Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = tertiary sewage wastewater treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1849 KiB  
Review
Microplastics in Wastewater Treatment Plants: Characteristics, Occurrence and Removal Technologies
by Michał Bodzek, Alina Pohl and Czesława Rosik-Dulewska
Water 2024, 16(24), 3574; https://doi.org/10.3390/w16243574 - 12 Dec 2024
Cited by 10 | Viewed by 7190
Abstract
Pollution of the aquatic environment with microplastics has recently been recognised as a new environmental threat considering their negative impact on the ecosystem. Due to the low density and small particle size of microplastics, they are easily discharged into sewage systems and wastewater [...] Read more.
Pollution of the aquatic environment with microplastics has recently been recognised as a new environmental threat considering their negative impact on the ecosystem. Due to the low density and small particle size of microplastics, they are easily discharged into sewage systems and wastewater treatment plants. Thus, wastewater treatment plants are considered major sources of microplastic pollution in aquatic and terrestrial environments. Therefore, there is an urgent need for an in-depth understanding of the occurrence, behaviour, and fate of microplastics in wastewater treatment plants before they are discharged into natural water bodies. This paper comprehensively reviews the current state of knowledge on the characteristics and removal of microplastics in a series of wastewater treatment plants by comparing their removal efficiency in different unit processes, both during pretreatment, biological treatment, and tertiary treatment. The study found varying efficiencies in wastewater treatment technologies, with the first stage of treatment removing between 16.5 and 98.4% of microplastics, while during biological treatment the overall efficiency of microplastics removal ranges from 78.1 to 99.9% (membrane bioreactor). Nevertheless, given the large volumes of wastewater continuously discharged to receiving bodies, even tertiary treatment plants can be a significant source of microplastics in surface waters. The largest fraction of MPs removed in conventional wastewater treatment plants is trapped in the sludge. Among the critical treatment technologies, microplastic quantitative analysis showed that membrane bioreactors and filter-based treatment technologies have the highest microplastic removal efficiency. Based on a review of the existing literature, it was concluded that existing wastewater treatment plants are ineffective in removing microplastics completely, and there is a risk that they could be discharged into surrounding water sources. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 2067 KiB  
Article
Characterizing A21: Natural Cyanobacteria-Based Consortium with Potential for Steroid Bioremediation in Wastewater Treatment
by Govinda Guevara, Jamileth Stefania Espinoza Solorzano, Marta Vargas Ramírez, Andrada Rusu and Juana María Navarro Llorens
Int. J. Mol. Sci. 2024, 25(23), 13018; https://doi.org/10.3390/ijms252313018 - 4 Dec 2024
Cited by 3 | Viewed by 1218
Abstract
Microalga–bacteria consortia are increasingly recognized for their effectiveness in wastewater treatment, leveraging the metabolic synergy between microalgae and bacteria to enhance nutrient removal and overall treatment efficiency. These systems offer a sustainable approach to addressing pollutants such as nitrogen and phosphorus. However, their [...] Read more.
Microalga–bacteria consortia are increasingly recognized for their effectiveness in wastewater treatment, leveraging the metabolic synergy between microalgae and bacteria to enhance nutrient removal and overall treatment efficiency. These systems offer a sustainable approach to addressing pollutants such as nitrogen and phosphorus. However, their potential in removing specific contaminants like steroid hormones is less explored. In this study, a natural microbial consortium, A21, has been characterized and isolated from primary sewage treatment in Madrid and its potential for bioremediation of steroid hormone effluents has been evaluated. The A21 consortium includes Alphaproteobacteria genera Sphingopyxis and Pseudorhizobium and the Cyanobacterium Cyanobium. Sphingopyxis (31.78%) is known for biodegradation, while Pseudorhizobium (15.68%) exhibits detoxification abilities. Cyanobium (14.2%) may contribute to nutrient uptake and oxygen production. The effects of pH, nitrogen sources, and Sodium chloride concentrations on growth were evaluated. The optimal growth conditions were determined to be a pH range of 7 to 9, a salt concentration below 0.1 M, and the presence of a nitrogen source. The consortium also demonstrated effective growth across various types of wastewaters (primary, secondary, and tertiary treatment effluents). Additionally, A21 exhibited the ability to grow in the presence of steroids and transform them into other compounds, such as converting androstenedione (AD) into androsta-1,4-diene-3,17-dione (ADD) and β-estradiol into estrone. Full article
Show Figures

