Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,148)

Search Parameters:
Keywords = test apparatus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3741 KiB  
Article
The Mechanical Behavior of a Shield Tunnel Reinforced with Steel Plates Under Complex Strata
by Yang Yu, Yazhen Sun and Jinchang Wang
Buildings 2025, 15(15), 2722; https://doi.org/10.3390/buildings15152722 (registering DOI) - 1 Aug 2025
Abstract
The stability of shield tunnel segmental linings is highly sensitive to the lateral pressure coefficient, especially under weak, heterogeneous, and variable geological conditions. However, the mechanical behavior of steel plate-reinforced linings under such conditions remains insufficiently characterized. This study aims to investigate the [...] Read more.
The stability of shield tunnel segmental linings is highly sensitive to the lateral pressure coefficient, especially under weak, heterogeneous, and variable geological conditions. However, the mechanical behavior of steel plate-reinforced linings under such conditions remains insufficiently characterized. This study aims to investigate the effects of varying lateral pressures on the structural performance of reinforced tunnel linings. To achieve this, a custom-designed full-circumference loading and unloading self-balancing apparatus was developed for scaled-model testing of shield tunnels. The experimental methodology allowed for precise control of loading paths, enabling the simulation of realistic ground stress states and the assessment of internal force distribution, joint response, and load transfer mechanisms during the elastic stage of the structure. Results reveal that increased lateral pressure enhances the stiffness and bearing capacity of the reinforced lining. The presence and orientation of segment joints, as well as the bonding performance between epoxy resin and expansion bolts at the reinforcement interface, significantly influence stress redistribution in steel plate-reinforced zones. These findings not only deepen the understanding of tunnel behavior in complex geological environments but also offer practical guidance for optimizing reinforcement design and improving the durability and safety of shield tunnels. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 2350 KiB  
Article
Temporal Deformation Characteristics of Hydraulic Asphalt Concrete Slope Flow Under Different Test Temperatures
by Xuexu An, Jingjing Li and Zhiyuan Ning
Materials 2025, 18(15), 3625; https://doi.org/10.3390/ma18153625 (registering DOI) - 1 Aug 2025
Abstract
To investigate temporal deformation mechanisms of hydraulic asphalt concrete slope flow under evolving temperatures, this study developed a novel temperature-controlled slope flow intelligent test apparatus. Using this apparatus, slope flow tests were conducted at four temperature levels: 20 °C, 35 °C, 50 °C, [...] Read more.
To investigate temporal deformation mechanisms of hydraulic asphalt concrete slope flow under evolving temperatures, this study developed a novel temperature-controlled slope flow intelligent test apparatus. Using this apparatus, slope flow tests were conducted at four temperature levels: 20 °C, 35 °C, 50 °C, and 70 °C. By applying nonlinear dynamics theory, the temporal evolution of slope flow deformation and its nonlinear mechanical characteristics under varying temperatures were thoroughly analyzed. Results indicate that the thermal stability of hydraulic asphalt concrete is synergistically governed by the phase-transition behavior between asphalt binder and aggregates. Temporal evolution of slope flow exhibits a distinct three-stage pattern as follows: rapid growth (0~12 h), where sharp temperature rise disrupts the primary skeleton of coarse aggregates; decelerated growth (12~24 h), where an embryonic secondary skeleton forms and progressively resists deformation; stabilization (>24 h), where reorganization of coarse aggregates is completed, establishing structural equilibrium. The thermal stability temperature influence factor (δ) shows a nonlinear concave growth trend with increasing test temperature. Dynamically, this process transitions sequentially through critical stability, nonlinear stability, period-doubling oscillatory stability, and unsteady states. Full article
(This article belongs to the Special Issue Advances in Material Characterization and Pavement Modeling)
Show Figures

