Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = thermal–hydraulic characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2350 KiB  
Article
Temporal Deformation Characteristics of Hydraulic Asphalt Concrete Slope Flow Under Different Test Temperatures
by Xuexu An, Jingjing Li and Zhiyuan Ning
Materials 2025, 18(15), 3625; https://doi.org/10.3390/ma18153625 - 1 Aug 2025
Viewed by 170
Abstract
To investigate temporal deformation mechanisms of hydraulic asphalt concrete slope flow under evolving temperatures, this study developed a novel temperature-controlled slope flow intelligent test apparatus. Using this apparatus, slope flow tests were conducted at four temperature levels: 20 °C, 35 °C, 50 °C, [...] Read more.
To investigate temporal deformation mechanisms of hydraulic asphalt concrete slope flow under evolving temperatures, this study developed a novel temperature-controlled slope flow intelligent test apparatus. Using this apparatus, slope flow tests were conducted at four temperature levels: 20 °C, 35 °C, 50 °C, and 70 °C. By applying nonlinear dynamics theory, the temporal evolution of slope flow deformation and its nonlinear mechanical characteristics under varying temperatures were thoroughly analyzed. Results indicate that the thermal stability of hydraulic asphalt concrete is synergistically governed by the phase-transition behavior between asphalt binder and aggregates. Temporal evolution of slope flow exhibits a distinct three-stage pattern as follows: rapid growth (0~12 h), where sharp temperature rise disrupts the primary skeleton of coarse aggregates; decelerated growth (12~24 h), where an embryonic secondary skeleton forms and progressively resists deformation; stabilization (>24 h), where reorganization of coarse aggregates is completed, establishing structural equilibrium. The thermal stability temperature influence factor (δ) shows a nonlinear concave growth trend with increasing test temperature. Dynamically, this process transitions sequentially through critical stability, nonlinear stability, period-doubling oscillatory stability, and unsteady states. Full article
(This article belongs to the Special Issue Advances in Material Characterization and Pavement Modeling)
Show Figures

Figure 1

25 pages, 9967 KiB  
Article
Study on the Influence and Mechanism of Mineral Admixtures and Fibers on Frost Resistance of Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Huawei Shi, Kunpeng Li, Jialing Li, Enhui Jiang, Chengfang Yuan and Chen Chen
Nanomaterials 2025, 15(13), 1051; https://doi.org/10.3390/nano15131051 - 6 Jul 2025
Viewed by 285
Abstract
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica [...] Read more.
To address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica fume and metakaolin) and fibers (steel fiber and PVA fiber). Through 400 freeze-thaw cycles combined with microscopic characterization techniques such as SEM, XRD, and MIP, the results indicate that the group with 20% silica fume content (SF20) exhibited optimal frost resistance, showing a 19.9% increase in compressive strength after 400 freeze-thaw cycles. The high pozzolanic reactivity of SiO2 in SF20 promoted continuous secondary gel formation, producing low C/S ratio C-(A)-S-H gels and increasing the gel pore content from 24% to 27%, thereby refining the pore structure. Due to their high elastic deformation capacity (6.5% elongation rate), PVA fibers effectively mitigate frost heave stress. At the same dosage, the compressive strength loss rate (6.18%) and splitting tensile strength loss rate (21.79%) of the PVA fiber-reinforced group were significantly lower than those of the steel fiber-reinforced group (9.03% and 27.81%, respectively). During the freeze-thaw process, the matrix pore structure exhibited a typical two-stage evolution characteristic of “refinement followed by coarsening”: In the initial stage (0–100 cycles), secondary hydration products from mineral admixtures filled pores, reducing the proportion of macropores by 5–7% and enhancing matrix densification; In the later stage (100–400 cycles), due to frost heave pressure and differences in thermal expansion coefficients between matrix phases (e.g., C-(A)-S-H gel and fibers), interfacial microcracks propagated, causing the proportion of macropores to increase back to 35–37%. This study reveals the synergistic interaction between mineral admixtures and fibers in enhancing freeze–thaw performance. It provides theoretical support for the high-value application of Yellow River sediment in F400-grade geopolymer composites. The findings have significant implications for infrastructure in cold regions, including subgrade materials, hydraulic structures, and related engineering applications. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Hydraulic Performance and Flow Characteristics of a High-Speed Centrifugal Pump Based on Multi-Objective Optimization
by Yifu Hou and Rong Xue
Fluids 2025, 10(7), 174; https://doi.org/10.3390/fluids10070174 - 2 Jul 2025
Viewed by 285
Abstract
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller [...] Read more.
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller size while maintaining hydraulic performance, thereby significantly decreasing the overall volume and mass. However, high-speed operation introduces considerable internal flow losses, placing stricter demands on the geometric design and flow-field compatibility of the impeller. In this study, a miniature high-speed centrifugal pump (MHCP) was investigated, and a multi-objective optimization of the impeller was carried out using response surface methodology (RSM) to improve internal flow characteristics and overall hydraulic performance. Numerical simulations demonstrated strong predictive capability, and experimental results validated the model’s accuracy. At the design condition (10,000 rpm, 4.8 m3/h), the pump achieved a head of 46.1 m and an efficiency of 49.7%, corresponding to its best efficiency point (BEP). Sensitivity analysis revealed that impeller outlet diameter and blade outlet angle were the most influential parameters affecting pump performance. Following the optimization, the pump head increased by 3.7 m, and the hydraulic efficiency improved by 4.8%. In addition, the pressure distribution and streamlines within the impeller exhibited better uniformity, while the turbulent kinetic energy near the blade suction surface and at the impeller outlet was markedly decreased. This work provides theoretical support and design guidance for the efficient application of MHCPs in UAV thermal management systems. Full article
Show Figures

