performance in Hot and Humid Regions of China—Taking Huangshan Area as an Example
by Lingling Wang, Jilong Zhao, Qingtan Deng, Siyu Wang and Ruixia Liu
Sustainability 2025, 17(17), 7792; https://doi.org/10.3390/su17177792 - 29 Aug 2025
Cited by 1 | Viewed by 1074
Abstract
Skywells are crucial for climate regulation in traditional Chinese dwelling architecture, exhibiting significant variations across climatic regions. This study focuses on humid–hot China, using Huangshan, to explore skywell parameters’ impact on thermal comfort and energy efficiency. Field research on 24 buildings in the [...] Read more.
Skywells are crucial for climate regulation in traditional Chinese dwelling architecture, exhibiting significant variations across climatic regions. This study focuses on humid–hot China, using Huangshan, to explore skywell parameters’ impact on thermal comfort and energy efficiency. Field research on 24 buildings in the World Heritage Site Xidi, Hong Villages, and Chinese Historical Pingshan Village, combined with Grasshopper’s Ladybug tool, established a parametric model. Using orthogonal design, performance simulation, and Python-based machine learning, six morphological parameters were analyzed: width-to-length ratio, height-to-width ratio, orientation, hall depth, wing width, and shading width. After NSGA-II multi-objective optimization, the summer Percentage of Time Comfortable (PTC) increased by 5.3%, 38.14 h; the Universal Thermal Climate Index (UTCI) relatively improved by 2%; energy consumption decreased by 8.6%, 0.14 kWh/m2; and the useful daylight illuminance increased by 28%, 128.4 h. This confirms the climate adaptability of courtyard-style buildings in humid–hot China and identifies optimized skywell parameters within the study scope. Full article
(This article belongs to the Collection Sustainable Built Environment)
Show Figures

Figure 1

30 pages, 78202 KB  
Article
Climate-Adaptive Architecture: Analysis of the Wei Family Compound’s Thermal–Ventilation Environment in Ganzhou, China
by Xiaolong Tao, Xin Liang and Wenjia Liu
Buildings 2025, 15(15), 2673; https://doi.org/10.3390/buildings15152673 - 29 Jul 2025
Cited by 2 | Viewed by 1951
Abstract
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature [...] Read more.
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature environment. The Ganzhou Wei family compound from China’s wind–heat environmental regulation systems are examined in this study. We statistically evaluate the synergy between spatial morphology, material qualities, and microclimate using field data with Thsware and Ecotect software in a multiscale simulation framework. The findings indicate that the compound’s special design greatly controls the thermal and wind conditions. Cold alleyways and courtyards work together to maximize thermal environment regulation and encourage natural ventilation. According to quantitative studies, courtyards with particular depths (1–4 m) and height-to-width ratios (e.g., 1:1) reduce wind speed loss. A cool alley (5:1 height–width ratio) creates a dynamic wind–speed–temperature–humidity balance by lowering summer daytime temperatures by 2.5 °C. It also serves as a “cold source area” that moderates temperatures in the surrounding area by up to 2.1 °C. This study suggests a quantitative correlation model based on “spatial morphology–material performance–microclimate response,” which offers a technical route for historic building conservation renovation and green renewal, as well as a scientific foundation for traditional buildings to maintain thermal comfort under low energy consumption. Although based on a specific geographical case, the innovative analytical methods and strategies of this study are of great theoretical and practical significance for promoting the modernization and transformation of traditional architecture, low-carbon city construction, and sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 6649 KB  
Article
Optimizing Kang-to-Room Area Ratios for Thermal Comfort in Traditional Chinese Architecture: An Empirical and Simulation-Based Approach
by Ning Li, Zhihua Zhao, Dongxu Wang, Qian Zhang and Lin Li
Buildings 2025, 15(15), 2593; https://doi.org/10.3390/buildings15152593 - 22 Jul 2025
Viewed by 896
Abstract
Traditional Chinese Kang heating systems have been used for over two millennia in northern China, yet their thermal efficiency and optimal design parameters lack scientific validation. This study aims to establish evidence-based guidelines for Kang-to-room area ratios to enhance thermal comfort and energy [...] Read more.
Traditional Chinese Kang heating systems have been used for over two millennia in northern China, yet their thermal efficiency and optimal design parameters lack scientific validation. This study aims to establish evidence-based guidelines for Kang-to-room area ratios to enhance thermal comfort and energy efficiency in rural architecture. We conducted direct measurements in a controlled experimental house (24 m2) in Huludao City, collecting temperature and humidity data from Kang surfaces and interior spaces over five-day periods. A benchmark curve for heat flux density was developed based on specific fuelwood consumption rates (1 kg/m2). TRNSYS simulations were employed to validate experimental data and analyze thermal performance in the historical Qingning Palace (352 m2) at Shenyang Imperial Palace. The benchmark curve demonstrated high accuracy with a Mean Absolute Error of 0.46 °C and Root Mean Square Error of 0.53 °C when compared to measured temperatures over the 48 h validation period; these values are well within acceptable ranges for calibrated thermal models. Simulations revealed optimal thermal comfort conditions when heat dissipation parameters were scaled appropriately for building size. The optimal Kang-to-room area ratio ranges from 0.28 to 0.69, with the existing Qingning Palace ratio (0.34) falling within this range, validating traditional design wisdom. This research provides a scientific foundation for sustainable architectural practices, bridging traditional knowledge with contemporary thermal engineering principles for both heritage preservation and modern rural construction applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop