Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = tetra PEG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3205 KiB  
Article
Click on Click: Click-Flavone Glycosides Encapsulated in Click-Functionalised Polymersomes for Glioblastoma Therapy
by Nuno M. Saraiva, Ana Alves, Ana Isabel Barbosa, Andreia Marinho, Salette Reis, Marta Correia-da-Silva and Paulo C. Costa
Pharmaceutics 2025, 17(6), 771; https://doi.org/10.3390/pharmaceutics17060771 - 12 Jun 2025
Viewed by 652
Abstract
In this study, three new 3,7-dihydroxyflavone (1) derivatives with different sugars were designed and synthesised by click chemistry. Click chemistry requires the previously modification of building blocks with azide and alkyne groups and therefore, the 3,7-dihydroxyflavone (1) was first [...] Read more.
In this study, three new 3,7-dihydroxyflavone (1) derivatives with different sugars were designed and synthesised by click chemistry. Click chemistry requires the previously modification of building blocks with azide and alkyne groups and therefore, the 3,7-dihydroxyflavone (1) was first converted in 3,7-(prop-2-yn-yloxy)flavone (2) and acetobromo-α-D-glucose (3) was converted into 2,3,4,6-tetra-O-acetyl-β-glucopyranosyl azide (4). Subsequently, a click reaction was performed via copper-catalysed cycloaddition (CuAAC) between 2 and 4, as well as between 2 and 2-acetamido-3,4,6-tetra-O-acetyl-2-deoxy-β-D-glucopyranosyl (AG931) and, 2 and commercial 2-azidoethyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl (AG358), resulting in three distinct disubstituted flavone glycosides (5a5c). Biological assays performed on L929 fibroblast cell lines and human glioblastoma astrocytoma U-251 cell lines indicated cytocompatibility with fibroblasts and reduced metabolic activity of GBM cells in the presence of compound 5b and 5c. To enhance therapeutic effect, improve local drug delivery, and overcome solubility issues of these high molecular weight compounds, the synthesised compounds were encapsulated in polymeric particles (polymersomes, PMs) composed of polylactic acid-polyethylene glycol (PEG-PLA) functionalized, once more by click chemistry, with 0.1 mol% transferrin mimetic (T7—HRPYIAH) peptide. The PMs were prepared by solvent displacement and exhibited stability over 100 days, encapsulation efficiency of 39–93%, and mean size diameters of 120–180 nm. The toxicity assays of the PMs on the U-251 cell line showed a significant decrease in metabolic activity, supporting the potential of this delivery system against GBM. Among the PMs tested, the flavone 5c-based PM demonstrated the highest efficacy. Full article
(This article belongs to the Special Issue Nano-Based Technology for Glioblastoma)
Show Figures

Graphical abstract

18 pages, 14917 KiB  
Article
Preparation of Nanoparticle-Immobilized Gold Surfaces for the Reversible Conjugation of Neurotensin Peptide
by Hidayet Gok, Deniz Gol, Betul Zehra Temur, Nureddin Turkan, Ozge Can, Ceyhun Ekrem Kirimli, Gokcen Ozgun and Ozgul Gok
Biomolecules 2025, 15(6), 767; https://doi.org/10.3390/biom15060767 - 27 May 2025
Viewed by 2569
Abstract
Polymer coatings as thin films stand out as a commonly used strategy to modify biosensor surfaces for improving detection performance; however, nonspecific biomolecule interactions and the limited degree of ligand conjugation on the surface have necessitated the development of innovative methods for surface [...] Read more.
Polymer coatings as thin films stand out as a commonly used strategy to modify biosensor surfaces for improving detection performance; however, nonspecific biomolecule interactions and the limited degree of ligand conjugation on the surface have necessitated the development of innovative methods for surface modification. To this end, methacrylated tethered telechelic polyethylene glycol (PEG-diMA) chains of three different molecular weights (2, 6, and 10 kDa) were synthesized herein and used for obtaining thiolated nanoparticles (NPs) upon adding excess amounts of a tetra-thiol crosslinker. Characterized according to their size, surface charge, morphology, and thiol amounts, these nanoparticles were immobilized on gold surfaces that mimicked gold-coated mass sensor platforms. The PEG-based nanoparticles, prepared especially by PEG6K-diMA polymers, were shown to result in the preparation of a monolayer and smooth coating of 80–120 nm thickness. Cysteine-modified NTS(8–13) peptide (RRPYIL) was conjugated to thiolated NP with reversible disulfide bonds and it was demonstrated that its cleavage with a reducing agent such as dithiothreitol (DTT) restores the NP-immobilized gold surface for at least two cycles. Together with its binding studies to NTSR2 antibodies, it was revealed that the peptide-conjugated NP-modified gold surface could be employed as a model for a reusable sensor surface for the detection of biomarkers of same or different types. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