Figure 1

15 pages, 2699 KiB  
Article
Sunflower Shells Biomass Fly Ash as Alternative Alkali Activator for One-Part Cement Based on Ladle Slag
by Aleksandar Nikolov, Vladislav Kostov, Nadia Petrova, Liliya Tsvetanova, Stanislav V. Vassilev and Rositsa Titorenkova
Ceramics 2025, 8(3), 79; https://doi.org/10.3390/ceramics8030079 - 20 Jun 2025
Viewed by 527
Abstract
This study explores the synergistic potential of ladle slag (LS) and sunflower shell fly ash (SSFA) in alkali-activated binder systems, focusing on their chemical and mineralogical characteristics and the influence of SSFA addition on the mechanical performance of LS-based pastes. X-ray fluorescence and [...] Read more.
This study explores the synergistic potential of ladle slag (LS) and sunflower shell fly ash (SSFA) in alkali-activated binder systems, focusing on their chemical and mineralogical characteristics and the influence of SSFA addition on the mechanical performance of LS-based pastes. X-ray fluorescence and XRD analysis revealed that LS is rich in CaO and latent hydraulic phases such as γ-belite and mayenite, while SSFA is dominated by K2O, SO3, and KCl/K2SO4 phases, reflecting its biomass origin. Infrared spectroscopy and thermal analysis confirmed the presence of carbonate, hydroxide, and hydrate phases, with SSFA exhibiting more complex thermal behavior due to volatile-rich composition. When used alone, LS produced weak binders; however, a 10 wt% SSFA addition tripled compressive strength to nearly 30 MPa, indicating a significant activation effect. Further increases in SSFA content led to strength reduction, likely due to increased porosity and excess salts. Microstructural analysis showed that SSFA promotes the formation of AFm phases such as Friedel’s salt and hydrocalumite, altering hydration pathways and enhancing early strength through chemical activation and carbonation processes. The findings highlight the potential of combining LS and SSFA as a sustainable binder system, offering a waste-derived alternative for low-carbon construction materials. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