Figure 1

19 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 256 KiB  
Article
Attempt to Quantify Molecules of Host Plant Volatiles Evoking an Electroantennographic Response in Anoplophora glabripennis Antennae
by Rui Zhang, Jian-Ming Shi, Yi-Bei Jiang, Hui-Quan Sun, Dan-Dan Cao, Hui-Ling Hao and Jian-Rong Wei
Insects 2025, 16(8), 781; https://doi.org/10.3390/insects16080781 - 30 Jul 2025
Viewed by 26
Abstract
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger [...] Read more.
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger an EAG response remains unclear. To relate EAG responses with quantities of active molecules, we quantified the level of molecular triggering in the EAG response of A. glabripennis by a series of procedures. First, we used the EAG apparatus to measure EAG responses of A. glabripennis to five concentrations of eight chemicals and obtained dose–response curves. Second, volatiles released after blowing air over filter paper loaded with volatiles for different numbers of times (purging) were collected by solid-phase microextraction (SPME) and quantified by gas chromatography (GC), so we obtained the quantity of chemical released from each purge; the minimum number of molecules in each purge in the EAG was calculated by the molar mass for different compounds. For instance, the number of molecules of (Z)-3-hexenol reaching the female antennal segment in EAG was 8.68 × 108 at 0.01 ng/μL concentration, and 1.39 × 105 at 0.01 mV potential value. Finally, by comparing sensilla numbers on tested antennal segments with the entire antennae, the minimum number of molecules, or molecular flow, of tested compounds required to elicit an electrophysiological response from two antennae of ALB could be estimated either at a minimum concentration (2.49 × 108 at 0.01 ng/μL concentration of (Z)-3-Hexenol, for female) or at a minimum potentiometric response value (3.99 × 104 at 0.01 mV potential value). Full article
(This article belongs to the Section Insect Pest and Vector Management)
21 pages, 2145 KiB  
Article
Assessment of Experimental Data and Analytical Method of Helical Pile Capacity Under Tension and Compressive Loading in Dense Sand
by Ali Asgari, Mohammad Ali Arjomand, Mohsen Bagheri, Mehdi Ebadi-Jamkhaneh and Yashar Mostafaei
Buildings 2025, 15(15), 2683; https://doi.org/10.3390/buildings15152683 - 30 Jul 2025
Viewed by 144
Abstract
This study presents the results of axial tension (uplift) and compression tests evaluating the capacity of helical piles installed in Shahriyar dense sand using the UTM apparatus. Thirteen pile load experiments involving single-, double-, or triple-helix piles with shaft diameters of 13 mm [...] Read more.
This study presents the results of axial tension (uplift) and compression tests evaluating the capacity of helical piles installed in Shahriyar dense sand using the UTM apparatus. Thirteen pile load experiments involving single-, double-, or triple-helix piles with shaft diameters of 13 mm were performed, including six compression tests and seven tension tests with different pitches (Dh =13, 20, and 25 mm). The tested helical piles with a helix diameter of 51 mm were considered, and the interhelix spacing approximately ranged between two and four times the helix diameter. Through laboratory testing techniques, the Shahriyar dense sand properties were identified. Alongside theoretical analyses of helical piles, the tensile and compressive pile load tests outcomes in dense sand with a relative density of 70% are presented. It was found that the maximum capacities of the compressive and tensile helical piles were up to six and eleven times that of the shaft capacity, respectively. With an increasing number of helices, the settlement reduced, and the bearing capacity increased. Consequently, helical piles can be manufactured in smaller sizes compared to steel piles. Overall, the compressive capacities of helical piles were higher than the tensile capacities under similar conditions. Single-helices piles with a pitch of 20 mm and double-helices piles with a pitch of 13 mm were more effective than others. Therefore, placing helices at the shallower depths and using smaller pitches result in better performance. In this study, when compared to values from the L1–L2 method, the theoretical method slightly underestimates the ultimate compression capacity and both overestimates and underestimates the uplift capacity for single- and double-helical piles, respectively, due to the individual bearing mode and cylindrical shear mode. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 1272 KiB  
Article
Correlations Between the Opioid System, Imidazoline Receptors, and EEG: An Investigation of Acquired Drug-Seeking Behaviors in Different Environments
by Gabriela Rusu-Zota, Dan Trofin, Cristina Gales and Elena Porumb-Andrese
Appl. Sci. 2025, 15(15), 8437; https://doi.org/10.3390/app15158437 - 29 Jul 2025
Viewed by 227
Abstract
The investigation of the reward system is a fascinating domain with future applications for pain therapy and understanding addiction. We investigated interactions between tramadol use and the imidazoline system, through the modulatory effects of imidazoline receptor blockers, by behavior analysis and electroencephalography (EEG). [...] Read more.
The investigation of the reward system is a fascinating domain with future applications for pain therapy and understanding addiction. We investigated interactions between tramadol use and the imidazoline system, through the modulatory effects of imidazoline receptor blockers, by behavior analysis and electroencephalography (EEG). Thirty-six male Wistar rats were placed within a conditioned place preference (CCP) setting using a three-compartment box apparatus. The transition of the six groups of subjects from one compartment to another was constantly monitored, related to preconditioning for one day, conditioning for eight days, and post-conditioning testing on day 10. During the conditioning phase, the groups received: a saline solution, efaroxan, idazoxan, tramadol, tramadol + efaroxan, and tramadol + idazoxan, respectively. The administration of efaroxan, idazoxan, or a saline solution in the non-preferred compartment did not alter the time spent by rats there. On the other hand, the administration of tramadol alone in the non-preferred compartment significantly increased the time spent by animals there (151.66 ± 11.69 s) post-conditioning as compared to preconditioning (34.5 ± 5.31 s) (p < 0.01), while the combination of efaroxan and tramadol significantly reduced its effect. After the combination with idazoxan, the effect of tramadol on increasing the time spent by the animal in the non-preferred compartment remained significantly higher than in the preconditioning phase. A significant increase in time spent in the non-preferred compartment demonstrates the existence of a CPP induction effect (by changing the preference). The effects of tramadol on the reward system can cause changes in the brain’s neuroplasticity, potentially leading to learned behaviors that promote drug seeking in previous non-preferred environments. Full article
(This article belongs to the Section Applied Neuroscience and Neural Engineering)
Show Figures

