Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (165)

Search Parameters:
Keywords = thermal chamber experiment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4738 KiB  
Article
Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles
by Fernando A. Costa Oliveira, Manuel Sardinha, Joaquim M. Justino Netto, Miguel Farinha, Marco Leite, M. Alexandra Barreiros, Stéphane Abanades and Jorge Cruz Fernandes
Crystals 2025, 15(7), 629; https://doi.org/10.3390/cryst15070629 - 8 Jul 2025
Viewed by 359
Abstract
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their [...] Read more.
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their suitability in solar thermochemical cycles for CO2 and H2O splitting. Experiments were conducted using a 1.5 kW solar furnace to supply the high-temperature concentrated heat to a windowed reaction chamber to carry out thermal redox cycling under realistic on-sun conditions. The ceria coating on ceramic structures improved the thermal stability and redox efficiency while minimizing the quantity of the redox material involved. Crushing strength measurements showed that samples not directly exposed to the concentrated solar flux retained their mechanical performance after thermal cycling (~10 MPa), while those near the concentrated solar beam focus exhibited significant degradation due to thermal stresses and the formation of CexZr1−xO2 solid solutions (~1.5 MPa). A Weibull modulus of 8.5 was estimated, marking the first report of such a parameter for fused filament fabrication (FFF)-manufactured black zirconia with gyroid architecture. Failure occurred via a damage accumulation mechanism at both micro- and macro-scales. These findings support the viability of ceria-coated cellular ceramics for scalable solar fuel production and highlight the need for optimized reactor designs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

20 pages, 2636 KiB  
Article
Effect of Potassium–Magnesium Sulfate on Intestinal Dissociation and Absorption Rate, Immune Function, and Expression of NLRP3 Inflammasome, Aquaporins and Ion Channels in Weaned Piglets
by Cui Zhu, Kaiyong Huang, Xiaolu Wen, Kaiguo Gao, Xuefen Yang, Zongyong Jiang, Shuting Cao and Li Wang
Animals 2025, 15(12), 1751; https://doi.org/10.3390/ani15121751 - 13 Jun 2025
Viewed by 459
Abstract
This study investigated the effects of potassium magnesium sulfate (PMS) on intestinal dissociation and absorption rate, immune function, and expression of the NOD-like receptor thermal domain-associated protein 3 (NLRP3) inflammasome, aquaporins (AQPs), and potassium and magnesium ion channels in weaned piglets. Experiment 1 [...] Read more.
This study investigated the effects of potassium magnesium sulfate (PMS) on intestinal dissociation and absorption rate, immune function, and expression of the NOD-like receptor thermal domain-associated protein 3 (NLRP3) inflammasome, aquaporins (AQPs), and potassium and magnesium ion channels in weaned piglets. Experiment 1 involved the assessment of the dissociation rate of PMS in pig digestive fluid and the absorption rate of PMS in the small intestine using an Ussing chamber in vitro. In Experiment 2, 216 healthy 21-day-old weaned piglets were selected and randomly assigned to six groups (0%, 0.15%, 0.30%, 0.45%, 0.60%, and 0.75% PMS), with each group 6 replicates of six piglets per replicate. The in vitro Ussing chamber results indicated that the absorption of K+ and Mg2+ in the jejunum and ileum was significantly higher than that in the duodenum (p < 0.05). The in vivo study demonstrated that the addition of PMS resulted in a linear increase in serum K+, IgG, and interleukin (IL)-2 levels while simultaneously reducing serum IL-1β levels (p < 0.05). Dietary PMS significantly elevated serum IL-10 and Mg2+ levels in feces (p < 0.05). Furthermore, supplementation with 0.60% or 0.75% PMS significantly downregulated the mRNA expression of NLRP3 in the jejunum (p < 0.05). Dietary PMS supplementation linearly reduced the mRNA expression levels of cysteine protease 1 (Caspase-1) and IL-1β in both the jejunum and colon as well as the mRNA expression levels of two-pore domain channel subfamily K member 5 (KCNK5) in these regions (p < 0.05). Notably, supplementation with 0.15% PMS significantly decreased the mRNA expression of transient receptor potential channel 6 (TRPM6) in the jejunum and significantly increased the expression of TRPM6 in the colon (p < 0.05). Dietary addition of 0.45% and 0.60% PMS significantly increased the mRNA expression of aquaporin 3 (AQP3) in the colon (p < 0.05), whereas 0.75% PMS significantly increased the mRNA expression of aquaporin 8 (AQP8) in both the jejunum and colon. Moreover, the expression levels of AQP3 and AQP8 were significantly negatively correlated with the diarrhea rate observed between days 29 and 42. In conclusion, dietary PMS supplementation improved immune function, inhibited the activation of intestinal NLRP3, and modulated the expression of water and ion channels in weaned piglets, thereby contributing to the maintenance of intestinal water and ion homeostasis, which could potentially alleviate post-weaning diarrhea in piglets. The recommended supplemental level of PMS in the corn-soybean basal diet for weaned piglets is 0.30%. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