12 pages, 1908 KiB  
Article
The First Example of a Model Amphiphilic Polymer Conetwork Containing a Hydrophobic Oligopeptide: The Case of End-Linked Tetra[Poly(ethylene glycol)-b-oligo(L-alanine)]
by Demetris E. Apostolides, George Michael, Costas S. Patrickios, Takamasa Sakai, Iro Kyroglou, Maria Kasimatis, Hermis Iatrou, Sylvain Prévost and Michael Gradzielski
Gels 2025, 11(5), 331; https://doi.org/10.3390/gels11050331 - 29 Apr 2025
Cited by 1 | Viewed by 535
Abstract
Herein we describe the development of the first model amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(L-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and [...] Read more.
Herein we describe the development of the first model amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(L-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and end-linked with another four-armed star PEG homopolymer (tetraPEG star) bearing aryl-substituted acylhydrazide terminal groups. The present successful synthesis that yielded the peptide-containing model APCN was preceded by several unsuccessful efforts that followed different synthetic strategies. In addition to the synthetic work, we also present the structural characterization of the peptide-bearing APCN in D2O using small-angle neutron scattering (SANS). Full article
Show Figures

Figure 1

22 pages, 6166 KiB  
Article
Schiff Base-Crosslinked Tetra-PEG-BSA Hydrogel: Design, Properties, and Multifunctional Functions
by Yuanyuan Qu, Jinlong Li, Xin Jia and Lijun Yin
J. Funct. Biomater. 2025, 16(2), 69; https://doi.org/10.3390/jfb16020069 - 18 Feb 2025
Cited by 1 | Viewed by 1721
Abstract
Hydrogel network structures play a crucial role in determining mechanical properties and have broad applications in biomedical and industrial fields. Therefore, their rational design is essential. Herein, we developed a Schiff base-crosslinked hydrogel through the reaction of Tetra-armed polyethylene glycol with aldehyde end [...] Read more.
Hydrogel network structures play a crucial role in determining mechanical properties and have broad applications in biomedical and industrial fields. Therefore, their rational design is essential. Herein, we developed a Schiff base-crosslinked hydrogel through the reaction of Tetra-armed polyethylene glycol with aldehyde end groups (Tetra-PEG-CHO) and bovine serum albumin (BSA) under alkaline conditions. In addition, the Tetra-PEG-BSA hydrogel showed a rapid gelation time of around 11 s, much faster than that of the GLU-BSA, HT-BSA, and GDL-BSA hydrogels. It had high optical transmittance (92.92% at 600 nm) and swelling ratios superior to the other gels in different solutions, maintaining structural integrity even in denaturing environments such as guanidine hydrochloride and SDS. Mechanical tests showed superior strain at break (84.12 ± 0.76%), rupture stress (28.64 ± 1.21 kPa), and energy dissipation ability (468.0 ± 34.9 kJ·m−3), surpassing all control group hydrogels. MTT cytotoxicity assays indicated that cell viability remained >80% at lower concentrations, confirming excellent biocompatibility. These findings suggest that Tetra-PEG-BSA hydrogels may serve as effective materials for drug delivery, tissue engineering, and 3D printing. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Figure 1

22 pages, 2416 KiB  
Article
Molecular Dynamics Study of the Green Solvent Polyethylene Glycol with Water Impurities
by Markus M. Hoffmann, Matthew D. Too, Nathaniel A. Paddock, Robin Horstmann, Sebastian Kloth, Michael Vogel and Gerd Buntkowsky
Molecules 2024, 29(9), 2070; https://doi.org/10.3390/molecules29092070 - 30 Apr 2024
Cited by 6 | Viewed by 2093
Abstract
Polyethylene glycol (PEG) is one of the environmentally benign solvent options for green chemistry. It readily absorbs water when exposed to the atmosphere. The Molecular Dynamics (MD) simulations of PEG200, a commercial mixture of low molecular weight polyethyelene glycol oligomers, as well as [...] Read more.
Polyethylene glycol (PEG) is one of the environmentally benign solvent options for green chemistry. It readily absorbs water when exposed to the atmosphere. The Molecular Dynamics (MD) simulations of PEG200, a commercial mixture of low molecular weight polyethyelene glycol oligomers, as well as di-, tetra-, and hexaethylene glycol are presented to study the effect of added water impurities up to a weight fraction of 0.020, which covers the typical range of water impurities due to water absorption from the atmosphere. Each system was simulated a total of four times using different combinations of two force fields for the water (SPC/E and TIP4P/2005) and two force fields for the PEG and oligomer (OPLS-AA and modified OPLS-AA). The observed trends in the effects of water addition were qualitatively quite robust with respect to these force field combinations and showed that the water does not aggregate but forms hydrogen bonds at most between two water molecules. In general, the added water causes overall either no or very small and nuanced effects in the simulation results. Specifically, the obtained water RDFs are mostly identical regardless of the water content. The added water reduces oligomer hydrogen bonding interactions overall as it competes and forms hydrogen bonds with the oligomers. The loss of intramolecular oligomer hydrogen bonding is in part compensated by oligomers switching from inter- to intramolecular hydrogen bonding. The interplay of the competing hydrogen bonding interactions leads to the presence of shallow extrema with respect to the water weight fraction dependencies for densities, viscosities, and self-diffusion coefficients, in contrast to experimental measurements, which show monotonous dependencies. However, these trends are very small in magnitude and thus confirm the experimentally observed insensitivity of these physical properties to the presence of water impurities. Full article
Show Figures

Graphical abstract

17 pages, 3917 KiB  
Article
The Synthesis and Characterization of a Delivery System Based on Polymersomes and a Xanthone with Inhibitory Activity in Glioblastoma
by Ana Alves, Ana Margarida Silva, Claúdia Nunes, Sara Cravo, Salette Reis, Madalena Pinto, Emília Sousa, Francisca Rodrigues, Domingos Ferreira, Paulo C. Costa and Marta Correia-da-Silva
Life 2024, 14(1), 132; https://doi.org/10.3390/life14010132 - 17 Jan 2024
Cited by 5 | Viewed by 2453
Abstract
Glioblastoma (GBM) is the most common and deadly primary malignant brain tumor. Current therapies are insufficient, and survival for individuals diagnosed with GBM is limited to a few months. New GBM treatments are urgent. Polymeric nanoparticles (PNs) can increase the circulation time of [...] Read more.
Glioblastoma (GBM) is the most common and deadly primary malignant brain tumor. Current therapies are insufficient, and survival for individuals diagnosed with GBM is limited to a few months. New GBM treatments are urgent. Polymeric nanoparticles (PNs) can increase the circulation time of a drug in the brain capillaries. Polymersomes (PMs) are PNs that have been described as having attractive characteristics, mainly due to their stability, prolonged circulation period, biodegradability, their ability to sustain the release of drugs, and the possibility of surface functionalization. In this work, a poly(ethylene glycol)-ε-caprolactone (PEG-PCL) copolymer was synthesized and PMs were prepared and loaded with an hydrolytic instable compound, previously synthesized by our research team, the 3,6-bis(2,3,4,6-tetra-O-acetyl-β-glucopyranosyl)xanthone (XGAc), with promising cytotoxicity on glioblastoma cells (U-373 MG) but also on healthy cerebral endothelial cells (hCMEC/D3). The prepared PMs were spherical particles with uniform morphology and similar sizes (mean diameter of 200 nm) and were stable in aqueous suspension. The encapsulation of XGAc in PMs (80% encapsulation efficacy) protected the healthy endothelial cells from the cytotoxic effects of this compound, while maintaining cytotoxicity for the glioblastoma cell line U-373 MG. Our studies also showed that the prepared PMs can efficiently release XGAc at intratumoral pHs. Full article
Show Figures