13 pages, 3767 KiB  
Article
Tracing Experiments and Flow Characteristic Analyses in Carbonate Geothermal Reservoirs: A Case Study of the Juancheng Geothermal Field, North China
by Yanyu Jia, Kefu Li, Li Du, Chuanqing Zhu, Fei Gao, Long Cui, Yaorong Shen and Haowei Fu
Water 2025, 17(11), 1677; https://doi.org/10.3390/w17111677 - 1 Jun 2025
Viewed by 435
Abstract
Carbonate geothermal reservoirs, characterized by widespread distribution, a high discharge capacity, and favorable reinjection conditions, have become a key target for geothermal resource development. However, the karst geothermal reservoir system in the Juancheng geothermal field exhibits significant heterogeneity, leading to substantial disparities in [...] Read more.
Carbonate geothermal reservoirs, characterized by widespread distribution, a high discharge capacity, and favorable reinjection conditions, have become a key target for geothermal resource development. However, the karst geothermal reservoir system in the Juancheng geothermal field exhibits significant heterogeneity, leading to substantial disparities in productivity among multiple geothermal wells and severely restricting efficient regional exploitation. This study systematically investigates the hydraulic characteristics and development potential of the karst geothermal reservoir in the Juancheng geothermal field using sodium fluorescein tracing experiment technology. The results reveal that the reservoir system contains multiple flow channels with distinct permeability differences. The dominant flow pathways, controlled by fault structures, exhibit an apparent velocity of up to 10.98 m/h, significantly higher than other regions in the study area. In contrast, low-permeability zones, influenced by the burial depth of the Ordovician strata, show poor connectivity due to limited karst development, with the lowest apparent velocity of only 1.03 m/h. By integrating pumping test data and tracer response characteristics, the dominant flow direction (northeast) demonstrates a stronger recharge capacity and water abundance, offering a higher development value. Conversely, the southeast low-permeability zone has weaker water production and constrained recharge conditions, resulting in a relatively limited development potential. Additionally, it is recommended that the direction of future geothermal well placement in the Juancheng geothermal field should avoid being parallel to the fault strike to prolong the thermal breakthrough arrival time. In regions with deeper Ordovician strata burial, denser well network deployment is suggested to enhance the reservoir utilization efficiency. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 2979 KiB  
Article
Analysis of Precision Regulation Pathways for Thermal Substation Supply–Demand Balance
by Jiaxiang Yin, Pengpeng Zhao and Jinda Wang
Energies 2025, 18(11), 2691; https://doi.org/10.3390/en18112691 - 22 May 2025
Viewed by 378
Abstract
Under the dual imperatives of air pollution control and energy conservation, this study proposes an enhanced optimization framework for combined heat and power (CHP) district heating systems based on bypass thermal storage (BTS). In contrast to conventional centralized tank-based approaches, this method leverages [...] Read more.
Under the dual imperatives of air pollution control and energy conservation, this study proposes an enhanced optimization framework for combined heat and power (CHP) district heating systems based on bypass thermal storage (BTS). In contrast to conventional centralized tank-based approaches, this method leverages the dynamic hydraulic characteristics of secondary network bypass pipelines to achieve direct sensible heat storage in circulating water, significantly improving system flexibility and energy efficiency. The core innovation lies in addressing the critical yet under-explored issue of control valve dynamic response, which profoundly impacts system operational stability and economic performance. A quality regulation strategy is systematically implemented to stabilize circulation flow rates through temperature modulation by establishing a supply–demand equilibrium model under bypass conditions. To overcome the limitations of traditional feedback control in handling hydraulic transients and heat transfer dynamics in the plate heat exchanger, a Model Predictive Control (MPC) framework is developed, integrating a data-driven valve impedance-opening degree correlation model. This model is rigorously validated against four flow characteristics (linear, equal percentage, quick-opening, and parabolic) and critical impedance parameters (maximum/minimum controllable impedance). This study provides theoretical foundations and technical guidance for optimizing secondary network heating systems, enhancing overall system performance and stability, and promoting energy-efficient development in the heating sector. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

23 pages, 5411 KiB  
Article
Numerical Study on the Heat Transfer Characteristics of a Hybrid Direct–Indirect Oil Cooling System for Electric Motors
by Jung-Su Park, Le Duc Tai and Moo-Yeon Lee
Symmetry 2025, 17(5), 760; https://doi.org/10.3390/sym17050760 - 14 May 2025
Viewed by 593
Abstract
Direct liquid cooling technology has the potential to enhance the thermal management performance of electric motors with continuously increasing energy density. However, direct liquid cooling technology has practical limitations for full-scale commercialization. In addition, the conventionally used indirect liquid cooling imposes higher thermal [...] Read more.
Direct liquid cooling technology has the potential to enhance the thermal management performance of electric motors with continuously increasing energy density. However, direct liquid cooling technology has practical limitations for full-scale commercialization. In addition, the conventionally used indirect liquid cooling imposes higher thermal resistance to cope with the increased thermal management performance of high power density electric motors. Therefore, this study proposes a hybrid direct–indirect oil cooling system as a next-generation cooling strategy for the enhanced thermal management of high power density electric motors. The heat transfer characteristics, including maximum winding, stator and motor housing temperatures, heat transfer coefficient, friction factor, pressure drop, and performance evaluation criteria (PEC), are investigated for different spray hole diameters, coolant oil volume flow rates, and motor heat loss levels. The computational model was validated with experimental results within a 5% error developed to evaluate heat transfer characteristics. The results show that spray hole diameter significantly influences cooling performance, with a larger diameter (1.7 mm) reducing hydraulic resistance while causing a slight increase in motor temperatures. The coolant oil volume flow rate has a major impact on heat dissipation, with an increase from 10 to 20 L/minute (LPM) reducing winding, stator, and housing temperatures by 22.05%, 22.70% and 24.02%, respectively. However, higher flow rates also resulted in an increased pressure drop, emphasizing the importance of the selection of a suitable volume flow rate based on the trade-off between cooling performance and energy consumption. Despite the increase in motor heat loss level from 2.6 kW to 8 kW, the hybrid direct–indirect oil cooling system effectively maintained all motor component temperatures below the critical threshold of 180 °C, confirming its suitability for high-performance electric motors. These findings contribute to the development and commercialization of the proposed next-generation cooling strategy for high power density electric motors for ensuring thermal stability and operational efficiency. Full article
Show Figures