11 pages, 3622 KiB  
Article
Impact of Wood on Perception of Transient and Steady-State Indoor Thermal Environments
by Denise (Blankenberger) Gravelle, Jason Stenson, Mark Fretz and Kevin Van Den Wymelenberg
Buildings 2025, 15(10), 1698; https://doi.org/10.3390/buildings15101698 - 17 May 2025
Viewed by 454
Abstract
Wood is often used as an interior surface finish in buildings, including exposed cross-laminated timber panels and other structural mass timber members. Building occupants generally have a positive reaction to visible wood elements used in building interiors due to the visual qualities associated [...] Read more.
Wood is often used as an interior surface finish in buildings, including exposed cross-laminated timber panels and other structural mass timber members. Building occupants generally have a positive reaction to visible wood elements used in building interiors due to the visual qualities associated with wood being a natural material. This study aims to identify any thermal comfort impacts of wood interior environments using subjective occupant-reported perceived thermal sensation during two experiments conducted in a climate chamber fitted with either white-painted gypsum wallboard or unfinished laminated Douglas Fir wall panels. In the first experiment, the thermal environment was continually varied while the visual stimulus of the wall type remained constant. Irrespective of wood or white wall treatment type, thermal history played a significant role in the perceived thermal comfort of participants under continually modulating temperatures. In the second experiment, a slightly warm steady-state thermal environment was maintained while one of the two wall treatments was revealed from behind a black curtain. While the shift in thermal sensation toward neutral was greater with wood walls than with white walls, the difference was not found to be statistically significant and appears to diminish after 15 min of exposure to the new visual surroundings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 24171 KiB  
Article
Thermophysiology and Cognitive Performance of Live-Line Workers in High-Temperature and High-Humidity Environments
by Shengwei Wang, Xiaohong Gui and Li Ding
Int. J. Environ. Res. Public Health 2025, 22(3), 387; https://doi.org/10.3390/ijerph22030387 - 7 Mar 2025
Cited by 1 | Viewed by 877
Abstract
Live-line workers’ physiological and psychological conditions are significantly affected when operating in high-temperature and high-humidity environments, influencing both work efficiency and safety. Fifteen participants, wearing high-voltage-shielding clothing, were tested in a simulated environmental chamber at temperatures of 23 °C, 32 °C, and 38 [...] Read more.
Live-line workers’ physiological and psychological conditions are significantly affected when operating in high-temperature and high-humidity environments, influencing both work efficiency and safety. Fifteen participants, wearing high-voltage-shielding clothing, were tested in a simulated environmental chamber at temperatures of 23 °C, 32 °C, and 38 °C, and relative humidities of RH 30%, RH 50%, and RH 75%. The experiment involved walking at a speed of 5 km/h for 75 min., during which the participants’ skin temperature, core temperature, thermal sensation, heart rate, blood oxygen level, sweat rate, and cognitive performance were measured. The results indicated a marked increase in both core and skin temperatures with rising temperature and humidity levels. At 38 °C/RH 75%, the core temperature reached 38.39 °C, and the average skin temperature was 36.8 °C. Significant differences in skin temperature were observed across different body regions (p < 0.05), with this disparity decreasing as the temperature increased. Heart rate, blood oxygen level, and sweat rate also exhibited significant differences across varying conditions (p < 0.05). Specifically, heart rate and blood oxygen level increased with higher temperature and humidity, while blood oxygen levels decreased as the environmental temperature and humidity increased. In addition, as temperature and humidity levels rose, the participants’ error rate and average response time in cognitive tasks increased. The negative impact of temperature and humidity on performance efficiency and accuracy was more pronounced in complex cognitive tasks. The study further found that thermal sensation voting (TSV) remained within the range of −0.5 to +0.5, with the average skin temperature in the thermal comfort zone ranging between 33.4 °C and 34.1 °C. It is recommended that the environmental temperature in high-humidity conditions be maintained between 20.8 °C and 25.8 °C. Our findings provide a theoretical foundation for the development of personal protective equipment for live-line workers. Full article
Show Figures