Figure 1

21 pages, 4565 KiB  
Article
Experimental Study of Two-Bite Test Parameters for Effective Drug Release from Chewing Gum Using a Novel Bio-Engineered Testbed
by Kazem Alemzadeh and Joseph Alemzadeh
Biomedicines 2025, 13(8), 1811; https://doi.org/10.3390/biomedicines13081811 - 24 Jul 2025
Viewed by 360
Abstract
Background: A critical review of the literature demonstrates that masticatory apparatus with an artificial oral environment is of interest in the fields including (i) dental science; (ii) food science; (iii) the pharmaceutical industries for drug release. However, apparatus that closely mimics human [...] Read more.
Background: A critical review of the literature demonstrates that masticatory apparatus with an artificial oral environment is of interest in the fields including (i) dental science; (ii) food science; (iii) the pharmaceutical industries for drug release. However, apparatus that closely mimics human chewing and oral conditions has yet to be realised. This study investigates the vital role of dental morphology and form–function connections using two-bite test parameters for effective drug release from medicated chewing gum (MCG) and compares them to human chewing efficiency with the aid of a humanoid chewing robot and a bionics product lifecycle management (PLM) framework with built-in reverse biomimetics—both developed by the first author. Methods: A novel, bio-engineered two-bite testbed is created for two testing machines with compression and torsion capabilities to conduct two-bite tests for evaluating the mechanical properties of MCGs. Results: Experimental studies are conducted to investigate the relationship between biting force and crushing/shearing and understand chewing efficiency and effective mastication. This is with respect to mechanochemistry and power stroke for disrupting mechanical bonds releasing the active pharmaceutical ingredients (APIs) of MCGs. The manuscript discusses the effect and the critical role that jaw physiology, dental morphology, the Bennett angle of mandible (BA) and the Frankfort-mandibular plane angle (FMA) on two-bite test parameters when FMA = 0, 25 or 29.1 and BA = 0 or 8. Conclusions: The impact on other scientific fields is also explored. Full article
Show Figures