Figure 1

15 pages, 6194 KiB  
Article
Hydrogeochemistry and Heat Accumulation of a Mine Geothermal System Controlled by Extensional Faults
by Mengwei Qin, Bo Zhang, Kun Yu, Baoxin Zhang, Zhuting Wang, Guanyu Zhu, Zheng Zhen and Zhehan Sun
Energies 2025, 18(10), 2490; https://doi.org/10.3390/en18102490 - 12 May 2025
Viewed by 412
Abstract
Given the high proportion of global fossil energy consumption, the Ordovician karst water in the North China-type coalfield, as a green energy source that harnesses both water and heat, holds significant potential for mitigating environmental issues associated with fossil fuels. In this work, [...] Read more.
Given the high proportion of global fossil energy consumption, the Ordovician karst water in the North China-type coalfield, as a green energy source that harnesses both water and heat, holds significant potential for mitigating environmental issues associated with fossil fuels. In this work, we collected geothermal water samples and conducted borehole temperature measurements at the Xinhu Coal Mine in the Huaibei Coalfield, analyzed the chemical composition of regional geothermal water, elucidated the characteristics of thermal storage, and explored the influence of regional structure on the karst geothermal system in the northern region. The results indicate that the geothermal water chemistry at the Xinhu Coal Mine is of the Na-K-Cl-SO4 type, with its chemical composition primarily controlled by evaporation and concentration processes. The average temperature of the Ordovician limestone thermal reservoir is 48.2 °C, and the average water circulation depth is 1153 m, suggesting karst geothermal water undergoing deep circulation. The geothermal gradient at the Xinhu Coal Mine ranges from 22 to 33 °C/km, which falls within the normal range for ground-temperature gradients. A notable jump in the geothermal gradient at well G1 suggests a strong hydraulic connection between deep strata within the mine. The heat-accumulation model of the hydrothermal mine geothermal system is influenced by strata, lithology, and fault structures. The distribution of high ground-temperature gradients in the northern region is a result of the combined effects of heat conduction from deep strata and convection of geothermal water. The Ordovician limestone and extensional faults provide a geological foundation for the abundant water and efficient heat conduction of the thermal reservoirs. Full article
Show Figures

