Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = the flour beetle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 220 KiB  
Article
Surface Application of Different Insecticides Against Two Coleopteran Pests of Stored Products
by Paraskevi Agrafioti, Marina Gourgouta, Dimitrios Kateris and Christos G. Athanassiou
Appl. Sci. 2025, 15(15), 8306; https://doi.org/10.3390/app15158306 - 25 Jul 2025
Viewed by 168
Abstract
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: [...] Read more.
The present study highlights the critical role of surface type, insect species, and exposure duration in determining the efficacy of surface-applied insecticides in stored-product pest management. Four insecticides were sprayed and evaluated on different surfaces (concrete, metallic, plastic, and ceramic) against two beetles: the red flour beetle and the tobacco beetle. Alpha-cypermethrin and spinosad exhibited rapid and high efficacy, particularly on non-porous surfaces such as metal and ceramic, whereas pirimiphos-methyl was less effective initially and required extended exposure to achieve complete mortality, especially against Tribolium castaneum. In contrast, Lasioderma serricorne showed greater susceptibility across all insecticides and surfaces. Spinosad maintained high efficacy across all surface types, suggesting broader applicability under variable conditions. The reduced performance of insecticides on concrete surfaces underscores the influence of substrate porosity on insecticide bioavailability. Additionally, the observed delayed mortality effect in all treatments indicates that even brief exposure can result in lethal outcomes, emphasizing the long-term potential of these applications. These findings underscore the need for surface-specific application strategies and support the integration of surface treatments into comprehensive pest management programs. Further research is warranted under simulated field conditions to assess residual efficacy over time and in the presence of food, thereby enhancing the relevance of laboratory findings to real-world storage environments. Full article
(This article belongs to the Special Issue Advanced Computational Techniques for Plant Disease Detection)
10 pages, 327 KiB  
Article
Geographic Distribution of Phosphine Resistance and Frequency of Resistance Genes in Two Species of Grain Beetles, Tribolium castaneum and Rhyzopertha dominica, in North America
by Zhaorigetu Hubhachen, Aaron Cato, Edwin Afful, Manoj Nayak and Thomas W. Phillips
Insects 2025, 16(8), 749; https://doi.org/10.3390/insects16080749 - 22 Jul 2025
Viewed by 299
Abstract
Resistance to the fumigant phosphine (PH3) was studied for 28 populations of Rhyzopertha dominica from eight states of the USA and four provinces of Canada, as well as for 34 populations of Tribolium castaneum from twelve states of the USA and [...] Read more.
Resistance to the fumigant phosphine (PH3) was studied for 28 populations of Rhyzopertha dominica from eight states of the USA and four provinces of Canada, as well as for 34 populations of Tribolium castaneum from twelve states of the USA and four provinces of Canada, using both a discriminating dose bioassay and molecular marker analysis. We used a molecular marker analysis for a point mutation in the gene that encodes dihydrolipoamide dehydrogenase and facilitates the “strong resistance” phenotype in both species. Our results showed that PH3 resistance was correlated with higher frequencies of the strong resistance R allele in both species (R2 = 0.59 in R. dominica and R2 = 0.79 in T. castaneum). We also found that recessive R allele frequency did not correlate well with the geographic distribution of the resistant populations of these two species (R2 = 0.21 in R. dominica and R2 = 0.15 in T. castaneum). Therefore, populations of both species with higher R allele frequencies had higher resistance levels to PH3. Our results showed that the geographic distribution of PH3 resistance in both species varied and was not related geographically, but this supports the idea that the adaptive evolution of PH3 resistance in these species is caused by selection pressure for their resistance genes. Full article
(This article belongs to the Collection Integrated Management and Impact of Stored-Product Pests)
Show Figures