Graphical abstract

17 pages, 1535 KiB  
Article
Isobaric Vapor-Liquid Equilibrium of Biomass-Derived Ethyl Levulinate and Ethanol at 40.0, 60.0 and 80.0 kPa
by Wenteng Bo, Xinghua Zhang, Qi Zhang, Lungang Chen, Jianguo Liu, Longlong Ma and Shengyong Ma
Energies 2025, 18(15), 3939; https://doi.org/10.3390/en18153939 - 24 Jul 2025
Viewed by 197
Abstract
Isobaric vapor-liquid equilibrium (VLE) data for binary mixtures of biomass–derived ethyl levulinate and ethanol were measured using an apparatus comprising a modified Rose-Williams still and a condensation system. Measurements were taken at temperatures ranging from 329.58 K to 470.00 K and pressures of [...] Read more.
Isobaric vapor-liquid equilibrium (VLE) data for binary mixtures of biomass–derived ethyl levulinate and ethanol were measured using an apparatus comprising a modified Rose-Williams still and a condensation system. Measurements were taken at temperatures ranging from 329.58 K to 470.00 K and pressures of 40.0, 60.0 and 80.0 kPa. The thermodynamic consistency of the VLE data was evaluated using the Redlich-Kister area test, the Fredenslund test and the Van Ness point-to-point test. The data was correlated using three activity coefficient models: Wilson, NRTL and UNIQUAC. The Gibbs energy of mixing of the VLE data was analyzed to verify the suitability of the binary interaction parameters of these models. The activity coefficients and excess Gibbs free energy, calculated from the VLE experimental data and model correlation results, were analyzed to evaluate the models’ fit and the non–ideality of the binary system. The accuracy of the regression results was also assessed based on the root mean square deviation (RMSD) and average absolute deviation (AAD) for both temperature and the vapor phase mole fraction of ethyl levulinate. The results indicate that the NRTL model provided the best fit to the experimental data. Notably, the experimental data showed strong correlation with the predictions of all three models, suggesting their reliability for practical application. Full article
Show Figures

Figure 1

13 pages, 2775 KiB  
Article
Effects of Ti Substitution by Zr on Microstructure and Hydrogen Storage Properties of Laves Phase AB2-Type Alloy
by Xiaowei Guo, Lingxing Shi, Chuan Ma, Wentao Zhang, Chaoqun Xia and Tai Yang
Materials 2025, 18(15), 3438; https://doi.org/10.3390/ma18153438 - 22 Jul 2025
Viewed by 150
Abstract
In order to improve the hydrogen storage properties of Laves phase AB2-type alloys, a series of Ti1−xZrxMn1.0Cr0.85Fe0.1 (x = 0.1–0.5) alloys were prepared by arc melting. The effects of Zr [...] Read more.
In order to improve the hydrogen storage properties of Laves phase AB2-type alloys, a series of Ti1−xZrxMn1.0Cr0.85Fe0.1 (x = 0.1–0.5) alloys were prepared by arc melting. The effects of Zr content on microstructure and hydrogen storage properties was investigated in detail. Crystal structure characterizations confirmed that all the alloys exhibit a single-phase C14 Laves structure, and the lattice parameters increase with increasing Zr content. The hydrogen storage measurements of the alloys indicate that with increasing Zr content, the hydrogen storage capacity initially increases and then decreases. The hydrogen absorption and desorption measurements of the alloys were performed by a Sieverts-type apparatus. Pressure–composition–temperature (P-C-T) tests at various temperatures showed that all the alloys display sloped plateaus. Increasing Zr content results in a gradual decrease in hydrogen absorption and desorption plateau pressures. Moreover, these alloys exhibit varying degrees of hysteresis, which also becomes more pronounced with a rise in Zr content. In summary, the Ti0.7Zr0.3Mn1.0Cr0.85Fe0.1 alloy demonstrates the best comprehensive hydrogen storage capacity. Further investigation on the cyclic performance of the Ti0.7Zr0.3Mn1.0Cr0.85Fe0.1 alloy was conducted. It was found that the alloy particles undergo significant pulverization after hydrogenation cycles, but the alloy maintained good phase structure stability and hydrogen storage performance. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