Figure 1

12 pages, 3687 KiB  
Article
Flexible Fabrication and Hybridization of Bioactive Hydrogels with Robust Osteogenic Potency
by Liang Zhu, Qian Hou, Meijun Yan, Wentao Gao, Guoke Tang and Zhiqing Liu
Pharmaceutics 2023, 15(10), 2384; https://doi.org/10.3390/pharmaceutics15102384 - 26 Sep 2023
Cited by 4 | Viewed by 1674
Abstract
Osteogenic scaffolds reproducing the natural bone composition, structures, and properties have represented the possible frontier of artificially orthopedic implants with the great potential to revolutionize surgical strategies against the bone-related diseases. However, it is difficult to achieve an all-in-one formula with the simultaneous [...] Read more.
Osteogenic scaffolds reproducing the natural bone composition, structures, and properties have represented the possible frontier of artificially orthopedic implants with the great potential to revolutionize surgical strategies against the bone-related diseases. However, it is difficult to achieve an all-in-one formula with the simultaneous requirement of favorable biocompatibility, flexible adhesion, high mechanical strength, and osteogenic effects. Here in this work, an osteogenic hydrogel scaffold fabricated by inorganic-in-organic integration between amine-modified bioactive glass (ABG) nanoparticles and poly(ethylene glycol) succinimidyl glutarate-polyethyleneimine (TSG-PEI) network was introduced as an all-in-one tool to flexibly adhere onto the defective tissue and subsequently accelerate the bone formation. Since the N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG polymer could quickly react with the NH2-abundant polyethyleneimine (PEI) polymer and ABG moieties, the TSG-PEI@ABG hydrogel was rapidly formed with tailorable structures and properties. Relying on the dense integration between the TSG-PEI network and ABG moieties on a nano-scale level, this hydrogel expressed powerful adhesion to tissue as well as durable stability for the engineered scaffolds. Therefore, its self-endowed biocompatibility, high adhesive strength, compressive modulus, and osteogenic potency enabled the prominent capacities on modulation of bone marrow mesenchymal stem cell (BMSCs) proliferation and differentiation, which may propose a potential strategy on the simultaneous scaffold fixation and bone regeneration promotion for the tissue engineering fields. Full article
(This article belongs to the Special Issue Bioactive Polymers for Osteochondral Regeneration Applications)
Show Figures

Figure 1

10 pages, 2021 KiB  
Article
Decoupling between Translational Diffusion and Viscoelasticity in Transient Networks with Controlled Network Connectivity
by Takuya Katashima, Ryunosuke Kobayashi, Shohei Ishikawa, Mitsuru Naito, Kanjiro Miyata, Ung-il Chung and Takamasa Sakai
Gels 2022, 8(12), 830; https://doi.org/10.3390/gels8120830 - 16 Dec 2022
Cited by 4 | Viewed by 2342
Abstract
The mobility of sustained molecules is influenced by viscoelasticity, which is strongly correlated with the diffusional property in polymeric liquid. However, the study of transient networks formed by a reversible crosslink, which is the viscoelastic liquid, was insufficient due to the absence of [...] Read more.
The mobility of sustained molecules is influenced by viscoelasticity, which is strongly correlated with the diffusional property in polymeric liquid. However, the study of transient networks formed by a reversible crosslink, which is the viscoelastic liquid, was insufficient due to the absence of a model system. We compare the viscoelastic and diffusional properties of the transient networks, using the model system with controlled network connectivity (Tetra-PEG slime). According to independent measurements of viscoelasticity and diffusion, the root-mean-square distance the polymer diffuses during the viscoelastic relaxation time shows a large deviation from the self-size of the polymer, which is contrary to the conventional understanding. This decoupling between viscoelasticity and diffusion is unique for transient networks, suggesting that the viscoelastic relaxation is not induced by the diffusion of one prepolymer, particularly in the network with low connectivity. These findings will provide a definite basis for discussion to understand the viscoelasticity in transient networks. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Controlled Drug Delivery)
Show Figures