Figure 1

20 pages, 5993 KiB  
Article
High-Precision Stored-Grain Insect Pest Detection Method Based on PDA-YOLO
by Fuyan Sun, Zhizhong Guan, Zongwang Lyu and Shanshan Liu
Insects 2025, 16(6), 610; https://doi.org/10.3390/insects16060610 - 10 Jun 2025
Viewed by 898
Abstract
Effective stored-grain insect pest detection is crucial in grain storage management to prevent economic losses and ensure food security throughout production and supply chains. Existing detection methods suffer from issues such as high labor costs, environmental interference, high equipment costs, and inconsistent performance. [...] Read more.
Effective stored-grain insect pest detection is crucial in grain storage management to prevent economic losses and ensure food security throughout production and supply chains. Existing detection methods suffer from issues such as high labor costs, environmental interference, high equipment costs, and inconsistent performance. To address these limitations, we proposed PDA-YOLO, an improved stored-grain insect pest detection algorithm based on YOLO11n which integrates three key modules: PoolFormer_C3k2 (PF_C3k2) for efficient local feature extraction, Attention-based Intra-Scale Feature Interaction (AIFI) for enhanced global context awareness, and Dynamic Multi-scale Aware Edge (DMAE) for precise boundary detection of small targets. Trained and tested on 6200 images covering five common stored-grain insect pests (Lesser Grain Borer, Red Flour Beetle, Indian Meal Moth, Maize Weevil, and Angoumois Grain Moth), PDA-YOLO achieved an mAP@0.5 of 96.6%, mAP@0.5:0.95 of 60.4%, and F1 score of 93.5%, with a computational cost of only 6.9 G and mean detection time of 9.9 ms per image. These results demonstrate the advantages over mainstream detection algorithms, balancing accuracy, computational efficiency, and real-time performance. PDA-YOLO provides a reference for pest detection in intelligent grain storage management. Full article
Show Figures

Figure 1

13 pages, 2977 KiB  
Article
Adipokinetic Hormones and Their Receptor Regulate the Locomotor Behavior in Tribolium castaneum
by Rui-Han Lu, Xu-Dong Pang, Shuang-Qin Wen, Guy Smagghe, Tong-Xian Liu and Shun-Hua Gui
Insects 2025, 16(4), 407; https://doi.org/10.3390/insects16040407 - 12 Apr 2025
Cited by 1 | Viewed by 794
Abstract
The regulation of locomotor behavior is essential for insects to perform their life activities. The central nervous system plays a pivotal role in modulating physiological behaviors, particularly movement, with neuropeptides serving as key modulators of these processes. Among these, adipokinetic hormone (AKH) was [...] Read more.
The regulation of locomotor behavior is essential for insects to perform their life activities. The central nervous system plays a pivotal role in modulating physiological behaviors, particularly movement, with neuropeptides serving as key modulators of these processes. Among these, adipokinetic hormone (AKH) was originally identified in insects as a neurohormone involved in lipid mobilization. This study investigates the functional role of AKHs (AKH1 and AKH2) and their receptor (AKHR) in regulating locomotion in the red flour beetle, Tribolium castaneum. Using functional calcium reporter assays, we demonstrated that AKHR is activated by two mature AKH peptides from T. castaneum, with half-maximal effective concentrations (EC50) falling within the nanomolar range. Gene expression analysis confirmed the presence of AKH1 and AKH2 transcripts in the brain, while AKHR expression was localized to the fat body and carcass. The silencing of AKHs or AKHR through RNA interference resulted in a significant reduction in both movement distance and duration. Collectively, these findings highlight the regulatory influence of AKH/AKHR signaling in locomotor activity in T. castaneum, thereby advancing our understanding of the molecular mechanisms underlying locomotor control in this economically important insect species. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

