Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = tethered unmanned aerial vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 21171 KB  
Article
Long-Duration Inspection of GNSS-Denied Environments with a Tethered UAV-UGV Marsupial System
by Simón Martínez-Rozas, David Alejo, José Javier Carpio, Fernando Caballero and Luis Merino
Drones 2025, 9(11), 765; https://doi.org/10.3390/drones9110765 - 5 Nov 2025
Viewed by 1157
Abstract
Unmanned Aerial Vehicles (UAVs) have become essential tools in inspection and emergency response operations due to their high maneuverability and ability to access hard-to-reach areas. However, their limited battery life significantly restricts their use in long-duration missions. This paper presents a tethered marsupial [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become essential tools in inspection and emergency response operations due to their high maneuverability and ability to access hard-to-reach areas. However, their limited battery life significantly restricts their use in long-duration missions. This paper presents a tethered marsupial robotic system composed of a UAV and an Unmanned Ground Vehicle (UGV), specifically designed for autonomous, long-duration inspection tasks in Global Navigation Satellite System (GNSS)-denied environments. The system extends the UAV’s operational time by supplying power through a tether connected to high-capacity battery packs carried by the UGV. Our work details the hardware architecture based on off-the-shelf components to ensure replicability and describes our full-stack software framework used by the system, which is composed of open-source components and built upon the Robot Operating System (ROS). The proposed software architecture enables precise localization using a Direct LiDAR Localization (DLL) method and ensures safe path planning and coordinated trajectory tracking for the integrated UGV–tether–UAV system. We validate the system through three sets of field experiments involving (i) three manual flight endurance tests to estimate the operational duration, (ii) three experiments for validating the localization and the trajectory tracking systems, and (iii) three executions of an inspection mission to demonstrate autonomous inspection capabilities. The results of the experiments confirm the robustness and autonomy of the system in GNSS-denied environments. Finally, all experimental data have been made publicly available to support reproducibility and to serve as a common open dataset for benchmarking. Full article
(This article belongs to the Special Issue Autonomous Drone Navigation in GPS-Denied Environments)
Show Figures

Figure 1

19 pages, 2909 KB  
Article
HHO-Based Cable Tension Control of Tethered UAV with Unknown Input Time Delay
by Nanyu Liang, Jinxin Bai and Zhongjie Meng
Drones 2025, 9(9), 617; https://doi.org/10.3390/drones9090617 - 2 Sep 2025
Viewed by 970
Abstract
A tethered Unmanned Aerial Vehicle (UAV) is a special type of UAV that is powered continuously through a cable, ensuring long-duration flight. However, the pulling interference of the cable significantly affects the UAV’s stability control, limiting its application and development. This paper addresses [...] Read more.
A tethered Unmanned Aerial Vehicle (UAV) is a special type of UAV that is powered continuously through a cable, ensuring long-duration flight. However, the pulling interference of the cable significantly affects the UAV’s stability control, limiting its application and development. This paper addresses this issue by first analyzing the effect of cable tension on the UAV’s wind resistance capability and demonstrates the possibility of using cable tension to assist in wind resistance control. Building on this, a robust time-delay compensator is designed to address the problem of unknown external disturbance and unknown time delay in the cable control input. Sufficient conditions for system boundedness are provided using the Lyapunov–Krasovskii functional. Subsequently, to deal with the strong nonlinearity and strong coupling issues of the sufficient conditions, the Harris Hawks Optimization (HHO) algorithm is employed for intelligent optimization of the controller parameters. Simulation results indicate that the HHO-based robust time-delay compensator exhibits excellent robustness and fast response. Full article
Show Figures

Figure 1

22 pages, 3265 KB  
Article
A Novel Multi-Core Parallel Current Differential Sensing Approach for Tethered UAV Power Cable Break Detection
by Ziqiao Chen, Zifeng Luo, Ziyan Wang, Zhou Huang, Yongkang He, Zhiheng Wen, Yuanjun Ding and Zhengwang Xu
Sensors 2025, 25(16), 5112; https://doi.org/10.3390/s25165112 - 18 Aug 2025
Viewed by 859
Abstract
Tethered unmanned aerial vehicles (UAVs) operating in terrestrial environments face critical safety challenges from power cable breaks, yet existing solutions—including fiber optic sensing (cost > USD 20,000) and impedance analysis (35% payload increase)—suffer from high cost or heavy weight. This study proposes a [...] Read more.
Tethered unmanned aerial vehicles (UAVs) operating in terrestrial environments face critical safety challenges from power cable breaks, yet existing solutions—including fiber optic sensing (cost > USD 20,000) and impedance analysis (35% payload increase)—suffer from high cost or heavy weight. This study proposes a dual innovation: a real-time break detection method and a low-cost multi-core parallel sensing system design based on ACS712 Hall sensors, achieving high detection accuracy (100% with zero false positives in tests). Unlike conventional techniques, the approach leverages current differential (ΔI) monitoring across parallel cores, triggering alarms when ΔI exceeds Irate/2 (e.g., 0.3 A for 0.6 A rated current), corresponding to a voltage deviation ≥ 110 mV (normal baseline ≤ 3 mV). The core innovation lies in the integrated sensing system design: by optimizing the parallel deployment of ACS712 sensors and LMV324-based differential circuits, the solution reduces hardware cost to USD 3 (99.99% lower than fiber optic systems), payload by 18%, and power consumption by 23% compared to traditional methods. Post-fault cable temperatures remain ≤56 °C, ensuring safety margins. The 4-core architecture enhances mean time between failures (MTBF) by 83% over traditional systems, establishing a new paradigm for low-cost, high-reliability sensing systems in terrestrial tethered UAV cable health monitoring. Preliminary theoretical analysis suggests potential extensibility to underwater scenarios with further environmental hardening. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

34 pages, 15255 KB  
Article
An Experimental Tethered UAV-Based Communication System with Continuous Power Supply
by Veronica Rodriguez, Christian Tipantuña, Diego Reinoso, Jorge Carvajal-Rodriguez, Carlos Egas Acosta, Pablo Proaño and Xavier Hesselbach
Future Internet 2025, 17(7), 273; https://doi.org/10.3390/fi17070273 - 20 Jun 2025
Cited by 1 | Viewed by 2620
Abstract
Ensuring reliable communication in remote or disaster-affected areas is a technical challenge due to unplanned deployment and mobilization, meaning placement difficulties and high operation costs of conventional telecommunications infrastructures. To address this problem, unmanned aerial vehicles (UAVs) have emerged as an excellent alternative [...] Read more.
Ensuring reliable communication in remote or disaster-affected areas is a technical challenge due to unplanned deployment and mobilization, meaning placement difficulties and high operation costs of conventional telecommunications infrastructures. To address this problem, unmanned aerial vehicles (UAVs) have emerged as an excellent alternative to provide quick connectivity in remote or disaster-affected regions at a reasonable cost. However, the limited battery autonomy of UAVs restricts their flight service time. This paper proposes a communication system based on a tethered UAV (T-UAV) capable of continuous operation through a wired power network connected to a ground station. The communications system is based on low-cost devices, such as Raspberry Pi platforms, and offers wireless IP telephony services, providing high-quality and reliable communication. Experimental tests assessed power consumption, UAV stability, and data transmission performance. Our results prove that the T-UAV, based on a quadcopter drone, operates stably at 16 V and 20 A, ensuring consistent VoIP communications at a height of 10 m with low latency. These experimental findings underscore the potential of T-UAVs as cost-effective alternatives for extending or providing communication networks in remote regions, emergency scenarios, or underserved areas. Full article
Show Figures

Figure 1

48 pages, 2716 KB  
Review
Tethered Drones: A Comprehensive Review of Technologies, Challenges, and Applications
by Francesco Fattori and Silvio Cocuzza
Drones 2025, 9(6), 425; https://doi.org/10.3390/drones9060425 - 11 Jun 2025
Cited by 4 | Viewed by 13731
Abstract
Tethered drones—defined in this work as multirotor aerial platforms physically connected to a ground station via a cable—have emerged as a transformative subclass of Tethered Unmanned Aerial Vehicles (TUAVs), offering enhanced power autonomy, communication robustness, and safety through a physical ground connection. This [...] Read more.
Tethered drones—defined in this work as multirotor aerial platforms physically connected to a ground station via a cable—have emerged as a transformative subclass of Tethered Unmanned Aerial Vehicles (TUAVs), offering enhanced power autonomy, communication robustness, and safety through a physical ground connection. This review provides a comprehensive analysis of the current state of tethered drone systems technology, focusing on critical system components such as power delivery, data transmission, tether management, and modeling frameworks. Emphasis is placed on the tether multifunctional role—not only as a physical link but also as a sensor, actuator, and communication channel—impacting both hardware design and control strategies. By consolidating fragmented research across disciplines, this work offers a unified reference for the design, implementation, and advancement of TUAV systems, with tethered drones as their principal application. Full article
Show Figures

Figure 1

20 pages, 812 KB  
Review
Review of Tethered Unmanned Aerial Vehicles: Building Versatile and Robust Tethered Multirotor UAV System
by Dario Handrick, Mattie Eckenrode and Junsoo Lee
Dynamics 2025, 5(2), 17; https://doi.org/10.3390/dynamics5020017 - 7 May 2025
Viewed by 4025
Abstract
This paper presents a comprehensive review of tethered unmanned aerial vehicles (UAVs), focusing on their challenges and potential applications across various domains. We analyze the dynamic characteristics of tethered UAV systems and address the unique challenges they present, including complex tether dynamics, impulsive [...] Read more.
This paper presents a comprehensive review of tethered unmanned aerial vehicles (UAVs), focusing on their challenges and potential applications across various domains. We analyze the dynamic characteristics of tethered UAV systems and address the unique challenges they present, including complex tether dynamics, impulsive forces, and entanglement risks. Additionally, we explore application-specific challenges in areas such as payload transportation and ground-connected systems. The review also examines existing tethered UAV testbed designs, highlighting their strengths and limitations in both simulation and experimental settings. We discuss advancements in multi-UAV cooperation, ground–air collaboration through tethers, and the integration of retractable tether systems. Moreover, we identify critical future challenges in developing tethered UAV systems, emphasizing the need for robust control strategies and innovative solutions for dynamic and cluttered environments. Finally, the paper provides insights into the future potential of variable-length tethered UAV systems, exploring how these systems can enhance versatility, improve operational safety, and expand the range of feasible applications in industries such as logistics, emergency response, and environmental monitoring. Full article
Show Figures

Figure 1

26 pages, 17596 KB  
Article
Comprehensive Design and Experimental Validation of Tethered Fixed-Wing Unmanned Aerial Vehicles
by Changjin Yan, Jinchuan Yang, Donghui Zhang, Shu Zhang and Taihua Zhang
Aerospace 2025, 12(2), 150; https://doi.org/10.3390/aerospace12020150 - 16 Feb 2025
Cited by 3 | Viewed by 2819
Abstract
The limited battery capacity currently restricts the flight duration of unmanned aerial vehicles (UAVs). Additionally, tethered rotorcraft UAVs suffer from low efficiency, and deploying tethered balloons presents significant challenges. Consequently, tethered fixed-wing UAVs exhibit highly promising development prospects. This study designs and constructs [...] Read more.
The limited battery capacity currently restricts the flight duration of unmanned aerial vehicles (UAVs). Additionally, tethered rotorcraft UAVs suffer from low efficiency, and deploying tethered balloons presents significant challenges. Consequently, tethered fixed-wing UAVs exhibit highly promising development prospects. This study designs and constructs both simulation and physical models of a tethered fixed-wing UAV system. With the utilization of methods such as system identification and trust region algorithms, a comprehensive simulation model was developed, and its accuracy was rigorously validated. Furthermore, the feasibility of the system was confirmed through the integration of UAV hardware with a constructed power supply system, incorporating open source flight control software. The results demonstrate that the tethered fixed-wing UAV system is both feasible and reliable, offering rapid deployment capabilities and commendable flight stability. These findings highlight the potential of tethered fixed-wing UAVs as efficient and stable platforms for various applications, laying the groundwork for future research focused on developing more robust and adaptive control systems tailored to the specific challenges posed by tethered operations. Full article
Show Figures

Figure 1

18 pages, 25559 KB  
Article
Analyzing the Effect of Tethered Cable on the Stability of Tethered UAVs Based on Lyapunov Exponents
by Zhiren Tang, Chaofeng Liu, Hongbo Jiang, Feiyu Hou and Shenglan Wang
Appl. Sci. 2024, 14(10), 4253; https://doi.org/10.3390/app14104253 - 17 May 2024
Cited by 1 | Viewed by 2429
Abstract
In the working process of the tethered unmanned aerial vehicle (UAV), there is interference from the tethered cable, which can easily lead to the instability of the UAV. To solve the above problems, a method based on the Lyapunov exponent is proposed to [...] Read more.
In the working process of the tethered unmanned aerial vehicle (UAV), there is interference from the tethered cable, which can easily lead to the instability of the UAV. To solve the above problems, a method based on the Lyapunov exponent is proposed to analyze the stability of tethered cables for tethered UAVs. The dynamics equation of the UAV platform is established using the Euler–Poincare equation. The tension formula of the tethered cable is derived from the catenary theory and the principle of micro-segment equilibrium. Based on the Lyapunov exponential method, the stability changes of the tethered UAV in the takeoff, hovering, and landing stages are simulated and analyzed in a MATLAB environment. Prototype tests are carried out to prove the correctness of the simulation model and calculation conclusions. The results show that with an increase in the density of the tethered cable, the stability of the tethered UAV tends to decrease. At the same time, stability is affected by the density of the tethered cable more often during takeoff than during landing. Full article
(This article belongs to the Special Issue Advanced Research and Application of Unmanned Aerial Vehicles)
Show Figures

Figure 1

27 pages, 2317 KB  
Review
Power Sources for Unmanned Aerial Vehicles: A State-of-the Art
by Yavinaash Naidu Saravanakumar, Mohamed Thariq Hameed Sultan, Farah Syazwani Shahar, Wojciech Giernacki, Andrzej Łukaszewicz, Marek Nowakowski, Andriy Holovatyy and Sławomir Stępień
Appl. Sci. 2023, 13(21), 11932; https://doi.org/10.3390/app132111932 - 31 Oct 2023
Cited by 42 | Viewed by 17494
Abstract
Over the past few years, there has been an increasing fascination with electric unmanned aerial vehicles (UAVs) because of their capacity to undertake demanding and perilous missions while also delivering advantages in terms of flexibility, safety, and expenses. These UAVs are revolutionizing various [...] Read more.
Over the past few years, there has been an increasing fascination with electric unmanned aerial vehicles (UAVs) because of their capacity to undertake demanding and perilous missions while also delivering advantages in terms of flexibility, safety, and expenses. These UAVs are revolutionizing various public services, encompassing real-time surveillance, search and rescue operations, wildlife assessments, delivery services, wireless connectivity, and precise farming. To enhance their efficiency and duration, UAVs typically employ a hybrid power system. This system integrates diverse energy sources, such as fuel cells, batteries, solar cells, and supercapacitors. The selection of an appropriate hybrid power arrangement and the implementation of an effective energy management system are crucial for the successful functioning of advanced UAVs. This article specifically concentrates on UAV platforms powered by batteries, incorporating innovative technologies, like in-flight recharging via laser beams and tethering. It provides an all-encompassing and evaluative examination of the current cutting-edge power supply configurations, with the objective of identifying deficiencies, presenting perspectives, and offering recommendations for future consideration in this domain. Full article
Show Figures

Figure 1

28 pages, 3371 KB  
Review
Tethered Unmanned Aerial Vehicles—A Systematic Review
by Miguel Nakajima Marques, Sandro Augusto Magalhães, Filipe Neves Dos Santos and Hélio Sousa Mendonça
Robotics 2023, 12(4), 117; https://doi.org/10.3390/robotics12040117 - 14 Aug 2023
Cited by 32 | Viewed by 12869
Abstract
In recent years, there has been a remarkable surge in the development and research of tethered aerial systems, thus reflecting a growing interest in their diverse applications. Long-term missions involving aerial vehicles present significant challenges due to the limitations of current battery solutions. [...] Read more.
In recent years, there has been a remarkable surge in the development and research of tethered aerial systems, thus reflecting a growing interest in their diverse applications. Long-term missions involving aerial vehicles present significant challenges due to the limitations of current battery solutions. Tethered vehicles can circumvent such restrictions by receiving their power from an element on the ground such as a ground station or a mobile terrestrial platform. Tethered Unmanned Aerial Vehicles (UAVs) can also be applied to load transportation achieved by a single or multiple UAVs. This paper presents a comprehensive systematic literature review, with a special focus on solutions published in the last five years (2017–2022). It emphasizes the key characteristics that are capable of grouping publications by application scope, propulsion method, energy transfer solution, perception sensors, and control techniques adopted. The search was performed in six different databases, thereby resulting in 1172 unique publications, from which 182 were considered for inclusion in the data extraction phase of this review. Among the various aircraft types, multirotors emerged as the most widely used category. We also identified significant variations in the application scope of tethered UAVs, thus leading to tailored approaches for each use case, such as the fixed-wing model being predominant in the wind generation application and the lighter-than-air aircraft in the meteorology field. Notably, the classical Proportional–Integral–Derivative (PID) control scheme emerged as the predominant control methodology across the surveyed publications. Regarding energy transfer techniques, most publications did not explicitly describe their approach. However, among those that did, high-voltage DC energy transfer emerged as the preferred solution. In summary, this systematic literature review provides valuable insights into the current state of tethered aerial systems, thereby showcasing their potential as a robust and sustainable alternative to address the challenges associated with long-duration aerial missions and load transportation. Full article
(This article belongs to the Special Issue UAV Systems and Swarm Robotics)
Show Figures