Figure 1

13 pages, 4375 KiB  
Article
Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration
by Shuai Chang, Jiedong Wang, Nanfang Xu, Shaobo Wang, Hong Cai, Zhongjun Liu and Xing Wang
Gels 2022, 8(11), 745; https://doi.org/10.3390/gels8110745 - 17 Nov 2022
Cited by 8 | Viewed by 2855
Abstract
The significant efforts being made towards the utilization of artificial soft materials holds considerable promise for developing tissue engineering scaffolds for bone-related diseases in clinics. However, most of these biomaterials cannot simultaneously satisfy the multiple requirements of high mechanics, good compatibility, and biological [...] Read more.
The significant efforts being made towards the utilization of artificial soft materials holds considerable promise for developing tissue engineering scaffolds for bone-related diseases in clinics. However, most of these biomaterials cannot simultaneously satisfy the multiple requirements of high mechanics, good compatibility, and biological osteogenesis. In this study, an osteogenic hybrid hydrogel between the amine-functionalized bioactive glass (ABG) and 4-armed poly(ethylene glycol) succinimidyl glutarate-gelatin network (SGgel) is introduced to flexibly adhere onto the defective tissue and to subsequently guide bone regeneration. Relying on the rapid ammonolysis reaction between amine groups (-NH2) of gelatin and ABG components and N-hydroxysuccinimide (NHS)-ester of tetra-PEG-SG polymer, the hydrogel networks were formed within seconds, offering a multifunctional performance, including easy injection, favorable biocompatibility, biological and mechanical properties (compressive strength: 4.2 MPa; storage modulus: 104 kPa; adhesive strength: 56 kPa), which could facilitate the stem cell viability, proliferation, migration and differentiation into osteocytes. In addition, the integration between the SGgel network and ABG moieties within a nano-scale level enabled the hybrid hydrogel to form adhesion to tissue, maintain the durable osteogenesis and accelerate bone regeneration. Therefore, a robust approach to the simultaneously satisfying tough adhesion onto the tissue defects and high efficiency for bone regeneration on a mouse skull was achieved, which may represent a promising strategy to design therapeutic scaffolds for tissue engineering in clinical applications. Full article
Show Figures

Figure 1

13 pages, 3928 KiB  
Article
Metabolic Study of Tetra-PEG-Based Hydrogel after Pelvic Implantation in Rats
by Baoyan Zuo, Mingxue Cao, Xiumei Tao, Xiaoyu Xu, Hongfei Leng, Yali Cui and Kaishun Bi
Molecules 2022, 27(18), 5993; https://doi.org/10.3390/molecules27185993 - 14 Sep 2022
Cited by 4 | Viewed by 2796
Abstract
In vivo metabolism of polyethylene glycol (PEG) hydrogels has rarely been studied. In this study, we prepared a chemically crosslinked hydrogel formulation using 14C-labeled tetra-armed poly (ethylene glycol) succinimidyl succinate (Tetra-PEG-SS) and 3H-labeled crosslinking agent for implantation into the pelvis of [...] Read more.
In vivo metabolism of polyethylene glycol (PEG) hydrogels has rarely been studied. In this study, we prepared a chemically crosslinked hydrogel formulation using 14C-labeled tetra-armed poly (ethylene glycol) succinimidyl succinate (Tetra-PEG-SS) and 3H-labeled crosslinking agent for implantation into the pelvis of Sprague-Dawley (SD) rats. This radioactive labeling technique was used to investigate the radioactivity excretion rates in of feces and urine, the blood exposure time curve, and the radioactivity recovery rate in each tissue over time. We showed that the primary excretion route of the hydrogel was via urine (3H: about 86.4%, 14C: about 90.0%), with fewer portion through feces (3H: about 6.922%, 14C: about 8.16%). The hydrogel metabolites exhibited the highest distribution in the kidney, followed by the jejunal contents; The 3H and 14C radioactivity exposures in the remaining tissues were low. We also showed that the 3H and 14C radioactivity recovery rates in the blood were usually low (<0.10% g−1 at 12 h after implantation), even though, in theory, the hydrogel could be absorbed into the blood through the adjacent tissues. By using a combination of HPLC-MS/MS and offline radioactivity counting method, we established that the tetra-PEG-based hydrogel was mainly metabolized to lower-order PEG polymers and other low-molecular-weight substances in vivo. Full article
Show Figures

Figure 1

15 pages, 3085 KiB  
Article
Amphiphilic Polymer Conetwork Gel Films Based on Tetra-Poly(ethylene Glycol) and Tetra-Poly(ε-Caprolactone)
by Kevin Hagmann, Carolin Bunk, Frank Böhme and Regine von Klitzing
Polymers 2022, 14(13), 2555; https://doi.org/10.3390/polym14132555 - 23 Jun 2022
Cited by 8 | Viewed by 3044
Abstract
The preparation and investigation of gel films from a model amphiphilic polymer conetwork (ACN) grant a deeper control and understanding of the structure–property relationship in the bulk phase and at the interface of materials with promising applications. In order to allow the simultaneous [...] Read more.
The preparation and investigation of gel films from a model amphiphilic polymer conetwork (ACN) grant a deeper control and understanding of the structure–property relationship in the bulk phase and at the interface of materials with promising applications. In order to allow the simultaneous transport of hydrophilic and hydrophobic substances, polymeric networks with finely distributed hydrophilic and hydrophobic components are very suitable. When designing new soft materials such as coatings, in addition to the structure in the bulk phase, the structure at the interface plays a critical role. In this study, two alternating tetra-arm star polymers poly(ε-caprolactone) (tetra-PCL-Ox) and amino-terminated poly(ethylene glycol) (tetra-PEG-NH2) form an amphiphilic polymer conetwork. The correlation between different synthesis strategies for gel films of this ACN model system and their resulting properties will be described. Through various spin coating techniques, control over film thickness and roughness is achievable and highlights differences to macroscopic gel samples. Atomic force microscopy (AFM) measurements reveal the effect of solvents of different polarities on the swelling ability and surface structure. This correlates with AFM investigations of the mechanical properties on ACN gel films, demonstrating a strong effect on the resulting elastic modulus E, depending on the presence or absence of a good solvent during synthesis. Furthermore, a higher E modulus is obtained in the presence of the selective solvent water, compared to the non-selective solvent toluene. This observation is explained through selective swelling of the tetra-arm star polymers displaying a different hydrophobicity. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

12 pages, 2347 KiB  
Article
Photoresponsive Gelation of Four-Armed Poly(ethylene glycol) with Photodimerizable Groups
by Masaaki Okihara, Kohei Okuma, Akifumi Kawamura and Takashi Miyata
Gels 2022, 8(3), 183; https://doi.org/10.3390/gels8030183 - 16 Mar 2022
Cited by 6 | Viewed by 4208
Abstract
Standard hydrogels prepared by free radical polymerization (FRP) have heterogeneous structures with a wide mesh size distribution, which affect their mechanical and separation properties. Recent research has identified four-armed poly(ethylene glycol) (tetra-PEG) as a solution to this problem. tetra-PEG gels with a homogeneous [...] Read more.
Standard hydrogels prepared by free radical polymerization (FRP) have heterogeneous structures with a wide mesh size distribution, which affect their mechanical and separation properties. Recent research has identified four-armed poly(ethylene glycol) (tetra-PEG) as a solution to this problem. tetra-PEG gels with a homogeneous network can be prepared and applied as high-strength gels and cell-culture substrates by reacting two types of tetra-PEG with different reactive groups at the ends. In this study, we report a photoresponsive tetra-PEG that undergoes a phase transition from a sol to a gel state in response to light. tetra-PEGs containing cinnamoyl and maleimide groups at the ends of the four-armed chains were found to gel when exposed to light. The effects of polymer concentration and light irradiation time on the gelation of tetra-PEG containing photodimerization groups were investigated. The results showed that the elastic modulus of the gel increased with the increase in the light irradiation time. Full article
(This article belongs to the Collection Feature Papers in Gel Materials)
Show Figures