23 pages, 3903 KiB  
Article
Short Exposures to Phosphine Trigger Differential Gene Expression in Phosphine-Susceptible and -Resistant Strains of Tribolium castaneum
by Christos G. Athanassiou, Daniel Brabec, Morgan Olmstead, Nickolas G. Kavallieratos and Brenda Oppert
Genes 2025, 16(3), 324; https://doi.org/10.3390/genes16030324 - 10 Mar 2025
Viewed by 1160
Abstract
Background/Objectives: Phosphine resistance in insects involves a complex interplay of genetic and physiological factors, which are often poorly understood. Resistance to high concentrations of phosphine worldwide poses a formidable challenge for stored-product pest management and affects global food security. Understanding the genetic basis [...] Read more.
Background/Objectives: Phosphine resistance in insects involves a complex interplay of genetic and physiological factors, which are often poorly understood. Resistance to high concentrations of phosphine worldwide poses a formidable challenge for stored-product pest management and affects global food security. Understanding the genetic basis of phosphine resistance in the red flour beetle, Tribolium castaneum, is urgent because of the species’ status as a notorious insect pest of stored grains and their resistance to major classes of insecticides. In this study, we take advantage of T. castaneum as a model species for biological and genetic studies. Methods: To tease apart genetic mutations and the differential expression of genes responding to phosphine intoxication, we set up 16 different exposure tests to compare the effects of phosphine dose, exposure time, and sampling time on gene expression in phosphine-susceptible and -resistant T. castaneum adults. Results: We examined the enrichment of gene ontology terms in genes that were differentially expressed and found that the data further distinguished differences in gene expression by insect strain, phosphine dose, exposure time, and recovery from phosphine exposure. The gene-encoding cytochrome P450 9e2 was expressed more in phosphine-resistant compared to phosphine-susceptible insects under all treatment conditions and was significantly higher in expression in resistant insects that were sampled after short or long phosphine exposures. Therefore, this gene may serve as a new phosphine resistance marker in T. castaneum and can further be utilized as a diagnostic tool for resistance detection. Conclusions: These data are important to understand the complex molecular changes in insects that have reduced sensitivity to phosphine to develop new monitoring and resistance prevention strategies. Full article
(This article belongs to the Collection Feature Papers in ‘Animal Genetics and Genomics’)
Show Figures

Figure 1

11 pages, 1685 KiB  
Article
Efficacy of Chlorobenzene as a New Fumigant for Control of Confused Flour Beetle (Coleoptera: Tenebrionidae) and Rice Weevil (Coleoptera: Curculionidae)
by Yong-Biao Liu
Insects 2025, 16(2), 183; https://doi.org/10.3390/insects16020183 - 8 Feb 2025
Viewed by 958
Abstract
Chlorobenzene is an industrial chemical with relatively high vapor pressure and has been used in the past to produce pesticide DDT (Dichlorodiphenyltrichloroethane). In this study, chlorobenzene was demonstrated to be an effective fumigant against two stored product insects: the confused flour beetle ( [...] Read more.
Chlorobenzene is an industrial chemical with relatively high vapor pressure and has been used in the past to produce pesticide DDT (Dichlorodiphenyltrichloroethane). In this study, chlorobenzene was demonstrated to be an effective fumigant against two stored product insects: the confused flour beetle (Tribolium confusum) and rice weevil (Sitophilus oryzae). In small-scale fumigations in 1.9 L glass jars, the complete control of adults of both the confused flour beetle and rice weevil was achieved in 24 h at a dose of 150 μL/L at 21 °C. LC95 values of chlorobenzene vapor concentration for adults of the confused flour beetle and rice weevil were estimated to be 1121 and 1114 ppm, respectively. In large-scale fumigations in a 60 L chamber, all life stages of the confused flour beetle and rice weevil in 20 kg of corn were fumigated for 24 h with 30 mL (500 μL/L) chlorobenzene at 21 °C. The complete control of adults and immature stages of the confused flour beetle was achieved. For the rice weevil, adults had 100% mortality, and immature life stages had 97.8% mortality. These results demonstrated that chlorobenzene is effective as a fumigant against stored product insects, and it is technically feasible to conduct large-scale fumigations for postharvest pest control on stored products. Full article
Show Figures

Figure 1

19 pages, 11997 KiB  
Article
Visualizing Oral Infection Dynamics of Beauveria bassiana in the Gut of Tribolium castaneum
by Lautaro Preisegger, Juan Cruz Flecha, Fiorella Ghilini, Daysi Espin-Sánchez, Eduardo Prieto, Héctor Oberti, Eduardo Abreo, Carla Huarte-Bonnet, Nicolás Pedrini and Maria Constanza Mannino
J. Fungi 2025, 11(2), 101; https://doi.org/10.3390/jof11020101 - 28 Jan 2025
Cited by 1 | Viewed by 1527 | Correction
Abstract
The ability of entomopathogenic fungi, such as Beauveria bassiana, to infect insects by penetrating their cuticle is well documented. However, some insects have evolved mechanisms to combat fungal infections. The red flour beetle (Tribolium castaneum), a major pest causing significant [...] Read more.
The ability of entomopathogenic fungi, such as Beauveria bassiana, to infect insects by penetrating their cuticle is well documented. However, some insects have evolved mechanisms to combat fungal infections. The red flour beetle (Tribolium castaneum), a major pest causing significant economic losses in stored product environments globally, embeds antifungal compounds within its cuticle as a protective barrier. Previous reports have addressed the contributions of non-cuticular infection routes, noting an increase in mortality in beetles fed with conidia. In this study, we further explore the progression and dynamics of oral exposure in the gut of T. castaneum after feeding with an encapsulated B. bassiana conidia formulation. First, we characterized the formulation surface using atomic force microscopy, observing no significant topological differences between capsules containing and not containing conidia. Confocal microscopy confirmed uniform conidia distribution within the hydrogel matrix. Then, larvae and adult insects fed with the conidia-encapsulated formulation exhibited B. bassiana distributed throughout the alimentary canal, with a higher presence of conidia before the pyloric chamber. More conidia were found in the larval midgut and hindgut compared to adults, but no germinated conidia were observed in the epithelium. These results suggest that the presence of conidia obstructs the gut, impairing the insect’s ability to ingest, process, and absorb nutrients. This disruption may weaken the host, increasing its susceptibility to infections and, ultimately, leading to death. By providing the first direct observation of fungal conidia within the alimentary canal of T. castaneum, this study highlights a novel aspect of fungal–host interaction and opens new avenues for advancing fungal-based pest control strategies by exploiting stage-specific vulnerabilities. Full article
Show Figures

Figure 1

11 pages, 3090 KiB  
Article
Spatio-Temporal Distribution of Stored Product Insects in a Feed Mill in Greece
by Paraskevi Agrafioti, Evagelia Lampiri, Efstathios Kaloudis, Marina Gourgouta, Thomas N. Vassilakos, Philippos M. Ioannidis and Christos G. Athanassiou
Agronomy 2024, 14(12), 2812; https://doi.org/10.3390/agronomy14122812 - 26 Nov 2024
Cited by 1 | Viewed by 827
Abstract
Floor traps were placed in a feed mill in Greece for a period of approx. 13 months to illustrate the relative abundance and distribution of the stored product insects found. More than 20 taxa were found, with most of them belonging to Coleoptera. [...] Read more.
Floor traps were placed in a feed mill in Greece for a period of approx. 13 months to illustrate the relative abundance and distribution of the stored product insects found. More than 20 taxa were found, with most of them belonging to Coleoptera. The most abundant species found were the rice weevil, Sitophilus oryzae (L.), and the granary weevil, Sitophilus granarius (L.), which are common primary colonizers of grains, and the confused flour beetle, Tribolium confusum Jacquelin du Val, and the red flour beetle, Tribolium castaneum (Herbst), which are secondary colonizers that usually occur in processed amylaceous commodities. Interestingly, the highest population densities of all four species were recorded during the same period, with the secondary colonizers slightly preceding the primary colonizers. Although competition among these species has been recorded in previous studies, we found that these four species could coexist during the entire trapping period in the same sampling units, which indicates possible spatial segregation and different colonization patterns in space and time. Our results demonstrate that trapping in storage and processing facilities is an essential component of decision-making regarding stored product pest management strategies in localized applications, and can drastically reduce the need for treating the entire facility. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

22 pages, 3741 KiB  
Article
Schinus molle Resin Essential Oil as Potent Bioinsecticide Against Tribolium castaneum: Chemical Profile, In Vitro Acetylcholinesterase Inhibition, DFT Calculation and Molecular Docking Analysis
by Wiem Baccari, Ilyes Saidi, Achref Jebnouni, Safa Teka, Sayda Osman, Awatif Mansoor Alrasheeday, Nuzaiha Mohamed, Mabrouka El Oudi and Hichem Ben Jannet
Biomolecules 2024, 14(11), 1464; https://doi.org/10.3390/biom14111464 - 18 Nov 2024
Cited by 2 | Viewed by 1699
Abstract
Plants offer a bountiful source of natural pest control solutions through their essential oils. This research introduces and analyzes an eco-friendly natural essential oil for red flour beetle control. Therefore, the current study was included to show the chemical profile and the insecticidal [...] Read more.
Plants offer a bountiful source of natural pest control solutions through their essential oils. This research introduces and analyzes an eco-friendly natural essential oil for red flour beetle control. Therefore, the current study was included to show the chemical profile and the insecticidal efficacy of resin essential oil (REO) and its fractions (F1–3), resulting from chromatographic separation, from the plant Schinus molle against Tribolium castaneum adults. The trunk bark resin essential oil and its fractions’ composition were analyzed by GC-MS. Overall, 33 constituents with 98.3% of the total EO composition were identified. REO and F1–3 displayed impressive repellent properties at a concentration of 0.12 µL/cm2. After 120 min of exposure, repellency ranged from 73.3% to a remarkable 96.7%. They also exhibited noteworthy fumigant properties, with median lethal doses of LD50 = 120.6–160.8 μL/L. The fractions F1 and F3 showed the most notable topical toxicity at a concentration of 10%, with LD50 values of 8.6% and 5.6%, respectively. Fractions F3 and F2 demonstrated the most effective inhibition of acetylcholinesterase (AChE) activity, providing insight into their insecticidal mechanisms. The in silico molecular docking and DFT studies corroborate the results of in vitro tests performed to identify new insecticide products derived from natural sources. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

15 pages, 5320 KiB  
Article
Insecticidal and Repellent Activity of Essential Oils from Seven Different Plant Species against Tribolium castaneum (Coleoptera: Tenebrionidae)
by Misha Khalil, Mishal Khizar, Dalal Suleiman Alshaya, Asifa Hameed, Noor Muhammad, Muhammad Binyameen, Muhammad Azeem, Mussurat Hussain, Qaisar Abbas, Kotb A. Attia and Tawaf Ali Shah
Insects 2024, 15(10), 755; https://doi.org/10.3390/insects15100755 - 29 Sep 2024
Cited by 1 | Viewed by 2255
Abstract
Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is the most destructive pest of stored grain commodities. To control the attack of this insect pest, it is important to develop non-hazardous alternatives to replace fumigants. This study examined the fumigant toxicity and repellent activity of seven [...] Read more.
Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is the most destructive pest of stored grain commodities. To control the attack of this insect pest, it is important to develop non-hazardous alternatives to replace fumigants. This study examined the fumigant toxicity and repellent activity of seven essential oils (Chinopodium ambrosiodes, Pinus roxburghii, Zanthoxylum armatum, Lepidium sativum, Azadirachta indica, Baccharis teindalensis, and Origanum majorana) against adult T. castaneum under controlled laboratory conditions. The fumigant toxicity and repellent activities of essential oils were tested using five different doses (62.5, 125, 250, 500, and 1000 µg) in vapour-phase fumigation and four-arm olfactometer bioassays, respectively. In vapor-phase fumigation bioassays, mortality data were recorded after 24, 48, and 72 h. The results showed that C. ambrosiodes and P. roxburghii essential oils are potential fumigants against adult T. castaneum. In repellency bioassays, a one-week-old adult population of T. castaneum was used to test the repellency potential of the essential oils. The results indicated that C. ambrosiodes and P. roxburghii had significant repellency potential against T. castaneum. Overall, we conclude that these essential oils have strong repellent and fumigant properties and can be used as potential repellent compounds to deter the insects. Full article
Show Figures

Figure 1

13 pages, 789 KiB  
Article
Repellency, Fumigant Toxicity, Antifeedent and Residual Activities of Coridothymus capitatus and Its Main Component Carvacrol against Red Flour Beetle
by Hassan M. Eltalawy, Huda El-Fayoumi, Shawky M. Aboelhadid, Saleh Al-Quraishy, Almahy M. El-Mallah, Fatma Tunali, Atalay Sokmen, Dimitra Daferera and Abdel-Azeem S. Abdel-Baki
Molecules 2024, 29(17), 4255; https://doi.org/10.3390/molecules29174255 - 8 Sep 2024
Cited by 2 | Viewed by 1423
Abstract
Tribolium castaneum is a challenging pest of stored products, causing significant economic losses. The present study explored the efficacy of Coridothymus capitatus essential oil and its primary constituent, carvacrol, as eco-friendly alternatives for managing this pest. To evaluate their insecticidal potential, repellency, fumigant [...] Read more.
Tribolium castaneum is a challenging pest of stored products, causing significant economic losses. The present study explored the efficacy of Coridothymus capitatus essential oil and its primary constituent, carvacrol, as eco-friendly alternatives for managing this pest. To evaluate their insecticidal potential, repellency, fumigant toxicity, and antifeedant properties, progeny inhibition assays were performed. Carvacrol exhibited superior repellency compared to the essential oil, achieving a 92% repellency rate at 2 mg/cm2. Both compounds demonstrated significant fumigant toxicity against T. castaneum, with LC50 values of 168.47 and 106.5 μL/L for the essential oil and carvacrol, respectively, after 24 h. Carvacrol also outperformed the essential oil in antifeedant activity, inducing an 80.7% feeding deterrence at 1.17 mg/g. Moreover, both treatments effectively suppressed the development of the pest’s progeny. These results collectively underscore the potent insecticidal properties of C. capitatus essential oil and carvacrol, particularly carvacrol, as promising candidates for the sustainable management of T. castaneum in stored product protection. Full article
Show Figures

