Artemisia fragrans Willd. Essential Oil: Chemical Profile and Insecticidal Potential against the Confused Flour Beetle, Tribolium confusum du Val
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis of Essential Oil
2.2. Fumigant Toxicity of Essential Oil
2.3. Antifeedant Effects of Essential Oil
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Essential Oil Extraction
4.2. Chemical Analysis of Essential Oil
4.3. Insect Rearing
4.4. Fumigant Toxicity of Essential Oil
4.5. Antifeedant Effects of Essential Oil
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pai, A.; Bucher, G. Tribolium. In Encyclopedia of Animal Behavior, 2nd ed.; Choe, J.C., Ed.; Elsevier Science & Technology: San Diego, CA, USA, 2019; Volume 3, pp. 231–241. [Google Scholar]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [PubMed]
- Scorza, F.A.; Beltramim, L.; Bombardi, L.M. Pesticide exposure and human health: Toxic legacy. Clinics 2023, 78, 100249. [Google Scholar] [CrossRef]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hassanien, M.F.R.; Assiri, A.M.A.; Alzohairy, A.M.; Oraby, H.F. Health-promoting value and food applications of black cumin essential oil: An overview. J. Food Sci. Technol. 2015, 52, 6136–6142. [Google Scholar] [CrossRef] [PubMed]
- Hossain, F.; Mostofa, M.G.; Alam, A.K. Traditional uses and pharmacological activities of the genus Leea and its phytochemicals: A review. Heliyon 2021, 7, e06222. [Google Scholar] [CrossRef] [PubMed]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A. Essential oil as natural biocides in conservation of cultural heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef] [PubMed]
- Palla, F.; Bucchini, A.E.A.; Giamperi, L.; Marino, P.; Raimondo, F.M. Extracts as antimicrobial agents in sustainable conservation of Erythrina caffra (Fabaceae) historical trees. Antibiotics 2023, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Palla, F. Plant essential oils as biocides in sustainable strategies for the conservation of cultural heritage. Sustainability 2023, 15, 8522. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- De Sousa, D.P.; Damasceno, R.O.; Amorati, R.; Elshabrawy, H.A.; De Castro, R.D.; Bezerra, D.P.; Nunes, V.R.; Gomes, R.C.; Lima, T.C. Essential oils: Chemistry and pharmacological activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Jalali Sendi, J. A review on recent research results on bio-effects of plant essential oils against major Coleopteran insect pests. Toxin Rev. 2015, 34, 76–91. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Ziaee, M.; Palla, F. Essential oils extracted from deferent species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecule 2020, 25, 1556. [Google Scholar] [CrossRef]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Gokturk, T.; Kordali, S.; Ak, K.; Kesdek, M.; Usanmaz Bozhuyuk, A. Insecticidal effects of some essential oils against Tribolium confusum (du Val.) and Acanthoscelides obtectus (Say), (Coleoptera: Tenebrionidae and Bruchidae) adults. Int. J. Trop. Insect Sci. 2020, 40, 637–643. [Google Scholar] [CrossRef]
- Zaka, S.M.; Iqbal, N.; Saeed, Q.; Akrem, A.; Batool, M.; Khan, A.A.; Anwar, A.; Bibi, M.; Azeem, S.; Rizvi, D.E.; et al. Toxic effects of some insecticides, herbicides, and plant essential oils against Tribolium confusum Jacquelin du Val (Insecta: Coleoptera: Tenebrionidae). Saudi J. Biol. Sci. 2019, 26, 1767–1771. [Google Scholar] [CrossRef] [PubMed]
- Kheloul, L.; Anton, S.; Bréard, D.; Kellouche, A. Fumigant toxicity of some essential oils and eucalyptol on different life stages of Tribolium confusum (Coleoptera: Tenebrionidae). Bot. Lett. 2023, 170, 3–14. [Google Scholar] [CrossRef]
- Ebadollahi, A. Fumigant toxicity and antifeedant effects of rosemary essential oil against the flour beetle, Tribolium confusum. Plant Pest Res. 2024, 14, 19–33. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Boil. 2011, 49, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Batsatsashvili, K.; Mehdiyeva, N.P.; Fayvush, G.; Kikvidze, Z.; Khutsishvili, M.; Maisaia, I.; Sikharulidze, S.; Tchelidze, D.; Aleksanyan, A.; Alizade, V.M.; et al. Artemisia annua L. Artemisia fragrans Willd. Asteraceae. In Ethnobotany of the Caucasus. European Ethnobotany, 1st ed.; Bussmann, R., Ed.; Springer: Cham, Switzerland, 2017; pp. 117–122. [Google Scholar] [CrossRef]
- Sharifi, J.; Shahmoradi, A.; Nori, A.; Azimi Motam, F. The study of vegetation dynamics in Moqan rangelandse of Ardabil Province-Iran (Case study: Boran winter rangelands). IJRDR 2018, 24, 719–729. [Google Scholar] [CrossRef]
- Younessi-Hamzekhanlu, M.; Farmani, B.; Alirezalu, K.; Fathizadeh, O.; Sabzi Nojadeh, M. Study of phytochemical composition and antibacterial effects of Artemisia fragrans Willd. essential oil in different seasons. J. Food Sci. Technol. 2019, 91, 357–367. [Google Scholar]
- Younessi-Hamzekhanlu, M.; Sanjari, S.; Dejahang, A.; Sheidai Karkaj, E.; Sabzi Nojadeh, M.; Mert Gönenç, T.; Ozturk, M. Evaluation of essential oil from different Artemisia fragrans Willd. populations: Chemical composition, antioxidant, and antibacterial activity. J. Essent. Oil-Bear. Plants 2020, 23, 1218–1236. [Google Scholar] [CrossRef]
- Aminkhani, A.; Sharifi, S.; Hosseinzadeh, P. Chemical constituent, antimicrobial activity, and synergistic effect of the stem, leaf, and flower essential oil of the Artemisia fragrans Willd. From Khoy. Chem. Biodivers. 2021, 18, e2100241. [Google Scholar] [CrossRef]
- Akbari, P.; Asnaashari, S.; Rahimpour, Y.; Asgharian, P. In Vitro antimalarial activity and phytochemical analysis of aerial parts of Artemisia fragrans Willd. Jundishapur. J. Nat. Pharm. Prod. 2022, 17, e117597. [Google Scholar] [CrossRef]
- Orhan, I.E.; Belhattab, R.; Şenol, F.S.; Gülpinar, A.R.; Hoşbaş, S.; Kartal, M. Profiling of cholinesterase inhibitory and antioxidant activities of Artemisia absinthium, A. herba-alba, A. fragrans, Marrubium vulgare, M. astranicum, Origanum vulgare subsp. glandulossum and essential oil analysis of two Artemisia species. Ind. Crops Prod. 2010, 32, 566–571. [Google Scholar] [CrossRef]
- Pouresmaeil, M.; Nojadeh, M.S.; Movafeghi, A.; Maggi, F. Exploring the bio-control efficacy of Artemisia fragrans essential oil on the perennial weed Convolvulus arvensis: Inhibitory effects on the photosynthetic machinery and induction of oxidative stress. Ind. Crops Prod. 2020, 155, 112785. [Google Scholar] [CrossRef]
- Najm, M.; Hadighi, R.; Heidari-Kharaji, M.; Alipour, M.; Hajizadeh, M.; Rafiei Sefiddashti, R.; Heidari, A.; Badirzadeh, A. Anti-Leishmanial activity of Artemisia persica, A. spicigera, and A. fragrance against Leishmania major. Iran J. Parasitol. 2021, 16, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhang, K.; Wei, L.; Wei, G.; Xiong, W.; Lu, Y.; Zhang, Y.; Gao, A.; Li, B. Insecticidal activity of Artemisia vulgaris essential oil and transcriptome analysis of Tribolium castaneum in response to oil exposure. Front. Genet. 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hua, J.; Qu, B.; Guo, X.; Wang, Y.; Shao, M.; Luo, S. Insecticidal terpenes from the essential oils of Artemisia nakaii and their inhibitory effects on acetylcholinesterase. Front. Plant Sci. 2021, 12, 720816. [Google Scholar] [CrossRef] [PubMed]
- Oftadeh, M.; Sendi, J.J.; Ebadollahi, A.; Setzer, W.N.; Krutmuang, P. Mulberry protection through flowering-stage essential oil of Artemisia annua against the lesser mulberry pyralid, Glyphodes pyloalis Walker. Foods 2021, 10, 210. [Google Scholar] [CrossRef]
- Naghizadeh, S.; Rafiee-Dastjerdi, H.; Naseri, B.; Golizadeh, A.; Esmaielpour, B. Insecticidal activity of essential oils from Artemisia absinthium L., Artemisia dracunculus L. and Achillea millefolium L. against Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). JCP 2019, 8, 479–489. [Google Scholar]
- Zhang, J.; Li, B.; Lu, X.; Zheng, Y.; Wang, D.; Zhang, Z.; Zeng, D.; Du, S. Chemical diversity and anti-insect activity evaluation of essential oils extracted from five Artemisia species. Plants 2022, 11, 1627. [Google Scholar] [CrossRef] [PubMed]
- Ikawati, S.; Himawan, T.; Abadi, A.L.; Tarno, H. Fumigant and feeding deterrent activity of essential oils against Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Biodiversitas 2020, 21, 4301–4308. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; El-Sabrout, A.M. Anti-nutritional, antifeedant, growth-disrupting and insecticidal effects of four plant essential oils on Spodoptera littoralis (Lepidoptera: Noctuidae). JCP 2018, 7, 135–150. [Google Scholar]
- Valcárcel, F.; Olmeda, A.S.; González, M.G.; Andrés, M.F.; Navarro-Rocha, J.; González-Coloma, A. Acaricidal and insect antifeedant effects of essential oils from selected aromatic plants and their main components. Front. Agron. 2021, 3, 662802. [Google Scholar] [CrossRef]
- Morteza-Semnani, K.; Akbarzadeh, M.; Moshiri, K. Essential oil composition of Artemisia fragrans Willd. From Iran. Flav. Frag. J. 2015, 20, 330–331. [Google Scholar] [CrossRef]
- Saedi, K.; Azarnivand, H.; Jalili, A.; Sefidkon, F.; Jafari, M. Essential oil studies in eight populations of Artemisia L. species in Azarbaijan-e-Gharbi, Iran. J. Iranian Nat. Res. 2008, 61, 501–512. [Google Scholar]
- Moghaddam, M.; Mehdizadeh, L. Chemistry of essential oils and factors influencing their constituents. In Handbook of Food Bioengineering, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: New York, NY, USA, 2017; pp. 379–419. [Google Scholar] [CrossRef]
- Amiri, H.; Goodarzi, M. Screening chemical composition of essential oils and antioxidant activities of two Artemisia species from Iran. Iran. J. Plant Physiol. 2017, 7, 2017–2025. [Google Scholar]
- Barazandeh, M.M. Essential oil composition of Artemisia fragrans Willd. from Iran. J. Essent. Oil Res. 2003, 15, 414–415. [Google Scholar] [CrossRef]
- Delazar, A.; Naseri, M.; Nahar, L.; Moghadam, S.B.; Esnaashari, S.; Nazemiyeh, H.; Saker, S.D. GC-MS analysis and antioxidant activities of essential oils of two cultivated Artemisia species. Chem. Nat. Compd. 2007, 43, 112–114. [Google Scholar] [CrossRef]
- Farghadan, M.; Ghafoori, H.; Vakhshiteh, F.; Shahzadeh Fazeli, S.A.; Farzaneh, P.; Kokhaei, P. The Effect of Artemisia fragrans Willd: Essential oil on inducible nitric oxide synthase gene expression and nitric oxide production in lipopolysaccharide-stimulated murine macrophage cell line. Iran J. Allergy Asthma Immunol. 2016, 15, 515–524. [Google Scholar]
- Safaei-Ghomi, J.; Ahmadi, T.; Batooli, H.; Kashi, F.J. Antioxidant and antimicrobial activity of Artemisia fragrans Willd essential oil and methanol extracts. Chemija 2012, 23, 100–107. [Google Scholar]
- Shafaghat, A.; Noormohammadi, Y.; Zaifizadeh, M. Composition and antibacterial activity of essential oils of Artemisia fragrans Willd. leaves and roots from Iran. Nat. Prod. Commun. 2009, 4, 279–282. [Google Scholar] [CrossRef]
- Taraz, A.; Salimi, F. Chemical composition and antimicrobial activity of essential oil of Artemisia fragrans Willd. in north-west of Iran. Am. J. Essent. Oils Nat. Prod. 2015, 3, 07–09. [Google Scholar]
- Yaghoubi, M.; Ayaseh, A.; Alirezalu, K.; Nemati, Z.; Pateiro, M.; Lorenzo, J.M. Effect of chitosan coating incorporated with Artemisia fragrans essential oil on fresh chicken meat during refrigerated storage. Polymers 2021, 13, 716. [Google Scholar] [CrossRef] [PubMed]
- Mojarab-Mahboubkar, M.; Sendi, J.J.; Mahmoodi, N. The sweet wormwood essential oil and its two major constituents are promising for a safe control measure against fall webworm. Pestic. Biochem. Phys. 2022, 184, 105124. [Google Scholar] [CrossRef]
- Xie, F.; Rizvi, S.A.H.; Zeng, X. Fumigant toxicity and biochemical properties of (α+β) thujone and 1, 8-cineole derived from Seriphidium brevifolium volatile oil against the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae). Rev. Bras. Farmacogn. 2019, 29, 720–727. [Google Scholar] [CrossRef]
- Rozman, V.; Kalinovic, I.; Korunic, Z. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. J. Stored Prod. Res. 2007, 43, 349–355. [Google Scholar] [CrossRef]
- You, C.X.; Guo, S.S.; Zhang, W.J.; Yang, K.; Wang, C.F.; Geng, Z.F.; Du, S.S.; Deng, Z.W.; Wang, Y.Y. Chemical constituents and activity of Murraya microphylla essential oil against Lasioderma serricorne. Nat. Prod. Commun. 2015, 10, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Kordali, Ş.; Usanmaz, A.; Bayrak, N.; Çakır, A. Fumigation of volatile monoterpenes and aromatic compounds against adults of Sitophilus granarius (L.) (Coleoptera: Curculionidae). Rec. Nat. Prod. 2017, 11, 362–373. [Google Scholar]
- Ortiz de Elguea-Culebras, G.; Sánchez-Vioque, R.; Berruga, M.I.; Herraiz-Peñalver, D.; Santana-Méridas, O. Antifeedant effects of common terpenes from Mediterranean aromatic plants on Leptinotarsa decemlineata. J. Soil Sci. Plant Nutr. 2017, 17, 475–485. [Google Scholar] [CrossRef]
- Oftadeh, M.; Sendi, J.J.; Valizadeh, B.; Ebadollahi, A. Hemocytic cell line from the moth Glyphodes pyloalis (Lepidoptera: Crambidae) response to essential oils from Artemisia annua (Asterales: Asteraceae). In Vitro Cell Dev. Biol. Anim. 2022, 58, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Ebadollahi, A.; Naseri, B.; Abedi, Z.; Setzer, W.N.; Changbunjong, T. Promising insecticidal efficiency of essential oils isolated from four cultivated Eucalyptus species in Iran against the lesser grain borer, Rhyzopertha dominica (F.). Insects 2022, 13, 517. [Google Scholar] [CrossRef] [PubMed]
- Ebadollahi, A.; Naseri, B.; Abedi, Z.; Setzer, W.N. Chemical profiles and insecticidal potential of essential oils isolated from four Thymus species against Rhyzopertha dominica (F.). Plants 2022, 11, 1567. [Google Scholar] [CrossRef] [PubMed]
- Asri, Y. Range Plants of Iran, Vil. 2: Dicotyledons, 1st ed.; Research Institute of Forests and Rangelands: Tehran, Iran, 2012; pp. 575–1107. [Google Scholar]
- Jaimand, K.; Rezaee, M.B. Investigation on chemical constituents of essential oils from Achillea millefolium L. subsp. millefolium by distillation methods. J. Med. Arom. Plants 2004, 20, 181–190. [Google Scholar]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. Available online: https://webbook.nist.gov/chemistry/ (accessed on 12 May 2024).
- Waldbauer, G.P. The consumption and utilization of food by insects. Adv. Insect Physiol. 1968, 5, 229–288. [Google Scholar] [CrossRef]
- Isman, M.B.; Koul, O.; Luczynski, A.; Kaminski, J. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J. Agric. Food Chem. 1990, 38, 1406–1411. [Google Scholar] [CrossRef]
RIcalc | RIdb | Compounds | % | RIcalc | RIdb | Compounds | % |
---|---|---|---|---|---|---|---|
844 | 847 | (Z)-Salvene | 0.3 | 1237 | 1238 | Cuminal | 1.2 |