Figure 1

21 pages, 5922 KiB  
Article
Reactive Oxygen Species and Folate Receptor-Targeted Nanophotosensitizers Composed of Folic Acid-Conjugated and Poly(ethylene glycol)-Chlorin e6 Tetramer Having Diselenide Linkages for Targeted Photodynamic Treatment of Cancer Cells
by Seong-Won Yang, Young-IL Jeong, Min-Suk Kook and Byung-Hoon Kim
Int. J. Mol. Sci. 2022, 23(6), 3117; https://doi.org/10.3390/ijms23063117 - 14 Mar 2022
Cited by 6 | Viewed by 2700
Abstract
Folic acid-conjugated nanophotosensitizers composed of folic acid (FA), poly(ethylene glycol) (PEG) and chlorin e6 (Ce6) tetramer were synthesized using diselenide linkages for reactive oxygen species (ROS)- and folate receptor-specific delivery of photosensitizers. Ce6 was conjugated with 3-[3-(2-carboxyethoxy)-2,2-bis(2-carboxyethoxymethyl)propoxy]propanoic acid (tetra acid, or TA) to [...] Read more.
Folic acid-conjugated nanophotosensitizers composed of folic acid (FA), poly(ethylene glycol) (PEG) and chlorin e6 (Ce6) tetramer were synthesized using diselenide linkages for reactive oxygen species (ROS)- and folate receptor-specific delivery of photosensitizers. Ce6 was conjugated with 3-[3-(2-carboxyethoxy)-2,2-bis(2-carboxyethoxymethyl)propoxy]propanoic acid (tetra acid, or TA) to make Ce6 tetramer via selenocystamine linkages (TA-sese-Ce6 conjugates). In the carboxylic acid end group of the TA-sese-Ce6 conjugates, FA-PEG was attached again using selenocystamine linkages to make FA-PEG/TA-sese-Ce6 conjugates (abbreviated as FAPEGtaCe6 conjugates). Nanophotosensitizers were fabricated by a dialysis procedure. In the morphological observations, they showed spherical shapes with small diameters of less than 200 nm. Stability of the aqueous FAPEGtaCe6 nanophotosensitizer solution was maintained (i.e., their particle sizes were not significantly changed until 7 days later). When H2O2 was added to the nanophotosensitizer solution, the particle size distribution was changed from a monomodal pattern to a multimodal pattern. In addition, the fluorescence intensity and Ce6 release rate from the nanophotosensitizers were also increased by the addition of H2O2. These results indicated that the nanophotosensitizers had ROS-sensitive properties. In an in vitro cell culture study, an FAPEGtaCe6 nanophotosensitizer treatment against cancer cells increased the Ce6 uptake ratio, ROS generation and light-irradiated cytotoxicity (phototoxicity) compared with Ce6 alone against various cancer cells. When the folic acid was pretreated to block the folate receptors of the Y79 cells and KB cells (folate receptor-overexpressing cells), the intracellular Ce6 uptake, ROS generation and thereby phototoxicity were decreased, while the MCF-7 cells did not significantly respond to blocking of the folate receptors. These results indicated that they could be delivered by a folate receptor-mediated pathway. Furthermore, an in vivo pulmonary metastasis model using Y79 cells showed folate receptor-specific delivery of FAPEGtaCe6 nanophotosensitizers. When folic acid was pre-administered, the fluorescence intensity of the lungs was significantly decreased, indicating that the FAPEGtaCe6 nanophotosensitizers had folate receptor specificity in vitro and in vivo. We suggest that FAPEGtaCe6 nanophotosensitizers are promising candidates for a targeted photodynamic therapy (PDT) approach against cancer cells. Full article
(This article belongs to the Special Issue Reactive Oxygen Species—Related Materials and Medicine, Volume II)
Show Figures