Figure 1

17 pages, 6845 KiB  
Article
Challenges in Assessing Repellency via the Behavioral Response by the Global Pest Tribolium castaneum to Protect Stored Grains
by Leslie C. Rault, William R. Morrison, Alison R. Gerken and Georgina V. Bingham
Insects 2024, 15(8), 626; https://doi.org/10.3390/insects15080626 - 20 Aug 2024
Cited by 2 | Viewed by 1482
Abstract
Background: Food security is an increasingly pressing global issue, and by 2050, food production will not be sufficient to feed the growing population. Part of global food insecurity can be attributed to post-harvest losses, including quantity and quality losses caused by stored-product pests [...] Read more.
Background: Food security is an increasingly pressing global issue, and by 2050, food production will not be sufficient to feed the growing population. Part of global food insecurity can be attributed to post-harvest losses, including quantity and quality losses caused by stored-product pests like insects. It is thus timely to find management strategies to mitigate these losses and counteract food insecurity. The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), a global stored-product pest with a wide range of food sources, was used in this study to assess repellency to a selection of essential oils. Methods: Multiple behaviorally relevant methods were used to determine the efficacy of the essential oils in assays to pinpoint the most promising repellents. Experiments were used to assess individual and group behaviors with or without airflow and examined the behavioral variation in distance moved and the time spent away from the oil. Results: It was found that exposure to essential oils and conditions of experimentation considerably influenced T. castaneum’s behavioral response, but a clear candidate for repellency could not be chosen based on the collected data. Conclusions: Follow-up research is needed to pinpoint repellents for integrated pest management practices to protect grains from stored-product pests and to justify their use in and around commodities. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 2725 KiB  
Article
Chemical Compositions and Fumigation Effects of Essential Oils Derived from Cardamom, Elettaria cardamomum (L.) Maton, and Galangal, Alpinia galanga (L.) Willd, against Red Flour Beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)
by Ruchuon Wanna, Parinda Khaengkhan and Hakan Bozdoğan
Plants 2024, 13(13), 1845; https://doi.org/10.3390/plants13131845 - 4 Jul 2024
Cited by 1 | Viewed by 1631
Abstract
This study explores the use of essential oils from cardamom (Elettaria cardamomum (L.) Maton) and galangal (Alpinia galanga (L.) Willd) as alternatives to synthetic insecticides for controlling the red flour beetle, Tribolium castaneum (Herbst). The chemical compositions of these oils were [...] Read more.
This study explores the use of essential oils from cardamom (Elettaria cardamomum (L.) Maton) and galangal (Alpinia galanga (L.) Willd) as alternatives to synthetic insecticides for controlling the red flour beetle, Tribolium castaneum (Herbst). The chemical compositions of these oils were analyzed using GC-MS, and their fumigation effects were tested in a vapor-phase bioassay. The experiment followed a factorial design with four types of essential oils, namely, those manually extracted from cardamom leaves (MCL) and galangal leaves (MGL) and those commercially produced from cardamom seeds (CCS) and galangal rhizomes (CGR), at seven concentrations (0, 50, 100, 150, 200, 250, and 300 µL/L air). The manually extracted oils yielded 0.6% from cardamom leaves and 0.25% from galangal leaves. MCL contained 28 components, with eucalyptol (25.2%) being the most abundant, while CCS had 34 components, primarily α-terpinyl acetate (46.1%) and eucalyptol (31.2%). MGL included 25 components, mainly caryophyllene (28.7%) and aciphyllene (18.3%), whereas CGR comprised 27 components, with methyl cis-cinnamate (47.3%) and safrole (19.8%) as the major constituents. The fumigation bioassay results revealed that CGR was the most effective, demonstrating the highest mortality rates of T. castaneum across all the tested periods and concentrations, achieving up to 96% mortality at 168 h with a concentration of 300 µL/L air. Statistical analyses showed significant differences in mortality based on the type and concentration of essential oil, particularly after 96 h. These findings highlight the potential of CGR, with its advantages and differences in chemical composition, as an effective biopesticide against T. castaneum, with increasing efficacy over time and at higher concentrations. Full article
(This article belongs to the Special Issue Emerging Topics in Botanical Biopesticides—2nd Edition)
Show Figures