10 pages, 2328 KiB  
Article
Vertical Hot-Melt Extrusion: The Next Challenge in Innovation
by Maël Gallas, Ghouti Medjahdi, Pascal Boulet and Victoire de Margerie
Pharmaceutics 2025, 17(7), 939; https://doi.org/10.3390/pharmaceutics17070939 - 21 Jul 2025
Viewed by 336
Abstract
Background/Objectives: Hot-melt extrusion (HME) has become a key technology in pharmaceutical formulation, particularly for enhancing the solubility of poorly soluble Active Pharmaceutical Ingredients (APIs). While horizontal HME is widely adopted, vertical HME remains underexplored despite its potential benefits in footprint reduction, feeding efficiency, [...] Read more.
Background/Objectives: Hot-melt extrusion (HME) has become a key technology in pharmaceutical formulation, particularly for enhancing the solubility of poorly soluble Active Pharmaceutical Ingredients (APIs). While horizontal HME is widely adopted, vertical HME remains underexplored despite its potential benefits in footprint reduction, feeding efficiency, temperature control, and integration into continuous manufacturing. This study investigates vertical HME as an innovative approach in order to optimize drug polymer interactions and generate stable amorphous dispersions with controlled release behavior. Methods: Extrusion trials were conducted using a vertical hot-melt extruder developed by Rondol Industrie (Nancy, France). Acetylsalicylic acid (ASA) supplied by Seqens (Écully, France) was used as a model API and processed with Soluplus® and Kollidon® 12 PF (BASF, Ludwigshafen, Germany). Various process parameters (temperature, screw speed, screw profile) were explored. The extrudates were characterized by powder X-ray diffraction (PXRD) and small-angle X-ray scattering (SAXS) to evaluate crystallinity and microstructure. In vitro dissolution tests were performed under sink conditions using USP Apparatus II to assess drug release profiles. Results: Vertical HME enabled the formation of homogeneous amorphous solid dispersions. PXRD confirmed the absence of residual crystallinity, and SAXS revealed nanostructural changes in the polymer matrix influenced by drug loading and thermal input. In vitro dissolution demonstrated enhanced drug release rates compared to crystalline ASA, with good reproducibility. Conclusions: Vertical HME provides a compact, cleanable, and modular platform that supports the development of stable amorphous dispersions with controlled release. It represents a robust and versatile solution for pharmaceutical innovation, with strong potential for cost-efficient continuous manufacturing and industrial-scale adoption. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Figure 1

20 pages, 4185 KiB  
Article
The Reactivated Residual Strength: Laboratory Tests and Practical Considerations
by Paolo Carrubba
Appl. Sci. 2025, 15(14), 7976; https://doi.org/10.3390/app15147976 - 17 Jul 2025
Viewed by 173
Abstract
As is already known, some currently stable landslides may have been activated in the past along a pre-existing sliding surface and reached the residual strength there, as a consequence of high-cumulative displacements. After a fairly long period of quiescence, these landslides can reactivate [...] Read more.
As is already known, some currently stable landslides may have been activated in the past along a pre-existing sliding surface and reached the residual strength there, as a consequence of high-cumulative displacements. After a fairly long period of quiescence, these landslides can reactivate due to a temporary increase in destabilising forces capable of mobilising the residual strength along the same sliding surface again. Some recent studies have suggested that, under certain conditions, the strength mobilised upon reactivation may slightly exceed the residual value and then decay towards the latter as the displacement progresses. Regarding this matter, many previous studies have hypothesised that some geotechnical variables could affect the recovered strength more significantly: the length of the ageing time, the vertical stress, the stress history, and the speed with which the reactivation occurs. The aim of this research is to confirm whether such recovery of strength upon reactivation is possible and which geotechnical parameters have the greatest influence on the process. To this end, laboratory tests were carried out with the Bromhead ring shear apparatus on normally consolidated saturated samples of both natural soils and clays provided by industry (bentonite and kaolin). The coupling effect of the ageing time, the vertical stress, and the reactivation speed on the mobilised strength upon reactivation were investigated, starting from a pre-existing residual state of these samples. Within the limits of this research, the results seem to confirm that all three geotechnical variables are influential, with a greater impact on the reactivation speed and, subordinately, on the ageing time for long quiescence periods. Therefore, it is concluded that a quiescent landslide could show a reactivated strength slightly higher than the residual value if the destabilising action could arise with a certain rapidity. Conversely, if the destabilising action occurs very slowly, the mobilised strength could correspond to the residual value. The experimental results of this research may find some application in the design of strengthening works for a stable quiescent landslide that could experience a fairly rapid increase in destabilising actions, such as in the case of seismic stress, morphological modification of the slope, or a rising water table. Full article
(This article belongs to the Topic Geotechnics for Hazard Mitigation, 2nd Edition)
Show Figures