Figure 1

22 pages, 5481 KiB  
Article
Biomimetic Design for Enhanced Thermal Performance of Vapor Chambers
by Jingyu Shen and Ce Guo
Energies 2025, 18(5), 1250; https://doi.org/10.3390/en18051250 - 4 Mar 2025
Viewed by 1076
Abstract
Vapor chambers (VCs) are efficient heat spreaders that rely on wicks to realize the circulation of a phase-changing working liquid and can be used to address heat dissipation problems in electronic devices, aerospace, and satellite equipment. In this study, we propose a novel [...] Read more.
Vapor chambers (VCs) are efficient heat spreaders that rely on wicks to realize the circulation of a phase-changing working liquid and can be used to address heat dissipation problems in electronic devices, aerospace, and satellite equipment. In this study, we propose a novel vapor chamber with biomimetic wick structures and composite lattice supports to enhance the thermal management and load-bearing performance of vapor chambers. The experiments and COMSOL multiphysics 6.1 simulation results indicate that the biomimetic design can improve the startup performance, thermal management, and load-bearing performance of the VC. Compared to conventional VCs, at a filling ratio of 20% the biomimetic VC reduces the time to reach a steady state by 11.7% and improves the uniformity of temperature by 7.74%. This study provides a novel design concept for VCs and verifies the operating performance of vapor in high heat flux density cases, providing a reference for the innovative design and enhanced heat transfer of phase change-based thermal management equipment. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

33 pages, 5254 KiB  
Article
Effective Thermal Diffusivity Measurement Using Through-Transmission Pulsed Thermography: Extending the Current Practice by Incorporating Multi-Parameter Optimisation
by Zain Ali, Sri Addepalli and Yifan Zhao
Sensors 2025, 25(4), 1139; https://doi.org/10.3390/s25041139 - 13 Feb 2025
Viewed by 990
Abstract
Through-transmission pulsed thermography (PT) is an effective non-destructive testing (NDT) technique for assessing material thermal diffusivity. However, the current literature indicates that the technique has lagged behind the reflection mode in terms of technique development despite it offering better defect resolution and the [...] Read more.
Through-transmission pulsed thermography (PT) is an effective non-destructive testing (NDT) technique for assessing material thermal diffusivity. However, the current literature indicates that the technique has lagged behind the reflection mode in terms of technique development despite it offering better defect resolution and the detection of deeper subsurface defects. Existing thermal diffusivity measurement systems require costly setups, including temperature-controlled chambers, multiple calibrations, and strict sample size requirements. This study presents a simple and repeatable methodology for determining thermal diffusivity in a laboratory setting using the through-transmission approach by incorporating both finite element analysis (FEA) and laboratory experiments. A full-factorial design of experiments (DOE) was implemented to determine the optimum flash energy and sample thickness for a reliable estimation of thermal diffusivity. The thermal diffusivity is estimated using the already established Parker’s half-rise equation and the recently developed new least squares fitting (NLSF) algorithm. The latter not only estimates thermal diffusivity but also provides estimates for the input flash energy, reflection coefficient, and the time delay in data capture following the flash event. The results show that the NLSF is less susceptible to noise and offers more repeatable values for thermal diffusivity measurements compared to Parker, thereby establishing it as a more efficient and reliable technique. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 4464 KiB  
Article
Research on Composite Liquid Cooling Technology for the Thermal Management System of Power Batteries
by Lin Zhu, Dianqi Li and Ziyao Wu
World Electr. Veh. J. 2025, 16(2), 74; https://doi.org/10.3390/wevj16020074 - 2 Feb 2025
Viewed by 1349
Abstract
A battery thermal management system is crucial for maintaining battery temperatures within an acceptable range with high uniformity. A new BTMS combining a liquid cooling plate and vapor chamber is proposed and experimentally validated for ternary lithium soft pack batteries. An orthogonal test [...] Read more.
A battery thermal management system is crucial for maintaining battery temperatures within an acceptable range with high uniformity. A new BTMS combining a liquid cooling plate and vapor chamber is proposed and experimentally validated for ternary lithium soft pack batteries. An orthogonal test optimizes the liquid-cooling plate’s structure at a 2C discharge rate. With a vapor chamber, the battery’s temperature consistency improves. Experiments show that, at a 2C discharge rate, with coolant and ambient temperatures at 25 °C, the battery’s maximum temperature is 35.191 °C, and the temperature difference is 3.77 °C. This represents a 2.1% increase in average temperature, and a 4.9% decrease in temperature difference compared to a liquid-cooling plate alone. The results indicate that the combined liquid-cooling and vapor chamber enhance temperature consistency. Full article
Show Figures

Figure 1

23 pages, 10391 KiB  
Article
Research on the Thermal Runaway Behavior and Flammability Limits of Sodium-Ion and Lithium-Ion Batteries
by Changbao Qi, Hewu Wang, Minghai Li, Cheng Li, Yalun Li, Chao Shi, Ningning Wei, Yan Wang and Huipeng Zhang
Batteries 2025, 11(1), 24; https://doi.org/10.3390/batteries11010024 - 12 Jan 2025
Cited by 5 | Viewed by 4173
Abstract
Batteries are widely used in energy storage systems (ESS), and thermal runaway in different types of batteries presents varying safety risks. Therefore, comparative research on the thermal runaway behaviors of various batteries is essential. This study investigates the thermal runaway characteristics of sodium-ion [...] Read more.
Batteries are widely used in energy storage systems (ESS), and thermal runaway in different types of batteries presents varying safety risks. Therefore, comparative research on the thermal runaway behaviors of various batteries is essential. This study investigates the thermal runaway characteristics of sodium-ion batteries (NIBs), lithium iron phosphate batteries (LFP), and lithium-ion batteries with NCM523 and NCM622 cathodes. The experiments were conducted in a nitrogen-filled constant-volume sealed chamber. The results show that the critical surface temperatures at the time of thermal runaway are as follows: LFP (346 °C) > NIBs (292 °C) > NCM523 (290 °C) > NCM622 (281 °C), with LFP batteries exhibiting the highest thermal runaway critical temperature. NIBs have the lowest thermal runaway triggering energy (158 kJ), while LFP has the highest (592.8 kJ). During the thermal runaway of all four battery types, the primary gases produced include carbon dioxide, hydrogen, carbon monoxide, methane, ethylene, propylene, and ethane. For NCM622 and NCM523, carbon monoxide is the dominant combustible gas, with volume fractions of 35% and 29%, respectively. In contrast, hydrogen is the main flammable gas for LFP and NIBs, with volume fractions of 44% and 30%, respectively. Among these, NIBs have the lowest lower flammability limit (LFL), indicating the highest explosion risk. The thermal runaway characteristics of 50 Ah batteries provide valuable insights for battery selection and design in energy storage applications. Full article
(This article belongs to the Special Issue Thermal Safety of Lithium Ion Batteries—2nd Edition)
Show Figures

Figure 1

18 pages, 3164 KiB  
Article
Temperature Sensitivity Response of Soil Enzyme Activity to Simulated Climate Change at Growth Stages of Winter Wheat
by Yaokun Jiang, Bingbing Lu, Meng Liang, Yang Wu, Yuanze Li, Ziwen Zhao, Guobin Liu and Sha Xue
Agronomy 2025, 15(1), 106; https://doi.org/10.3390/agronomy15010106 - 3 Jan 2025
Cited by 1 | Viewed by 1682
Abstract
In recent years, research on farmland soil stability has gained attention due to climate change. Studying the thermal stability of soil enzymes at key crop growth stages in response to increased CO2, drought, and warming is critical for evaluating climate change [...] Read more.
In recent years, research on farmland soil stability has gained attention due to climate change. Studying the thermal stability of soil enzymes at key crop growth stages in response to increased CO2, drought, and warming is critical for evaluating climate change impacts on crop production and soil ecosystem stability. Despite its importance, research on the thermal stability of soil nutrient cycling enzymes remains limited. A pot experiment was conducted using the soil of winter wheat (Triticum aestivum L.), one of China’s main grain crops, as the research object. An artificial climate chamber was used to simulate four growth stages of winter wheat (jointing stage, flowering stage, grain filling stage, and maturity stage). Different levels of CO2 concentration (400 and 800 μmol mol−1), temperature conditions (current temperature and 4 °C higher), and water conditions (80% and 60% of field water capacity) were set, and their interactions were examined. By analyzing the temperature sensitivity (Q10) of soil enzyme activities related to soil carbon (C), nitrogen (N), and phosphorous (P) cycles in response to different treatments, the results showed that doubling CO2 concentration decreased soil C cycle enzyme Q10 and increased soil N and P cycle enzyme Q10 significantly. Additionally, soil C cycle enzyme Q10 decreased with increasing temperature, while other enzymes showed inconsistent responses. Mild drought significantly decreased the soil N-cycling enzyme Q10 in the early growth stage of winter wheat and the soil P-cycling enzyme Q10 in each growth stage, but significantly increased the soil N-cycling enzyme Q10 in the mature stage. The interaction between CO2 concentration doubling and warming exhibited a single-factor superimposed effect in reducing soil C cycle enzyme Q10. Moreover, doubling CO2 concentration offset the effect of mild drought stress on soil P cycle enzyme Q10. Above-ground biomass, soil total dissolved nitrogen, and nitrate nitrogen were identified as the primary factors influencing soil C, N, and P cycling enzyme Q10. This study is of great significance in exploring the effects of global warming on food production and the mechanism of soil ecosystem functional stability under future climate change. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 5610 KiB  
Article
Numerical Simulations of Thermodynamic Processes in the Chamber of a Liquid Piston Compressor for Hydrogen Applications
by Valerijs Bezrukovs, Vladislavs Bezrukovs, Marina Konuhova, Deniss Bezrukovs, Imants Kaldre and Anatoli I. Popov
Technologies 2024, 12(12), 266; https://doi.org/10.3390/technologies12120266 - 18 Dec 2024
Cited by 4 | Viewed by 2192
Abstract
This paper presents the results of numerical simulations examining the thermodynamic processes during hydraulic hydrogen compression, using COMSOL Multiphysics® 6.0. These simulations focus on the application of hydrogen compression systems, particularly in hydrogen refueling stations. The computational models employ the CFD and [...] Read more.
This paper presents the results of numerical simulations examining the thermodynamic processes during hydraulic hydrogen compression, using COMSOL Multiphysics® 6.0. These simulations focus on the application of hydrogen compression systems, particularly in hydrogen refueling stations. The computational models employ the CFD and heat transfer modules, along with deforming mesh technology, to simulate gas compression and heat transfer dynamics. The superposition method was applied to simplify the analysis of hydrogen and liquid piston interactions within a stainless-steel chamber, accounting for heat exchange between the hydrogen, the oil (working fluid), and the cylinder walls. The study investigates the effects of varying compression stroke durations and initial hydrogen pressures, providing detailed insights into temperature distributions and energy consumption under different conditions. The results reveal that the upper region of the chamber experiences significant heating, highlighting the need for efficient cooling systems. Additionally, the simulations show that longer compression strokes reduce the power requirement for the liquid pump, offering potential for optimizing system design and reducing equipment costs. This study offers crucial data for enhancing the efficiency of hydraulic hydrogen compression systems, paving the way for improved energy consumption and thermal management in high-pressure applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

19 pages, 10067 KiB  
Article
Research on Composite 3D Well Pattern for Blocky Heavy Oil in Offshore Areas: Transition from Huff-and-Puff to Displacement-Drainage
by Zhigang Geng, Gongchang Wang, Wenqian Zheng, Chunxiao Du, Taotao Ge, Cong Tian and Dawei Wang
Processes 2024, 12(12), 2884; https://doi.org/10.3390/pr12122884 - 17 Dec 2024
Viewed by 880
Abstract
In view of the deep burial depth, high formation pressure, and presence of top and bottom water in offshore extra-heavy-oil reservoirs, this paper conducts a study on the production performance and flow field variation law of steam huff-and-puff to steam flooding conversion in [...] Read more.
In view of the deep burial depth, high formation pressure, and presence of top and bottom water in offshore extra-heavy-oil reservoirs, this paper conducts a study on the production performance and flow field variation law of steam huff-and-puff to steam flooding conversion in thick heavy-oil reservoirs based on physical simulation, and analyzes the development effect of the conversion from steam huff-and-puff to steam flooding. On this basis, by comprehensively considering the advantages of gravity-assisted steam flooding and a three-dimensional HHSD well pattern obtained from physical simulation experiments, this paper proposes a well pattern development mode of steam huff-and-puff to composite displacement and drainage, and analyzes the development effect of this well pattern mode using the reservoir numerical simulation method. The research results show that, compared with the planar well pattern of steam huff-and-puff to steam flooding conversion, the adoption of the three-dimensional well pattern can significantly improve the degree of reservoir production and the expansion dynamics of the steam chamber, and mitigate adverse effects such as the increase in water cut caused by top and bottom water on thermal recovery. The composite development of steam huff-and-puff to composite displacement and drainage can be divided into three stages: thermal communication, gravity drainage-assisted steam flooding, and thermal breakthrough erosion and oil washing. The steam chamber presents a development mode of “single-point development–rapid longitudinal expansion–rapid transverse expansion upon reaching the top–polymerization into a sheet”, and simultaneously possesses the oil displacement mechanisms of both steam displacement and gravity drainage. The proposed composite mode of steam huff-and-puff to composite displacement and drainage has guided the implementation of adjustment wells in the Bohai L Oilfield, and the recovery factor has been increased by about 20% compared with the steam huff-and-puff development of the basic well pattern. This study has reference and guiding significance for the efficient thermal recovery development of this oilfield. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