Figure 1

13 pages, 1604 KiB  
Article
Artemisia fragrans Willd. Essential Oil: Chemical Profile and Insecticidal Potential against the Confused Flour Beetle, Tribolium confusum du Val
by Asgar Ebadollahi, William N. Setzer and Franco Palla
Plants 2024, 13(13), 1725; https://doi.org/10.3390/plants13131725 - 21 Jun 2024
Cited by 1 | Viewed by 1712
Abstract
The confused flour beetle, Tribolium confusum du Val, is one of the cosmopolitan and polyphagous storage insect pests. The frequent application of chemical insecticides has resulted in several side effects, including threats to human health and non-target organisms and the resistance of insect [...] Read more.
The confused flour beetle, Tribolium confusum du Val, is one of the cosmopolitan and polyphagous storage insect pests. The frequent application of chemical insecticides has resulted in several side effects, including threats to human health and non-target organisms and the resistance of insect pests. In the current study, the fumigant toxicity and feeding deterrence potential of Artemisia fragrans Willd. essential oil on T. confusum adults were investigated. The essential oil was rich in terpenic compounds, in which α-thujone (27.8%) and 1,8-cineole (22.8%) were dominant. The essential oil displayed significant fumigant toxicity on T. confusum, where a concentration of 35.3 μL/L caused 100% mortality of the treated adults after 48 h. The LC30 and LC40 values (lethal concentrations to kill 30% and 40% of tested insects: 15.1 and 18.4 μL/L, respectively) significantly decreased the nutritional indices of the pest, including the consumption index, relative consumption rate, and relative growth rate. The feeding deterrence index of the essential oil were calculated as being 62.29 and 48.66% for the concentrations of 15.1 and 18.4 μL/L after 5 days, respectively. Accordingly, A. fragrans essential oil can be considered an efficient, available, and natural alternative to detrimental chemical pesticides in the management of T. confusum. Full article
Show Figures

Figure 1

13 pages, 4986 KiB  
Article
Structural Characterization and Functional Analysis of Mevalonate Kinase from Tribolium castaneum (Red Flour Beetle)
by Haogang Zheng, Yuanyuan Yang, Ying Hu, Jiaxuan Shi, Qiaohui Li, Yuanqiang Wang, Qingyou Xia and Pengchao Guo
Int. J. Mol. Sci. 2024, 25(5), 2552; https://doi.org/10.3390/ijms25052552 - 22 Feb 2024
Cited by 1 | Viewed by 1543
Abstract
Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle Tribolium castaneum (Tc [...] Read more.
Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle Tribolium castaneum (TcMevK), which adopts a compact α/β conformation that can be divided into two parts: an N-terminal domain and a C-terminal domain. A narrow, deep cavity accommodating the substrate and cofactor was observed at the junction between the two domains of TcMevK. Computational simulation combined with site-directed mutagenesis and biochemical analyses allowed us to define the binding mode of TcMevK to cofactors and substrates. Moreover, TcMevK showed optimal enzyme activity at pH 8.0 and an optimal temperature of 40 °C for mevalonate as the substrate. The expression profiles and RNA interference of TcMevK indicated its critical role in controlling juvenile hormone biosynthesis, as well as its participation in the production of other terpenoids in T. castaneum. These findings improve our understanding of the structural and biochemical features of insect Mevk and provide a structural basis for the design of MevK inhibitors. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop