Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (936)

Search Parameters:
Keywords = the net CO2 emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2327 KiB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 224
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Graphical abstract

19 pages, 1637 KiB  
Article
Comparative Analysis of Plastic Waste Management Options Sustainability Profiles
by Madalina-Maria Enache, Daniela Gavrilescu and Carmen Teodosiu
Polymers 2025, 17(15), 2117; https://doi.org/10.3390/polym17152117 - 31 Jul 2025
Viewed by 270
Abstract
Efficient plastic waste end-of-life management is a serious worldwide environmental issue motivated by growing waste production and negative effects of wrongful disposal. This study presents a comparative overview of plastic waste management regimes within the European Union (EU), the United States of America [...] Read more.
Efficient plastic waste end-of-life management is a serious worldwide environmental issue motivated by growing waste production and negative effects of wrongful disposal. This study presents a comparative overview of plastic waste management regimes within the European Union (EU), the United States of America (USA), and Romania, ranked with circular economy goals. By using the United States Environmental Protection Agency (US EPA) Waste Reduction Model (WARM), version 16, the study provides a quantified score to greenhouse gas (GHG) emissions within three large options of management: recycling, energy recovery through combustion, and landfilling. The model setup utilizes region-specific information on legislation, base technology, and recycling efficiency. The outcomes show that recycling always entails net GHG emissions reductions, i.e., −4.49 kg CO2e/capita/year for EU plastic waste and −20 kg CO2e/capita/year for USA plastic waste. Combustion and landfilling have positive net emissions from 1.76 to 14.24 kg CO2e/capita/year. Economic indicators derived from the model also show significant variation: salaries for PET management amounted to USD 2.87 billion in the EU and USD 377 million in the USA, and tax collection was USD 506 million and USD 2.01 billion, respectively. The conclusions highlight the wider environmental and socioeconomic benefits of recycling and reinforce its status as a cornerstone of circular-economy sustainable plastic waste management and a strategic element of national development agendas, with special reference to Romania’s national agenda. Full article
(This article belongs to the Special Issue Polymers for Environmental Applications)
Show Figures

Figure 1

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 (registering DOI) - 31 Jul 2025
Viewed by 88
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

23 pages, 1652 KiB  
Article
Case Study on Emissions Abatement Strategies for Aging Cruise Vessels: Environmental and Economic Comparison of Scrubbers and Low-Sulphur Fuels
by Luis Alfonso Díaz-Secades, Luís Baptista and Sandrina Pereira
J. Mar. Sci. Eng. 2025, 13(8), 1454; https://doi.org/10.3390/jmse13081454 - 30 Jul 2025
Viewed by 208
Abstract
The maritime sector is undergoing rapid transformation, driven by increasingly stringent international regulations targeting air pollution. While newly built vessels integrate advanced technologies for compliance, the global fleet averages 21.8 years of age and must meet emission requirements through retrofitting or operational changes. [...] Read more.
The maritime sector is undergoing rapid transformation, driven by increasingly stringent international regulations targeting air pollution. While newly built vessels integrate advanced technologies for compliance, the global fleet averages 21.8 years of age and must meet emission requirements through retrofitting or operational changes. This study evaluates, at environmental and economic levels, two key sulphur abatement strategies for a 1998-built cruise vessel nearing the end of its service life: (i) the installation of open-loop scrubbers with fuel enhancement devices, and (ii) a switch to marine diesel oil as main fuel. The analysis was based on real operational data from a cruise vessel. For the environmental assessment, a Tier III hybrid emissions model was used. The results show that scrubbers reduce SOx emissions by approximately 97% but increase fuel consumption by 3.6%, raising both CO2 and NOx emissions, while particulate matter decreases by only 6.7%. In contrast, switching to MDO achieves over 99% SOx reduction, an 89% drop in particulate matter, and a nearly 5% reduction in CO2 emissions. At an economic level, it was found that, despite a CAPEX of nearly USD 1.9 million, scrubber installation provides an average annual net saving exceeding USD 8.2 million. From the deterministic and probabilistic analyses performed, including Monte Carlo simulations under various fuel price correlation scenarios, scrubber installation consistently shows high profitability, with NPVs surpassing USD 70 million and payback periods under four months. Full article
(This article belongs to the Special Issue Sustainable and Efficient Maritime Operations)
Show Figures