929 | 932 | α-Pinene | 2.0 | 1242 | 1239 | Carvone | 0.8 |
945 | 946 | Camphene | 1.9 | 1244 | 1244 | Carvotanacetone | 0.2 |
969 | 969 | Sabinene | tr | 1249 | 1249 | Piperitone | 0.8 |
978 | 974 | β-Pinene | 0.3 | 1251 | 1255 | Carvenone | 0.2 |
985 | 979 | Octan-3-one | 0.1 | 1254 | 1253 | trans-Sabinene-hydrate acetate | 0.3 |
991 | 988 | Myrcene | 0.6 | 1283 | 1287 | Bornyl acetate | 1.0 |
1029 | 1025 | p-Cymene | 1.3 | 1294 | 1289 | p-Cymen-7-ol | 3.5 |
1034 | 1026 | 1,8-Cineole | 22.8 | 1298 | 1299 | Terpin-1-en-4-yl acetate | 0.4 |
1053 | 1054 | γ-Terpinene | 0.4 | 1304 | 1298 | Carvacrol | 1.4 |
1100 | 1101 | α-Thujone | 27.8 | 1315 | 1316 | δ-Terpinyl acetate | 0.4 |
1118 | 1112 | β-Thujone | 2.8 | 1322 | 1324 | Myrtenyl acetate | 0.2 |
1122 | 1118 | cis-p-Menth-2-en-1-ol | 0.8 | 1345 | 1346 | α-Terpinyl acetate | 0.4 |
1134 | 1139 | Camphor | 1.1 | 1352 | 1356 | Eugenol | 0.2 |
1136 | 1136 | trans-p-Menth-2-en-1-ol | 2.3 | 1380 | 1376 | Methyl (E)-cinnamate | 0.6 |
1140 | 1140 | trans-Verbenol | 1.5 | 1398 | 1392 | (Z)-Jasmone | 0.8 |
1150 | 1154 | Sabina ketone | 0.4 | 1416 | 1417 | (E)-β-Caryophyllene | 0.7 |
1154 | 1160 | Pinocarvone | 0.7 | 1445 | 1454 | Geranyl acetone | 0.1 |
1159 | 1155 | iso-Borneol | 1.3 | 1449 | 1452 | α-Humulene | 0.1 |
1166 | 1165 | Borneol | 2.7 | 1483 | na | p Menthane-1,2,4-triol | 0.2 |
1178 | 1174 | Terpinen-4-ol | 2.9 | 1574 | 1574 | γ-Undecalactone | 0.2 |
1182 | 1179 | p-Methylacetophenone | 0.3 | 1583 | 1577 | Spathulenol | 1.0 |
1185 | 1183 | Cryptone | 0.3 | 1587 | 1582 | Caryophyllene oxide | 0.6 |
1191 | 1185 | p-Cymen-8-ol | 1.0 | 1662 | 1668 | 14-Hydroxy-9-epi-(E)-Caryophyllene | 0.2 |
1195 | 1186 | α-Terpineol | 0.9 | Monoterpene hydrocarbons | 4.5 | ||
1198 | 1195 | cis-Piperitol | 1.0 | Oxygenated monoterpenoids | 83.8 | ||
1202 | 1194 | Myrtenol | 0.5 | Sesquiterpene hydrocarbons | 0.9 | ||
1220 | 1207 | trans-Piperitol | 1.3 | Oxygenated sesquiterpenoids | 1.6 | ||
1223 | 1204 | Verbenone | 0.5 | Benzenoid aromatics | 1.2 | ||
1234 | 1227 | p-Cumenol | 0.3 | Others | 1.7 | ||
Total identified | 92.7 |
Time (h) | Lethal Concentrations with 95% Confidence Limits (μL/L) | Intercept | Slope | χ2 (df = 3) | Sig.* | R2 | |||
---|---|---|---|---|---|---|---|---|---|
LC30 | LC40 | LC50 | LC90 | ||||||
24 | 15.09 (13.23–16.61) | 18.40 (16.69–20.02) | 22.13 (20.34–24.27) | 56.42 (46.14–76.97) | −4.24 | 3.15 | 1.91 | 0.59 | 0.98 |
48 | 11.30 (9.92–12.42) | 12.94 (11.69–14.01) | 14.70 (13.52–15.74) | 27.96 (25.47–31.73) | −5.36 | 4.59 | 7.33 | 0.06 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebadollahi, A.; Setzer, W.N.; Palla, F. Artemisia fragrans Willd. Essential Oil: Chemical Profile and Insecticidal Potential against the Confused Flour Beetle, Tribolium confusum du Val. Plants 2024, 13, 1725. https://doi.org/10.3390/plants13131725
Ebadollahi A, Setzer WN, Palla F. Artemisia fragrans Willd. Essential Oil: Chemical Profile and Insecticidal Potential against the Confused Flour Beetle, Tribolium confusum du Val. Plants. 2024; 13(13):1725. https://doi.org/10.3390/plants13131725
Chicago/Turabian StyleEbadollahi, Asgar, William N. Setzer, and Franco Palla. 2024. "Artemisia fragrans Willd. Essential Oil: Chemical Profile and Insecticidal Potential against the Confused Flour Beetle, Tribolium confusum du Val" Plants 13, no. 13: 1725. https://doi.org/10.3390/plants13131725
APA StyleEbadollahi, A., Setzer, W. N., & Palla, F. (2024). Artemisia fragrans Willd. Essential Oil: Chemical Profile and Insecticidal Potential against the Confused Flour Beetle, Tribolium confusum du Val. Plants, 13(13), 1725. https://doi.org/10.3390/plants13131725