Figure 1

17 pages, 48305 KiB  
Article
Spectral Components of Honey Bee Sound Signals Recorded Inside and Outside the Beehive: An Explainable Machine Learning Approach to Diurnal Pattern Recognition
by Piotr Książek, Urszula Libal and Aleksandra Król-Nowak
Sensors 2025, 25(14), 4424; https://doi.org/10.3390/s25144424 - 16 Jul 2025
Viewed by 488
Abstract
This study investigates the impact of microphone placement on honey bee audio monitoring for time-of-day classification, a key step toward automated activity monitoring and anomaly detection. Recognizing the time-dependent nature of bee behavior, we aimed to establish a baseline diurnal pattern recognition method. [...] Read more.
This study investigates the impact of microphone placement on honey bee audio monitoring for time-of-day classification, a key step toward automated activity monitoring and anomaly detection. Recognizing the time-dependent nature of bee behavior, we aimed to establish a baseline diurnal pattern recognition method. A custom apparatus enabled simultaneous audio acquisition from internal (brood frame, protected from propolization) and external hive locations. Sound signals were preprocessed using Power Spectral Density (PSD). Extra Trees and Convolutional Neural Network (CNN) classifiers were trained to identify diurnal activity patterns. Analysis focused on feature importance, particularly spectral characteristics. Interestingly, Extra Trees performance varied significantly. While achieving near-perfect accuracy (98–99%) with internal recordings, its accuracy was considerably lower (61–72%) with external recordings, even lower than CNNs trained on the same data (76–87%). Further investigation using Extra Trees and feature selection methods using Mean Decrease Impurity (MDI) and Recursive Feature Elimination with Cross-Validation (RFECV) revealed the importance of the 100–600 Hz band, with peaks around 100 Hz and 300 Hz. These findings inform future monitoring setups, suggesting potential for reduced sampling frequencies and underlining the need for monitoring of sound inside the beehive in order to validate methods being tested. Full article
(This article belongs to the Special Issue Acoustic Sensors and Their Applications—2nd Edition)
Show Figures

Figure 1

9 pages, 1484 KiB  
Article
In-Bore MRI-Guided Ureteral Stent Placement During Prostate Cancer Cryoablation—A Case Series
by Sydney Whalen, David Woodrum, Scott Thompson, Dan Adamo, Derek Lomas and Lance Mynderse
Diagnostics 2025, 15(14), 1781; https://doi.org/10.3390/diagnostics15141781 - 15 Jul 2025
Viewed by 285
Abstract
Introduction: Ureteral stents are widely used in the specialty of urology to preserve renal function and provide ureteral patency in cases of urolithiasis, strictures, malignancy, and trauma. This paper presents a novel application of prophylactic ureteral stents deployed under MRI-guidance for ureteral [...] Read more.
Introduction: Ureteral stents are widely used in the specialty of urology to preserve renal function and provide ureteral patency in cases of urolithiasis, strictures, malignancy, and trauma. This paper presents a novel application of prophylactic ureteral stents deployed under MRI-guidance for ureteral protection in the setting of in-bore salvage cryoablation therapy for recurrent and metastatic prostate cancer. This is the first known case series of ureteral stent placement using near real-time MRI. Materials and Methods: A retrospective chart review was performed for all patients who underwent MRI-guided ureteral stent placement prior to in-bore cryoablation therapy from 2021 to 2022. Each case was managed by an interdisciplinary team of urologists and interventional radiologists. Preoperative and postoperative data were collected for descriptive analysis. Physics safety testing was conducted on the cystoscope and viewing apparatus prior to its implementation for stent deployment. Results: A total of seven males, mean age 73.4 years (range 65–81), underwent successful prophylactic, cystoscopic MRI-guided ureteral stent placement prior to cryoablation therapy of their prostate cancer. No intraoperative complications occurred. A Grade 2 postoperative complication of pyelonephritis and gross hematuria following stent removal occurred in one case. The majority of patients were discharged the same day as their procedure. Conclusions: This case series demonstrates the feasibility of in-bore cystoscopic aided MRI guidance for ureteral stent placement. Ureteral stents can be used to increase the safety margin of complex cryoablation treatments close to the ureter. Furthermore, by following the meticulous MRI safety protocols established by MRI facility safety design guidelines, MRI conditional tools can aid therapy in the burgeoning interventional MRI space. Full article
(This article belongs to the Special Issue Challenges in Urology: From the Diagnosis to the Management)
Show Figures