Figure 1

19 pages, 5760 KiB  
Article
Enhancement of Adhesion Characteristics of Low-Density Polyethylene Using Atmospheric Plasma Initiated-Grafting of Polyethylene Glycol
by Taghreed Abdulhameed Al-Gunaid, Igor Krupa, Mabrouk Ouederni, Senthil Kumar Krishnamoorthy and Anton Popelka
Polymers 2021, 13(8), 1309; https://doi.org/10.3390/polym13081309 - 16 Apr 2021
Cited by 14 | Viewed by 5456
Abstract
The low-density polyethylene/aluminum (LDPE/Al) joint in Tetra Pak provides stability and strength to food packaging, ensures protection against outside moisture, and maintains the nutritional values and flavors of food without the need for additives in the food products. However, a poor adhesion of [...] Read more.
The low-density polyethylene/aluminum (LDPE/Al) joint in Tetra Pak provides stability and strength to food packaging, ensures protection against outside moisture, and maintains the nutritional values and flavors of food without the need for additives in the food products. However, a poor adhesion of LDPE to Al, due to its non-polar surface, is a limiting factor and extra polymeric interlayers or surface treatment is required. Plasma-assisted grafting of the LDPE surface with different molecular weight compounds of polyethylene glycol (PEG) was used to improve LDPE/Al adhesion. It was found that this surface modification contributed to significantly improve the wettability of the LDPE surface, as was confirmed by contact angle measurements. The chemical composition changes after plasma treatment and modification process were observed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). A surface morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Adhesion characteristics of LDPE/Al adhesive joints were analyzed by the peel tests. The most significant adhesion improvement of the PEG modified LDPE surface was achieved using 10.0 wt.% aqueous (6000 M) PEG solution, while the peel resistance increased by approximately 54 times in comparison with untreated LDPE. Full article
(This article belongs to the Special Issue Advances in Plasma Processes for Polymers)
Show Figures

Graphical abstract

14 pages, 3500 KiB  
Article
Experimental Verification of the Balance between Elastic Pressure and Ionic Osmotic Pressure of Highly Swollen Charged Gels
by Tasuku Nakajima, Ken-ichi Hoshino, Honglei Guo, Takayuki Kurokawa and Jian Ping Gong
Gels 2021, 7(2), 39; https://doi.org/10.3390/gels7020039 - 1 Apr 2021
Cited by 13 | Viewed by 5425
Abstract
The equilibrium swelling degree of a highly swollen charged gel has been thought to be determined by the balance between its elastic pressure and ionic osmotic pressure. However, the full experimental verification of this balance has not previously been conducted. In this study, [...] Read more.
The equilibrium swelling degree of a highly swollen charged gel has been thought to be determined by the balance between its elastic pressure and ionic osmotic pressure. However, the full experimental verification of this balance has not previously been conducted. In this study, we verified the balance between the elastic pressure and ionic osmotic pressure of charged gels using purely experimental methods. We used tetra-PEG gels created using the molecular stent method (St-tetra-PEG gels) as the highly swollen charged gels to precisely and separately control their network structure and charge density. The elastic pressure of the gels was measured through the indentation test, whereas the ionic osmotic pressure was determined by electric potential measurement without any strong assumptions or fittings. We confirmed that the two experimentally determined pressures of the St-tetra-PEG gels were well balanced at their swelling equilibrium, suggesting the validity of the aforementioned relationship. Furthermore, from single-strand level analysis, we investigated the structural requirements of the highly swollen charged gels in which the elasticity and ionic osmosis are balanced at their swelling equilibrium. Full article
(This article belongs to the Special Issue Physicochemical and Mechanical Properties of Polymer Gels)
Show Figures

Graphical abstract

Back to TopTop