Figure 1

29 pages, 10395 KiB  
Article
Performance Analysis of DCMD Modules Enhanced with 3D-Printed Turbulence Promoters of Various Hydraulic Diameters
by Chii-Dong Ho, Ming-Shen Chiang and Choon Aun Ng
Membranes 2025, 15(5), 144; https://doi.org/10.3390/membranes15050144 - 10 May 2025
Viewed by 656
Abstract
Theoretical and experimental investigations were conducted to predict permeate flux in direct contact membrane distillation (DCMD) modules equipped with turbulence promoters. These DCMD modules operate at moderate temperatures (45 °C to 60 °C) using a hot saline feed stream while maintaining a constant [...] Read more.
Theoretical and experimental investigations were conducted to predict permeate flux in direct contact membrane distillation (DCMD) modules equipped with turbulence promoters. These DCMD modules operate at moderate temperatures (45 °C to 60 °C) using a hot saline feed stream while maintaining a constant temperature for the cold inlet stream. The temperature difference between the two streams creates a gradient across the membrane surfaces, leading to thermal energy dissipation due to temperature polarization effects. To address this challenge, 3D-printed turbulence promoters were incorporated into the DCMD modules. Acting as eddy promoters, these structures aim to reduce the temperature polarization effect, thereby enhancing permeate flux and improving pure water productivity. Various designs of promoter-filled channels—with differing array configurations and geometric shapes—were implemented to optimize flow characteristics and further mitigate polarization effects. Theoretical predictions were validated against experimental results across a range of process parameters, including inlet temperatures, volumetric flow rates, hydraulic diameters, and flow configurations, with deviations within 10%. The DCMD module with the inserted 3D-printed turbulence promoters in the flow channel could provide a relative permeate flux enhancement up to 91.73% under the descending diamond-type module in comparison with the module of using the no-promoter-filled channel. The modeling equations demonstrated technical feasibility, particularly with the use of both descending and ascending hydraulic diameters of 3D-printed turbulence promoters inserted into the saline feed stream, as compared to a module using an empty channel. Full article
(This article belongs to the Special Issue Solar-Assisted Thermal-Driven Membrane Distillation)
Show Figures

Figure 1

29 pages, 1122 KiB  
Review
Trends in Lubrication Research on Tapered Roller Bearings: A Review by Bearing Type and Size, Lubricant, and Study Approach
by Muhammad Ishaq Khan, Lorenzo Maccioni and Franco Concli
Lubricants 2025, 13(5), 204; https://doi.org/10.3390/lubricants13050204 - 6 May 2025
Cited by 1 | Viewed by 878
Abstract
A tapered roller bearing (TRB) is a specialized type of bearing with a high load-to-volume ratio, designed to support both radial and axial loads. Lubrication plays a crucial role in TRB operation by reducing friction and dissipating heat generated during rotation. However, it [...] Read more.
A tapered roller bearing (TRB) is a specialized type of bearing with a high load-to-volume ratio, designed to support both radial and axial loads. Lubrication plays a crucial role in TRB operation by reducing friction and dissipating heat generated during rotation. However, it can also negatively impact TRB performance due to the viscous and inertial effects of the lubricant. Extensive research has been conducted to examine the role of lubrication in TRB performance. Lubrication primarily influences the frictional characteristics, thermal behavior, hydraulic losses, dynamic stability, and contact mechanics of TRBs. This paper aims to collect and classify the scientific literature on TRB lubrication based on these key aspects. Specifically, it explores the scope of research on the use of Newtonian and non-Newtonian lubricants in TRBs. Furthermore, this study analyzes research based on TRB size and type, considering both oil and grease as lubricants. The findings indicate that both numerical and experimental studies have been conducted to investigate Newtonian and non-Newtonian lubricants across various TRB sizes and types. However, the results highlight that limited research has focused on non-Newtonian lubricants in TRBs with an Outer Diameter (OD) exceeding 300 mm, i.e., those typically used in wind turbines, industrial gearboxes, and railways. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

22 pages, 4445 KiB  
Article
Research on Dual-Mode Self-Calibration Tensioning System
by Xuling Liu, Yusong Zhang, Chaofeng Peng, Le Bo, Kaiyi Zhang, Guoyong Ye, Jinggan Shao, Jinghui Peng and Songjing Li
Fluids 2025, 10(5), 115; https://doi.org/10.3390/fluids10050115 - 30 Apr 2025
Viewed by 449
Abstract
In this paper, a double-mode self-calibration tension system is proposed, which adopts the conversion of hydraulic meter tension and the monitoring of standard force sensors. According to the material characteristics of the jack and the viscosity and temperature characteristics of the hydraulic oil, [...] Read more.
In this paper, a double-mode self-calibration tension system is proposed, which adopts the conversion of hydraulic meter tension and the monitoring of standard force sensors. According to the material characteristics of the jack and the viscosity and temperature characteristics of the hydraulic oil, the differential model of heat conduction in the hydraulic cylinder and the mathematical model of oil film friction heat generation are established, and the internal thermodynamic characteristics of the jack are theoretically analyzed, which provides theoretical support for the temperature compensation of the hydraulic oil pressure gauge of the jack. A simulation analysis was conducted on the thermodynamic characteristics of the hydraulic jack, and the distribution patterns of the temperature field, thermal stress field, and thermal strain field inside the hydraulic cylinder during normal operation were determined by measuring the temperature changes in five different parts of the jack at different times (t = 200 s, 2600 s, 5000 s, 7400 s, and 10,000 s). For the issue of heat generation due to oil film friction in the hydraulic jack, a simulation calculation model is developed by integrating Computational Fluid Dynamics (CFD) techniques with dynamic grid and slip grid methods. By simulating and analyzing frictional heating under conditions where the inlet pressures are 0.1 MPa, 0.3 MPa, 0.5 MPa, 0.7 MPa, and 0.9 MPa, respectively, we can obtain the temperature distribution on the jack, determine the frictional resistance, and subsequently conduct a theoretical analysis of the simulation results. Using the high-precision standard force sensor after data processing and the hydraulic oil gauge after temperature compensation, the online self-calibration of the tensioning system is carried out, and the regression equation of the tensioning system under different oil temperatures is obtained. The double-mode self-calibration tensioning system with temperature compensation is used to verify the compensation accuracy of the proposed double-mode self-calibration tensioning system. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

26 pages, 9653 KiB  
Article
Numerical Simulation of Frost Heave and Thaw Settlement Characteristics in a Complex Pipe–Soil System in the Seasonally Frozen Ground
by Qinglin Li, Pengrui Feng, Rui Wang, Ni An, Ruiguang Bai, Guang Yang, Xinlin He, Ping Lin and Zixu Hu
Appl. Sci. 2025, 15(9), 4628; https://doi.org/10.3390/app15094628 - 22 Apr 2025
Cited by 1 | Viewed by 493
Abstract
This paper investigates the frost heave and thaw settlement characteristics of the pipe–soil system during the freeze–thaw cycle, along with the underlying mechanisms. A numerical simulation platform for the complex pipe–soil system was developed using the heat conduction equation, moisture migration equation, and [...] Read more.
This paper investigates the frost heave and thaw settlement characteristics of the pipe–soil system during the freeze–thaw cycle, along with the underlying mechanisms. A numerical simulation platform for the complex pipe–soil system was developed using the heat conduction equation, moisture migration equation, and stress–strain equation, all of which account for the ice–water phase change process. The simulations were performed with the coefficient-type partial differential equation (PDE) module in COMSOL Multiphysics. By employing coupled thermal–hydraulic–mechanical (THM) simulation methods, the study analyzed the changes in volumetric water content, volumetric ice content, moisture migration patterns, and temperature field distribution of a water pipeline after three years of service under real engineering conditions in the cold region of northern Xinjiang, China. The study also examined the effects of parameters such as pipeline burial depth, specific heat capacity, thermal conductivity, permeability of saturated soil, and initial saturation on the displacement field. The results show that selecting soil layers with high specific heat capacity (e.g., 1.68 kJ/kg·°C) and materials with high thermal conductivity (e.g., 2.25 W/m·°C) can reduce surface frost heave displacement by up to 40.8% compared to low-conductivity conditions. The maximum freezing depth near the pipeline is limited to 0.87 m due to the thermal buffering effect of water flow. This research provides a scientific reference and theoretical foundation for the design of frost heave resistance in water pipelines in seasonally frozen regions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

34 pages, 15929 KiB  
Article
Particle-Swarm-Optimization-Based Operation of Secondary Heat Supply Networks
by Guo Tang, Kaiyuan Chen, Liteng Wang, Ning Zhang, Junwei Zhang, Xiaojie Lin and Yanling Wu
Sustainability 2025, 17(8), 3735; https://doi.org/10.3390/su17083735 - 21 Apr 2025
Viewed by 340
Abstract
Urban centralized heating systems, as a crucial component of the energy transition, face new challenges in terms of reliable and balanced operation, energy-saving performance, and optimized control. Based on the accurate quantification of user heat load, an operational optimization method for secondary heating [...] Read more.
Urban centralized heating systems, as a crucial component of the energy transition, face new challenges in terms of reliable and balanced operation, energy-saving performance, and optimized control. Based on the accurate quantification of user heat load, an operational optimization method for secondary heating networks is proposed. By accurately analyzing the actual heating demands of different users according to building characteristics and climatic conditions and integrating the hydraulic and thermal modeling of a pipeline network, a Particle Swarm Optimization (PSO) algorithm is employed to optimize the valve opening degrees of users and the secondary side, achieving the optimal operating state of the secondary network that matches user load and obtaining the optimal valve regulation strategy. The results of a case analysis show that, after optimization, the overall variance of return water temperature for heat users decreased by 12.16%, and the electricity consumption of the secondary network circulation pump was reduced by 16.46%, demonstrating the effectiveness and practicality of the proposed optimization method. On the basis of ensuring hydraulic balance in the heating system, the method meets the individual heating demands of users, effectively improves user thermal comfort, and reduces energy consumption, addressing the issues of excessive and uneven heat supply. Full article
Show Figures