Figure 1

30 pages, 11343 KB  
Article
The Viability of a Grid of Autonomous Ground-Tethered UAV Platforms in Agricultural Pest Bird Control
by Joshua Trethowan, Zihao Wang and K. C. Wong
Machines 2023, 11(3), 377; https://doi.org/10.3390/machines11030377 - 11 Mar 2023
Cited by 8 | Viewed by 3513
Abstract
Pest birds are a salient problem in agriculture all around the world due to the damage they can cause to commercial or high-value crops. Recent advancements in Unmanned Aerial Vehicles (UAVs) have motivated the use of drones in pest bird deterrence, with promising [...] Read more.
Pest birds are a salient problem in agriculture all around the world due to the damage they can cause to commercial or high-value crops. Recent advancements in Unmanned Aerial Vehicles (UAVs) have motivated the use of drones in pest bird deterrence, with promising success already being demonstrated over traditional bird control techniques. This paper presents a novel bird deterrence solution in the form of tethered UAVs, which are attached and arranged in a grid-like fashion across a vineyard property. This strategy aims to bypass the power and endurance limitations of untethered drones while still utilising their dynamism and scaring potential. A simulation model has been designed and developed to assess the feasibility of different UAV arrangements, configurations, and strategies against expected behavioural responses of incoming bird flocks, despite operational and spatial constraints imposed by a tether. Attempts at quantifying bird persistence and relative effort following UAV-induced deterrence are also introduced through a novel bird energy expenditure model. This aims to serve as a proxy for selecting control techniques that reduce future foraging missions. The simulation model successfully isolated candidate configurations, which were able to deter both single and multiple incoming bird flocks using a centralised multi-UAV control strategy. Overall, this study indicates that a grid of autonomous ground-tethered UAV platforms is viable as a bird deterrence solution in agriculture, a novel solution not seen nor dealt with elsewhere to the authors’ knowledge. Full article
(This article belongs to the Special Issue Advances and Applications in Unmanned Aerial Vehicles)
Show Figures

Graphical abstract

26 pages, 16651 KB  
Article
Oxpecker: A Tethered UAV for Inspection of Stone-Mine Pillars
by Bernardo Martinez Rocamora, Rogério R. Lima, Kieren Samarakoon, Jeremy Rathjen, Jason N. Gross and Guilherme A. S. Pereira
Drones 2023, 7(2), 73; https://doi.org/10.3390/drones7020073 - 19 Jan 2023
Cited by 28 | Viewed by 8880
Abstract
This paper presents a state-of-the-art tethered unmanned aerial vehicle (TUAV) for structural integrity assessment of underground stone mine pillars. The TUAV, powered by its tether, works in tandem with an unmanned ground vehicle (UGV) that hosts the TUAV batteries, a self-leveled landing platform, [...] Read more.
This paper presents a state-of-the-art tethered unmanned aerial vehicle (TUAV) for structural integrity assessment of underground stone mine pillars. The TUAV, powered by its tether, works in tandem with an unmanned ground vehicle (UGV) that hosts the TUAV batteries, a self-leveled landing platform, and the tether management system. The UGV and the TUAV were named Rhino and Oxpecker, respectively, given that the TUAV stays landed on the UGV while the ensemble moves inside a mine. The mission of Oxpecker is to create, using a LiDAR sensor, 3D maps of the mine pillars to support time-lapse hazard mapping and time-dependent pillar degradation analysis. Given the height of the pillars (7–12 m), this task cannot be executed by Rhino alone. This paper describes the drone’s hardware and software. The hardware includes the tether management system, designed to control the tension of the tether, and the tether perception system, which provides information that can be used for localization and landing in global navigation satellite systems (GNSS)-denied environments. The vehicle’s software is based on a state machine that controls the several phases of a mission (i.e., takeoff, inspection, and landing) by coordinating drone motion with the tethering system. The paper also describes and evaluates our approach for tether-based landing and autonomous 3D mapping of pillars. We show experiments that illustrate and validate our system in laboratories and underground mines. Full article
(This article belongs to the Special Issue Drones in the Wild)
Show Figures