Figure 1

19 pages, 264 KiB  
Article
From Road Transport to Intermodal Freight: The Formula 1 Races Logistics Case
by Martina Maria Petralia and Letizia Tebaldi
Sustainability 2025, 17(15), 6889; https://doi.org/10.3390/su17156889 - 29 Jul 2025
Viewed by 180
Abstract
According to the Formula 1 commitment to produce net zero carbon emissions by 2030, the present paper examines the environmental impact of Formula 1 logistics by means of a case study carried out from the point of view of an Italian company, with [...] Read more.
According to the Formula 1 commitment to produce net zero carbon emissions by 2030, the present paper examines the environmental impact of Formula 1 logistics by means of a case study carried out from the point of view of an Italian company, with reference to the European Grand Prix. Logistics accounts for approximately 49% of the sport’s total emissions and accordingly, to reduce its carbon footprint, addressing the logistics activity is vital. Two scenarios are compared in detail: AS-IS, involving only road transport of assets, and TO-BE, in which a combined rail–road approach (i.e., intermodal freight) is implemented. While the AS-IS scenario is more cost-effective, it has a significant environmental impact in terms of CO2 emissions; in contrast, though more complex and costly, TO-BE offers major advantages for environmental sustainability, including reduced emissions (approximately half compared to AS-IS) and improved efficiency through intermodal transport units. This study stresses that a combined transport system, facilitated by the European rail infrastructure, is a more sustainable option for Formula 1 logistics. However, achieving full carbon neutrality still represents a challenge that will require further innovations and collaboration among the stakeholders of this world. Full article
27 pages, 4687 KiB  
Article
EU MRV Data-Based Review of the Ship Energy Efficiency Framework
by Hui Xing, Shengdai Chang, Ranqi Ma and Kai Wang
J. Mar. Sci. Eng. 2025, 13(8), 1437; https://doi.org/10.3390/jmse13081437 - 28 Jul 2025
Viewed by 355
Abstract
The International Maritime Organization (IMO) has set a goal to reach net-zero greenhouse gas emissions from international shipping by or around 2050. The ship energy efficiency framework has played a positive role over the past decade in improving carbon intensity and reducing greenhouse [...] Read more.
The International Maritime Organization (IMO) has set a goal to reach net-zero greenhouse gas emissions from international shipping by or around 2050. The ship energy efficiency framework has played a positive role over the past decade in improving carbon intensity and reducing greenhouse gas emissions by employing the technical and operational energy efficiency metrics as effective appraisal tools. To quantify the ship energy efficiency performance and review the existing energy efficiency framework, this paper analyzed the data for the reporting year of 2023 extracted from the European Union (EU) monitoring, reporting, and verification (MRV) system, and investigated the operational profiles and energy efficiency for the ships calling at EU ports. The results show that the data accumulated in the EU MRV system could provide powerful support for conducting ship energy efficiency appraisals, which could facilitate the formulation of decarbonization policies for global shipping and management decisions for stakeholders. However, data quality, ship operational energy efficiency metrics, and co-existence with the IMO data collection system (DCS) remain issues to be addressed. With the improvement of IMO DCS system and the implementation of IMO Net-Zero Framework, harmonizing the two systems and avoiding duplicated regulation of shipping emissions at the EU and global levels are urgent. Full article
Show Figures

Figure 1

27 pages, 1739 KiB  
Article
Hybrid Small Modular Reactor—Renewable Systems for Smart Cities: A Simulation-Based Assessment for Clean and Resilient Urban Energy Transitions
by Nikolay Hinov
Energies 2025, 18(15), 3993; https://doi.org/10.3390/en18153993 - 27 Jul 2025
Viewed by 528
Abstract
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart [...] Read more.
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart grid architecture. SMRs offer compact, low-carbon, and reliable baseload power suitable for urban environments, while PV and storage enhance system flexibility and renewable integration. Six energy mix scenarios are evaluated using a lifecycle-based cost model that incorporates both capital expenditures (CAPEX) and cumulative carbon costs over a 25-year horizon. The modeling results demonstrate that hybrid SMR–renewable systems—particularly those with high nuclear shares—can reduce lifecycle CO2 emissions by over 90%, while maintaining long-term economic viability under carbon pricing assumptions. Scenario C, which combines 50% SMR, 40% PV, and 10% battery, emerges as a balanced configuration offering deep decarbonization with moderate investment levels. The proposed framework highlights key trade-offs between emissions and capital cost and seeking resilient and scalable pathways to support the global clean energy transition and net-zero commitments. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

20 pages, 5871 KiB  
Article
Carbon Management and Storage for Oltenia: Tackling Romania’s Decarbonization Goals
by Liviu Dumitrache, Silvian Suditu, Gheorghe Branoiu, Daniela Neagu and Marian Dacian Alecu
Sustainability 2025, 17(15), 6793; https://doi.org/10.3390/su17156793 - 25 Jul 2025
Viewed by 414
Abstract
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir [...] Read more.
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir engineering data for the formations of the Bibești-Bulbuceni structure, which is part of the western Moesian Platform. The static model incorporated realistic petrophysical inputs for the Meotian reservoirs. Dynamic simulations were performed using Eclipse compositional simulator with Peng–Robinson equation of state for a CH4-CO2 system. The model was initialized with natural gas initially in place at 149 bar reservoir pressure, then produced through depletion to 20.85 bar final pressure, achieving 80% recovery factor. CO2 injection simulations modeled a phased 19-well injection program over 25 years, with individual well constraints of 100 bar bottom-hole pressure and 200,000 Sm3/day injection rates. Results demonstrate successful injection of a 60 Mt CO2, with final reservoir pressure reaching 101 bar. The modeling framework validates the technical feasibility of transforming Turceni’s power generation into a net-zero process through CCS implementation. Key limitations include simplified geochemical interactions and relying on historical data with associated uncertainties. This study provides quantitative evidence for CCS viability in depleted hydrocarbon reservoirs, supporting industrial decarbonization strategies. The strategy not only aligns with the EU’s climate-neutral policy but also enhances local energy security by repurposing existing geological resources. The findings highlight the potential of CCS to bridge the gap between current energy systems and a sustainable, climate-neutral future. Full article
Show Figures

Figure 1

16 pages, 2199 KiB  
Article
Carbon Footprint and Energy Balance Analysis of Rice-Wheat Rotation System in East China
by Dingqian Wu, Yezi Shen, Yuxuan Zhang, Tianci Zhang and Li Zhang
Agronomy 2025, 15(8), 1778; https://doi.org/10.3390/agronomy15081778 - 24 Jul 2025
Viewed by 267
Abstract
The rice-wheat rotation is the main agricultural cropping system in Jiangsu Province, playing a vital role in ensuring food security and promoting economic development. However, current research on rice-wheat systems mainly focuses on in-situ controlled experiments at the point scale, with limited studies [...] Read more.
The rice-wheat rotation is the main agricultural cropping system in Jiangsu Province, playing a vital role in ensuring food security and promoting economic development. However, current research on rice-wheat systems mainly focuses on in-situ controlled experiments at the point scale, with limited studies addressing carbon footprint (CF) and energy balance (EB) at the regional scale and long time series. Therefore, we analyzed the evolution patterns of the CF and EB of the rice-wheat system in Jiangsu Province from 1980 to 2022, as well as their influencing factors. The results showed that the sown area and total yield of rice and wheat exhibited an increasing–decreasing–increasing trend during 1980–2022, while the yield per unit area increased continuously. The CF of rice and wheat increased by 4172.27 kg CO2 eq ha−1 and 2729.18 kg CO2 eq ha−1, respectively, with the greenhouse gas emissions intensity (GHGI) showing a fluctuating upward trend. Furthermore, CH4 emission, nitrogen (N) fertilizer, and irrigation were the main factors affecting the CF of rice, with proportions of 36%, 20.26%, and 17.34%, respectively. For wheat, N fertilizer, agricultural diesel, compound fertilizer, and total N2O emission were the primary contributors, accounting for 42.39%, 22.54%, 13.65%, and 13.14%, respectively. Among energy balances, the net energy (NE) of rice exhibited an increasing and then fluctuating trend, while that of wheat remained relatively stable. The energy utilization efficiency (EUE), energy productivity (EPD), and energy profitability (EPF) of rice showed an increasing and then decreasing trend, while wheat decreased by 46.31%, 46.31%, and 60.62% during 43 years, respectively. Additionally, N fertilizer, agricultural diesel, and compound fertilizer accounted for 43.91–45.37%, 21.63–25.81%, and 12.46–20.37% of energy input for rice and wheat, respectively. Moreover, emission factors and energy coefficients may vary over time, which is an important consideration in the analysis of long-term time series. This study analyzes the ecological and environmental effects of the rice-wheat system in Jiangsu Province, which helps to promote the development of agriculture in a green, low-carbon, and high-efficiency direction. It also offers a theoretical basis for constructing a low-carbon sustainable agricultural production system. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

48 pages, 4145 KiB  
Review
A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies
by Md Hujjatul Islam and Shashank Reddy Patlolla
Energies 2025, 18(15), 3937; https://doi.org/10.3390/en18153937 - 23 Jul 2025
Viewed by 388
Abstract
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector [...] Read more.
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector and other CO2 intensive industries such as iron and steel production, natural gas processing oil refining and cement production where there is no obvious alternative to carbon capture technologies. While the progress of carbon capture technologies has fallen behind expectations in the past, in recent years there has been substantial growth in this area, with over 700 projects at various stages of development. Moreover, there are around 45 commercial carbon capture facilities already in operation around the world in different industrial processes, fuel transformation and power generation. Carbon capture technologies including pre/post-combustion, oxyfuel and chemical looping combustion have been widely exploited in the recent years at different Technology Readiness level (TRL). Although, a large number of review studies are available addressing different carbon capture strategies, however, studies related to the commercial status of the carbon capture technologies are yet to be conducted. In this review article, we summarize the state-of-the-art of different carbon capture technologies applied to different emission sources, focusing on emission reduction, net-zero emission, and negative emission. We also highlight the commercial status of the different carbon capture technologies including economics, opportunities, and challenges. Full article
Show Figures

Graphical abstract

21 pages, 1616 KiB  
Article
Optimization Design and Operation Analysis of Integrated Energy System for Rural Active Net-Zero Energy Buildings
by Jingshuai Pang, Yi Guo, Ruiqi Wang, Hongyin Chen, Zheng Wu, Manzheng Zhang and Yuanfu Li
Energies 2025, 18(15), 3924; https://doi.org/10.3390/en18153924 - 23 Jul 2025
Viewed by 216
Abstract
To address energy shortages and achieve carbon peaking/neutrality, this study develops a distributed renewable-based integrated energy system (IES) for rural active zero-energy buildings (ZEBs). Energy consumption patterns of typical rural houses are analyzed, guiding the design of a resource-tailored IES that balances economy [...] Read more.
To address energy shortages and achieve carbon peaking/neutrality, this study develops a distributed renewable-based integrated energy system (IES) for rural active zero-energy buildings (ZEBs). Energy consumption patterns of typical rural houses are analyzed, guiding the design of a resource-tailored IES that balances economy and sustainability. Key equipment capacities are optimized to achieve net-zero/zero energy consumption targets. For typical daily cooling/heating/power loads, equipment output is scheduled using a dual-objective optimization model minimizing operating costs and CO2 emissions. Results demonstrate that: (1) Net-zero-energy IES outperforms separated production (SP) and full electrification systems (FES) in economic-environmental benefits; (2) Zero-energy IES significantly reduces rural building carbon emissions. The proposed system offers substantial practical value for China’s rural energy transition. Full article
Show Figures

Figure 1

20 pages, 1475 KiB  
Article
Design Optimization and Assessment Platform for Wind-Assisted Ship Propulsion
by Timoleon Plessas and Apostolos Papanikolaou
J. Mar. Sci. Eng. 2025, 13(8), 1389; https://doi.org/10.3390/jmse13081389 - 22 Jul 2025
Viewed by 198
Abstract
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization [...] Read more.
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization platform that supports the conceptual design of WAPS-equipped vessels and evaluates the viability of such investments. The platform uses a steady-state force equilibrium model to simulate vessel performance along predefined routes under realistic weather conditions, incorporating regulatory frameworks and economic assessments. A multi-objective optimization framework identifies optimal designs across user-defined criteria. To demonstrate its capabilities, the platform is applied to a bulk carrier operating between China and the USA, optimizing for capital expenditure, net present value (NPV), and CO2 emissions. Results show the platform can effectively balance conflicting objectives, achieving substantial emissions reductions without compromising economic performance. The final optimized design achieved a 12% reduction in CO2 emissions, a 7% decrease in capital expenditure, and a 6.6 million USD increase in net present value compared to the reference design with sails, demonstrating the platform’s capability to deliver balanced improvements across all objectives. The methodology is adaptable to various ship types, WAPS technologies, and operational profiles, offering a valuable decision-support tool for stakeholders navigating the transition to zero-carbon shipping. Full article
(This article belongs to the Special Issue Design Optimisation in Marine Engineering)
Show Figures

Figure 1

29 pages, 6058 KiB  
Article
Machine Learning-Based Carbon Compliance Forecasting and Energy Performance Assessment in Commercial Buildings
by Aditya Ramnarayan, Felipe de Castro, Andres Sarmiento and Michael Ohadi
Energies 2025, 18(15), 3906; https://doi.org/10.3390/en18153906 - 22 Jul 2025
Viewed by 239
Abstract
Owing to the need for continuous improvement in building energy performance standards (BEPSs), facilities must adhere to benchmark performances in their quest to achieve net-zero performance. This research explores machine learning models that leverage historical energy data from a cluster of buildings, along [...] Read more.
Owing to the need for continuous improvement in building energy performance standards (BEPSs), facilities must adhere to benchmark performances in their quest to achieve net-zero performance. This research explores machine learning models that leverage historical energy data from a cluster of buildings, along with relevant ambient weather data and building characteristics, with the objective of predicting the buildings’ energy performance through the year 2040. Using the forecasted emission results, the portfolio of buildings is analyzed for the incurred carbon non-compliance fees based on their on-site fossil fuel CO2e emissions to assess and pinpoint facilities with poor energy performance that need to be prioritized for decarbonization. The forecasts from the machine learning algorithms predicted that the portfolio of buildings would incur an annual average penalty of $31.7 million ($1.09/sq. ft.) and ~$348.7 million ($12.03/sq. ft.) over 11 years. To comply with these regulations, the building portfolio would need to reduce on-site fossil fuel CO2e emissions by an average of 58,246 metric tons (22.10 kg/sq. ft.) annually, totaling 640,708 metric tons (22.10 kg/sq. ft.) over a period of 11 years. This study demonstrates the potential for robust machine learning models to generate accurate forecasts to evaluate carbon compliance and guide prompt action in decarbonizing the built environment. Full article
Show Figures

Figure 1

41 pages, 3292 KiB  
Review
Black Soldier Fly: A Keystone Species for the Future of Sustainable Waste Management and Nutritional Resource Development: A Review
by Muhammad Raheel Tariq, Shaojuan Liu, Fei Wang, Hui Wang, Qianyuan Mo, Zhikai Zhuang, Chaozhong Zheng, Yanwen Liang, Youming Liu, Kashif ur Rehman, Murat Helvaci, Jianguang Qin and Chengpeng Li
Insects 2025, 16(8), 750; https://doi.org/10.3390/insects16080750 - 22 Jul 2025
Viewed by 985
Abstract
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological [...] Read more.
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological and genomic adaptations underpinning waste conversion efficiency, comparative performance of BSF bioconversion versus traditional treatments, nutritional and functional attributes, techno-economic, regulatory, and safety barriers to industrial scale-up. Peer-reviewed studies were screened for methodological rigor, and data on life cycle traits, conversion metrics, and product compositions were synthesized. BSF larvae achieve high waste reductions, feed-conversion efficiencies and redirect substrate carbon into biomass, yielding net CO2 emissions as low as 12–17 kg CO2 eq ton−1, an order of magnitude below composting or vermicomposting. Larval biomass offers protein, lipids (notably lauric acid), micronutrients, chitin, and antimicrobial peptides, with frass serving as a nutrient-rich fertilizer. Pathogen and antibiotic resistance gene loads decrease during bioconversion. Key constraints include substrate heterogeneity, heavy metal accumulation, fragmented regulatory landscapes, and high energy and capital demands. BSF systems demonstrate superior environmental and nutritional performance compared to conventional waste treatments. Harmonized safety standards, feedstock pretreatment, automation, and green extraction methods are critical to overcoming scale-up barriers. Interdisciplinary innovation and policy alignment will enable BSF platforms to realize their full potential within circular bio-economies. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

19 pages, 5629 KiB  
Article
Achieving Net-Zero in Canada: Sectoral GHG Reductions Through Provincial Clustering and the Carbon Mitigation Initiative’s Stabilization Wedges Concept
by Alaba Boluwade
Sustainability 2025, 17(15), 6665; https://doi.org/10.3390/su17156665 - 22 Jul 2025
Viewed by 349
Abstract
The primary objective of this paper is to quantify a realistic pathway for Canada to reach net-zero emissions by 2050. This study analyzed greenhouse gas (GHG) emissions from the 10 provinces and 3 territories of Canada based on the emissions from their economic [...] Read more.
The primary objective of this paper is to quantify a realistic pathway for Canada to reach net-zero emissions by 2050. This study analyzed greenhouse gas (GHG) emissions from the 10 provinces and 3 territories of Canada based on the emissions from their economic sectors. A time series analysis was performed to understand the trajectory of the emissions profile from 1990 to 2023. Using the 2023 emissions as the baseline, a linear reduction, based on the GHG proportions from each jurisdiction, was performed and projected to 2050 (except for Prince Edward Island (PEI), where net zero was targeted for 2040). Moreover, a machine learning technique (k-means unsupervised algorithm) was used to group all the jurisdictions into homogeneous regions for national strategic climate policy initiatives. The within-cluster sum of squares identified the following clusters: Cluster 1: Manitoba (MB), New Brunswick, Nova Scotia, and Newfoundland and Labrador; Cluster 2: Alberta (AB); Cluster 3: Quebec (QC) and Saskatchewan; Cluster 4: Ontario (ON); and Cluster 5: PEI, Northwest Territories, Nunavut, and Northwest Territories. Considering the maximum GHG reductions needed per cluster (Clusters 1–5), the results show that 0.309 Mt CO2 eq/year, 5.447 Mt CO2 eq/year, 1.293 Mt CO2 eq/year, 2.217 Mt CO2 eq/year, and 0.04 Mt CO2 eq/year must be targeted from MB (transportation), AB (stationary combustion), QC (transportation), ON (stationary combustion) and PEI (transportation), respectively. The concept of climate stabilization wedges, which provides a practical framework for addressing the monumental challenge of mitigating climate change, was introduced to each derived region to cut GHG emissions in Canada through tangible, measurable actions that is specific to each sector/cluster. The clustering-based method breaks climate mitigation problems down into manageable pieces by grouping the jurisdictions into efficient regions that can be managed effectively by fostering collaboration across jurisdictions and economic sectors. Actionable and strategic recommendations were made within each province to reach the goal of net-zero. The implications of this study for policy and climate action include the fact that actionable strategies and tailored policies are applied to each cluster’s emission profile and economic sector, ensuring equitable and effective climate mitigation strategies in Canada. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

Back to TopTop