20 pages, 5980 KiB  
Article
Comprehensive Investigation of Partitioned Thermal Barrier Coating: Impact on Thermal and Mechanical Stresses, and Performance Enhancement in Diesel Engines
by Hüsna Topkaya, M. Quinn Brewster and Hüseyin Aydın
Appl. Sci. 2024, 14(24), 11506; https://doi.org/10.3390/app142411506 - 10 Dec 2024
Cited by 1 | Viewed by 1399
Abstract
The thermal barrier coating method is applied using materials with low thermal conductivity to increase the efficiency and improve the emissions of internal combustion engines. However, coated surfaces may be damaged due to the high thermal and pressure stresses encountered by the piston [...] Read more.
The thermal barrier coating method is applied using materials with low thermal conductivity to increase the efficiency and improve the emissions of internal combustion engines. However, coated surfaces may be damaged due to the high thermal and pressure stresses encountered by the piston surface in the combustion chamber during engine operation. In this study, experiments and analysis were carried out for four piston models to analyze the coating layer and increase its strength: two partially coated piston surface models, a fully coated model, and an uncoated piston model. The results of the transient thermal analysis revealed that the fully coated piston model exhibited the highest surface temperature. Additionally, heat losses were observed to be lower in the fully coated model compared to the other piston models. Partially coated piston models exhibited lower heat flux on the coated surface but higher heat flux on the uncoated combustion chamber surfaces. Combustion analysis indicated that the fully coated piston model exhibited the highest in-cylinder temperature and pressure values, while the uncoated model had the lowest values. When comparing heat transfer rates on the walls, the uncoated piston model exhibited the highest transfer, whereas the fully coated piston model exhibited the lowest. Finally, the fully coated piston demonstrated the highest combustion efficiency. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 21116 KiB  
Article
Implementation of an Improved 100 CMM Regenerative Thermal Oxidizer to Reduce VOCs Gas
by Hoon-Min Park, Hyun-Min Jung, Dae-Hee Lee, Hei-Na Park, Tae-Young Lim, Jong-Hwa Yoon and Dal-Hwan Yoon
Processes 2024, 12(12), 2814; https://doi.org/10.3390/pr12122814 - 9 Dec 2024
Cited by 1 | Viewed by 1301
Abstract
In this paper, an improved 100 CMM regenerative thermal oxidizer (RTO) is implemented for low-emission combustion. The existing RTO system is a cylindrical drum structure that cyclically introduces and discharges VOC gas into and from the rotating disk, and which achieves excellent energy [...] Read more.
In this paper, an improved 100 CMM regenerative thermal oxidizer (RTO) is implemented for low-emission combustion. The existing RTO system is a cylindrical drum structure that cyclically introduces and discharges VOC gas into and from the rotating disk, and which achieves excellent energy efficiency with a heat recovery rate of more than 95%. However, the drive shaft designed under the RTO combustion chamber increases wear around the rotating shaft due to the load of the combustion chamber and there is a problem that the untreated gas is simultaneously released through the outlet due to the channeling phenomenon of the combustion chamber and the drive shaft. In addition, the combustion chamber, used at a high temperature of 800 °C, may cause serious problems such as rotation stop or explosion due to pollutants, dust accumulation, and thermal expansion in the chamber. Particularly when treating VOCs harmful gasses, RTO performance may be degraded due to the burner’s non-uniform temperature control and unstable combustion function. To solve this problem, first, the design of the combustion chamber rotating plate driving device is improved. Second, when treating high concentration VOC gas, the design of combustion chamber considers a temperature increase of up to 920 °C or more. For this, the diameter of the gas burner is 125 mm and the outlet dimension is set to 650 mm × 650 mm to effectively discharge high-temperature waste heat. Third, the heat storage material in the combustion chamber is composed of a ceramic block with a thickness of 250 mm, and the outer diameter and height of the combustion chamber are set to, 2530 mm and 1875 mm, respectively, to optimize gas residence time and heat insulation thickness. Fourth, we supplement safe operation by applying the trip control algorithm of the programmable logic controller (PLC) panel for failure prediction of RTO and the Edge-IoT-based intelligent algorithm for this. Finally, we evaluate the economic performance of 100 CMM RTO by conducting empirical experiments to analyze changes in VOCs removal efficiency, nitrogen oxide emission concentration, and total hydrocarbon (THC) concentration through 10 CMM design and implementation. Full article
Show Figures