Figure 1

23 pages, 11962 KiB  
Article
Model Test on Excavation Face Stability of Shallow-Buried Rectangular Pipe Jacking in Sand Layer
by Yunlong Zhang, Peng Zhang, Yong Xu and Jiahao Mei
Appl. Sci. 2025, 15(14), 7847; https://doi.org/10.3390/app15147847 - 14 Jul 2025
Viewed by 191
Abstract
This study addresses the critical challenge of excavation face instability in rectangular pipe jacking through systematic physical model tests. Utilizing a half-section symmetry apparatus with non-contact photogrammetry and pressure monitoring, the study investigates failure mechanisms under varying overburden ratios and sand densities. Key [...] Read more.
This study addresses the critical challenge of excavation face instability in rectangular pipe jacking through systematic physical model tests. Utilizing a half-section symmetry apparatus with non-contact photogrammetry and pressure monitoring, the study investigates failure mechanisms under varying overburden ratios and sand densities. Key findings reveal that support pressure evolution follows a four-stage trajectory: rapid decline (elastic deformation), slow decline (soil arching development), slow rise (arch degradation), and stabilization (global shear failure). The minimum support pressure ratio Pmin decreases by 39–58% in loose sand but only 10–37% in dense sand due to enhanced arching effects. Distinctive failure mechanisms include the following: (1) failure angles exceeding 70°, substantially larger than theoretical predictions; (2) bimodal ground settlement characterized by without settlement followed by abrupt collapse, contrasting with gradual transitions in circular excavations; (3) trapezoidal settlement surfaces with equilibrium arch angles ranging 41°–48°. These new discoveries demonstrate that real-time support pressure monitoring is essential for risk mitigation, as ground deformation exhibits severe hysteresis preceding catastrophic rapid collapse. The experimental framework provides fundamental insights into optimizing excavation face support design in shallow-buried rectangular tunneling. Full article
Show Figures

Figure 1

18 pages, 6970 KiB  
Article
Study on Lateral Erosion Failure Behavior of Reinforced Fine-Grained Tailings Dam Due to Overtopping Breach
by Yun Luo, Mingjun Zhou, Menglai Wang, Yan Feng, Hongwei Luo, Jian Ou, Shangwei Wu and Xiaofei Jing
Water 2025, 17(14), 2088; https://doi.org/10.3390/w17142088 - 12 Jul 2025
Viewed by 319
Abstract
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically [...] Read more.
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically investigates lateral erosion failure patterns of reinforced fine-grained tailings under overtopping flow conditions. Utilizing a self-developed hydraulic initiation test apparatus, with aperture sizes of reinforced geogrids (2–3 mm) and flow rates (4–16 cm/s) as key control variables, the research elucidates the interaction mechanisms of “hydraulic scouring-particle migration-geogrid anti-sliding” during lateral erosion processes. The study revealed that compared to unreinforced specimens, reinforced specimens with varying aperture sizes (2–3 mm) demonstrated systematic reductions in final lateral erosion depths across flow rates (4–16 cm/s): 3.3–5.8 mm (15.6−27.4% reduction), 3.1–7.2 mm (12.8–29.6% reduction), 2.3–11 mm (6.9–32.8% reduction), and 2.5–11.4 mm (6.2–28.2% reduction). Smaller-aperture geogrids (2 mm × 2 mm) significantly enhanced anti-erosion performance through superior particle migration inhibition. Concurrently, a pronounced positive correlation between flow rate and lateral erosion depth was confirmed, where increased flow rates weakened particle erosion resistance and exacerbated lateral erosion severity. The numerical simulation results are in basic agreement with the lateral erosion failure process observed in model tests, revealing the dynamic process of lateral erosion in the overtopping breach of a reinforced tailings dam. These findings provide critical theoretical foundations for optimizing reinforced tailings dam design, construction quality control, and operational maintenance, while offering substantial engineering applications for advancing green mine construction. Full article
Show Figures

Figure 1

Back to TopTop