Figure 1

18 pages, 1476 KB  
Article
Reference Generator for a System of Multiple Tethered Unmanned Aerial Vehicles
by Carlos G. Valerio, Néstor Aguillón, Eduardo S. Espinoza and Rogelio Lozano
Drones 2022, 6(12), 390; https://doi.org/10.3390/drones6120390 - 1 Dec 2022
Cited by 3 | Viewed by 3111
Abstract
This paper deals with the references generation for a team of unmanned aerial vehicles tethered to a ground station for inspection applications. In order to deploy the team of vehicles in a suitable location to cover the largest area, each vehicle is commanded [...] Read more.
This paper deals with the references generation for a team of unmanned aerial vehicles tethered to a ground station for inspection applications. In order to deploy the team of vehicles in a suitable location to cover the largest area, each vehicle is commanded to securely navigate in an area of interest while it is tethered to another vehicle or to a ground station. To generate the corresponding reference for each vehicle, we used a model predictive controller, which optimizes the desired trajectory based on the mission-defined constraints. To validate the effectiveness of the proposed strategy, we conducted a simulation and experimental tests with a team of consumer unmanned aerial vehicles tethered to a ground station. Full article
(This article belongs to the Special Issue Multi-UAVs Control)
Show Figures

Figure 1

4 pages, 1934 KB  
Proceeding Paper
Air Monitoring System Based on Unmanned Aerial Vehicle Powered from the Ground
by Wojciech Walendziuk, Maciej Słowik and Małgorzata Gulewicz
Environ. Sci. Proc. 2022, 18(1), 18; https://doi.org/10.3390/environsciproc2022018018 - 13 Sep 2022
Viewed by 1839
Abstract
This article presents a design of the prototype and experimental verification of an air quality measurement device that can be equipped with sensors such as CH4, CO2, O2, PM2.5, and PM10. The proposed solution allows [...] Read more.
This article presents a design of the prototype and experimental verification of an air quality measurement device that can be equipped with sensors such as CH4, CO2, O2, PM2.5, and PM10. The proposed solution allows for a long-term visual observation that is connected with the monitoring of air parameters, due to the power supply via a cable from the ground. Full article
(This article belongs to the Proceedings of Innovations-Sustainability-Modernity-Openness Conference (ISMO’22))
Show Figures

Figure 1

13 pages, 9000 KB  
Article
Design and Implementation of a Tether-Powered Hexacopter for Long Endurance Missions
by Kai-Hung Chang and Shao-Kang Hung
Appl. Sci. 2021, 11(24), 11887; https://doi.org/10.3390/app112411887 - 14 Dec 2021
Cited by 14 | Viewed by 7808
Abstract
A tether-powered unmanned aerial vehicle is presented in this article to demonstrate the highest altitude and the longest flight time among surveyed literature. The grid-powered ground station transmits high voltage electrical energy through a well-managed conductive tether to a 2-kg hexacopter hovering in [...] Read more.
A tether-powered unmanned aerial vehicle is presented in this article to demonstrate the highest altitude and the longest flight time among surveyed literature. The grid-powered ground station transmits high voltage electrical energy through a well-managed conductive tether to a 2-kg hexacopter hovering in the air. Designs, implementations, and theoretical models are discussed in this research work. Experimental results show that the proposed system can operate over 50 m for 4 h continuously. Compared with battery-powered multicopters, tether-powered ones have great advantages on specific-area long-endurance applications, such as precision agriculture, intelligent surveillance, and vehicle-deployed cellular sites. Full article
(This article belongs to the Special Issue Recent Advances in Unmanned Aerial Vehicles)
Show Figures

Figure 1

Back to TopTop