Figure 1

14 pages, 4290 KiB  
Article
A Thermal Cycler Based on Magnetic Induction Heating and Anti-Freezing Water Cooling for Rapid PCR
by Yaping Xie, Qin Jiang, Chang Chang, Xin Zhao, Haochen Yong, Xingxing Ke and Zhigang Wu
Micromachines 2024, 15(12), 1462; https://doi.org/10.3390/mi15121462 - 30 Nov 2024
Cited by 2 | Viewed by 1803
Abstract
Distinguished by its exceptional sensitivity and specificity, Polymerase Chain Reaction (PCR) is a pivotal technology for pathogen detection. However, traditional PCR instruments that employ thermoelectric cooling (TEC) are often constrained by cost, efficiency, and performance variability resulting from the fluctuations in ambient temperature. [...] Read more.
Distinguished by its exceptional sensitivity and specificity, Polymerase Chain Reaction (PCR) is a pivotal technology for pathogen detection. However, traditional PCR instruments that employ thermoelectric cooling (TEC) are often constrained by cost, efficiency, and performance variability resulting from the fluctuations in ambient temperature. Here, we present a thermal cycler that utilizes electromagnetic induction heating at 50 kHz and anti-freezing water cooling with a velocity of 0.06 m/s to facilitate rapid heating and cooling of the PCR reaction chamber, significantly enhancing heat transfer efficiency. A multi-physics theoretical heat transfer model, developed using the digital twin approach, enables precise temperature control through advanced algorithms. Experimental results reveal average heating and cooling rates of 14.92 °C/s and 13.39 °C/s, respectively, significantly exceeding those of conventional methods. Compared to commercial PCR instruments, the proposed system further optimizes cost, efficiency, and practicality. Finally, PCR experiments were successfully performed using cDNA (Hepatitis B virus) at various concentrations. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Biology and Biomedicine 2024)
Show Figures

Figure 1

17 pages, 20945 KiB  
Article
Responses of Soil Respiration and Ecological Environmental Factors to Warming and Thermokarst in River Source Wetlands of the Qinghai Lake Basin
by Yanli Yang, Ni Zhang, Zhiyun Zhou, Lin Li, Kelong Chen, Wei Ji and Xia Zhao
Biology 2024, 13(11), 863; https://doi.org/10.3390/biology13110863 - 24 Oct 2024
Viewed by 11043
Abstract
Global climate warming has led to the deepening of the active layer of permafrost on the Tibetan Plateau, further triggering thermal subsidence phenomena, which have profound effects on the carbon cycle of regional ecosystems. This study conducted warming (W) and thermal subsidence (RR) [...] Read more.
Global climate warming has led to the deepening of the active layer of permafrost on the Tibetan Plateau, further triggering thermal subsidence phenomena, which have profound effects on the carbon cycle of regional ecosystems. This study conducted warming (W) and thermal subsidence (RR) control experiments using an Open-Top Chamber (OTC) device in the river source wetlands of the Qinghai Lake basin. The aim was to assess the impacts of warming and thermal subsidence on soil temperature, volumetric water content, biomass, microbial diversity, and soil respiration (both autotrophic and heterotrophic respiration). The results indicate that warming significantly increased soil temperature, especially during the colder seasons, and thermal subsidence treatment further exacerbated this effect. Soil volumetric water content significantly decreased under thermal subsidence, with the RRW treatment having the most pronounced impact on moisture. Additionally, a microbial diversity analysis revealed that warming promoted bacterial richness in the surface soil, while thermal subsidence suppressed fungal community diversity. Soil respiration rates exhibited a unimodal curve during the growing season. Warming treatment significantly reduced autotrophic respiration rates, while thermal subsidence inhibited heterotrophic respiration. Further analysis indicated that under thermal subsidence treatment, soil respiration was most sensitive to temperature changes, with a Q10 value reaching 7.39, reflecting a strong response to climate warming. In summary, this study provides new scientific evidence for understanding the response mechanisms of soil carbon cycling in Tibetan Plateau wetlands to climate warming. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

Back to TopTop