Figure 1

14 pages, 2837 KiB  
Article
Modeling the Temperature and Pressure Variations of Supercritical Carbon Dioxide in Coiled Tubing
by Zhixing Luan and Peng Wang
Processes 2025, 13(4), 1230; https://doi.org/10.3390/pr13041230 - 18 Apr 2025
Viewed by 376
Abstract
The use of supercritical carbon dioxide (SC-CO2) coiled tubing drilling technology for developing heavy oil and other special reservoirs offers significant advantages, including non-pollution of oil layers, prevention of clay swelling, avoidance of reservoir damage, compact footprint, and enhanced oil recovery, [...] Read more.
The use of supercritical carbon dioxide (SC-CO2) coiled tubing drilling technology for developing heavy oil and other special reservoirs offers significant advantages, including non-pollution of oil layers, prevention of clay swelling, avoidance of reservoir damage, compact footprint, and enhanced oil recovery, making it a highly promising innovative drilling technology. The thermo-hydraulic coupling characteristics of SC-CO2 in helical coiled tubes are critical to the design of SC-CO2 coiled tubing drilling systems. However, existing models often neglect thermal conduction, variable thermophysical properties, and friction-compression coupling effects, leading to significant deviations in the prediction of temperature and pressure variations. Considering heat transmission and fluid dynamics, a coiled tube heat-transfer model which considers varying properties of both pressure and temperature has been developed based on an optimized convective heat-transfer coefficient. Then, the physical parameters of the carbon dioxide in the helical coiled tubing were researched. Results indicated that the temperature change of carbon dioxide in helical coiled tubing was small due to the low temperature difference between the carbon dioxide and the air as well as the existence of an air interlayer and low natural convective heat-transfer efficiency. The drop in pressure of the carbon dioxide increased with increasing coiled tubing length, and the pressure was half that of the conventional drilling fluid in the same condition due to its low viscosity. The density of carbon dioxide in the helical coiled tubing changed from 1078 kg/m3 to 1047 kg/m3 with increasing coiled tubing length under the conditions stated herein, and the carbon dioxide remained liquid throughout the whole process. Full article
Show Figures

Figure 1

15 pages, 6244 KiB  
Article
Experimental Studies on the Thermal Hydraulics of a Fuel Column for a Gas-Cooled Micro Reactor (GMR)
by Zheng Huang, Miaoxin Jiao, Jian Jiao, Yanyu Sun, Yanfang Xue, Shuoting Zhang and Dingsheng Wang
Energies 2025, 18(8), 2039; https://doi.org/10.3390/en18082039 - 16 Apr 2025
Viewed by 306
Abstract
A thermal-hydraulic test facility is designed to explore the thermal-hydraulic characteristics inside a fuel assembly under normal operating conditions, thereby providing data for validating computer codes for a novel gas-cooled micro reactor (GMR). The primary loop supplies helium at a prototypic temperature and [...] Read more.
A thermal-hydraulic test facility is designed to explore the thermal-hydraulic characteristics inside a fuel assembly under normal operating conditions, thereby providing data for validating computer codes for a novel gas-cooled micro reactor (GMR). The primary loop supplies helium at a prototypic temperature and pressure to the test section containing a full-size fuel assembly. The experimental procedure and the test conditions were elaborated. Pre-test simulations using the COMSOL Multiphysics 5.0 software yield detailed 3D distributions of the temperature and flow fields inside the test section, which were employed to guide the positioning of thermocouples. The maximum temperature and its locus, the pressure drop of the coolant through the test section, and the helium temperature at the outlet duct were determined. The simulation indicates that the “mixer” component can effectively enhance the mixing of helium in the rear plenum and reduce the outlet helium temperature. The measured data of preliminary tests at the facility agree well with the predicted values, which proves the accuracy and reliability of the thermocouples. An unheated section at the end of the heating rods leads to a relatively large deviation of the results on the last measuring plane. Full article
Show Figures

Figure 1

Back to TopTop