Figure 1

14 pages, 471 KiB  
Article
Evaluation of Biochemical Methane Potential and Kinetics of Organic Waste Streams for Enhanced Biogas Production
by Rodolfo Llanos-Lizcano, Lacrimioara Senila and Oana Cristina Modoi
Agronomy 2024, 14(11), 2546; https://doi.org/10.3390/agronomy14112546 - 29 Oct 2024
Cited by 3 | Viewed by 2655
Abstract
Organic waste has the potential to produce methane gas as a substitute for petrol-based fuels, while reducing landfilling and possible environmental pollution. Generally, anaerobic digestion (AD) is used only in wastewater treatment plants as a tertiary stage of sewage sludge treatment, generating a [...] Read more.
Organic waste has the potential to produce methane gas as a substitute for petrol-based fuels, while reducing landfilling and possible environmental pollution. Generally, anaerobic digestion (AD) is used only in wastewater treatment plants as a tertiary stage of sewage sludge treatment, generating a fraction of the energy that such process plants require. In this study, four different wastes—food waste (FW), dairy industry waste (DIW), brewery waste (BW), and cardboard waste (CBW)—were tested for biogas production. The biochemical methane potential (BMP) of each sample was evaluated using an automatic methane potential system (AMPTS). Operating parameters such as pH, temperature, total solids, and volatile solids were measured. Experiments on the anaerobic digestion of the samples were monitored under mesophilic conditions (temperature 37 °C, retention time 30 days). Specific methane yields (SMYs), as well as the theoretical methane potential (BMPth), were used to calculate the biodegradability of the substrates, obtaining the highest biodegradability for BW at 95.1% and producing 462.3 ± 1.25 NmL CH4/g volatile solids (VS), followed by FW at an inoculum-to-substrate ratio (ISR) of 2 at 84% generating 391.3 NmLCH4/g VS. The BMP test of the dairy industry waste at an inoculum-to-substrate ratio of 1 was heavily inhibited by bacteria overloading of the easily degradable organic matter, obtaining a total methane production of 106.3 NmL CH4/g VS and a biodegradability index of 24.8%. The kinetic modeling study demonstrated that the best-fitting model was the modified Gompertz model, presenting the highest coefficient of determination (R2) values, the lowest root means square error (RMSE) values for five of the substrates, and the best specific biogas yield estimation with a percentage difference ranging from 0.3 to 3.6%. Full article
Show Figures

Figure 1

33 pages, 4979 KiB  
Review
Which Configuration of Photocatalytic Membrane Reactors Has a Major Potential to Be Used at an Industrial Level in Tertiary Sewage Wastewater Treatment?
by Raffaele Molinari, Angela Severino, Cristina Lavorato and Pietro Argurio
Catalysts 2023, 13(8), 1204; https://doi.org/10.3390/catal13081204 - 11 Aug 2023
Cited by 21 | Viewed by 4897
Abstract
Photocatalytic membrane reactors (PMRs) have been found to be very effective in the removal of organic pollutants (particularly recalcitrant compounds) from wastewater because they allow for the mineralization of organic pollutants to innocuous by-products, thus achieving high-quality treated water. Owing to the very [...] Read more.
Photocatalytic membrane reactors (PMRs) have been found to be very effective in the removal of organic pollutants (particularly recalcitrant compounds) from wastewater because they allow for the mineralization of organic pollutants to innocuous by-products, thus achieving high-quality treated water. Owing to the very high volumes of water involved, treated sewage wastewater could be reused if a very efficient tertiary stage, like a PMR, can be foreseen. In this review, the two main PMR configurations (photocatalytic membranes and slurry PMRs) were analyzed as requirements of a tertiary treatment of sewage wastewater considering six design and operational parameters of such plants: (i) continuous wastewater flow rate from the secondary stage; (ii) the self-control of the photodegradation rate related to wastewater chemical–physical parameters; (iii) ability to handle variations of wastewater concentration and flow rate; (iv) the control of the quality of treated wastewater; (v) low plant footprint; and (vi) easy maintenance. In this analysis, some characteristics of photocatalysis (which involves three phases: solid (the photocatalyst), liquid (the wastewater), and gas (oxygen or air)) and those of membranes (they can be produced using different materials and configurations, different processes (pressure-driven or not pressure-driven), etc.) were considered. The obtained results show that slurry PMRs seem more suitable than photocatalytic membranes for such applications. We believe this review can trigger a shift in research from the laboratory to industry in using photocatalytic membrane reactors. Full article
Show Figures

Figure 1

17 pages, 1027 KiB  
Review
Phycoremediation Processes for Secondary Effluent from Sewage Treatment Plants Using Photosynthetic Microorganisms: A Review
by Lina Susana Pérez-Mora, Lauris del Carmen Mejia-da-Silva, Eleane de Almeida Cezare-Gomes, Évellin do Espirito Santo, Aline Kirie Gohara-Beirigo, Marcelo Chuei Matsudo, Bruno Monteiro Nardin, Célia Leite Sant’Anna and João Carlos Monteiro de Carvalho
Appl. Microbiol. 2023, 3(2), 400-416; https://doi.org/10.3390/applmicrobiol3020028 - 28 Apr 2023
Cited by 5 | Viewed by 3420
Abstract
Taking into account the worrying scenario of water scarcity, it is essential to enable more efficient technologies for wastewater treatment. Wastewater may be treated by conventional biological processes that remove pathogenic organisms, particulate and soluble organic compounds, and other components. However, secondary effluents [...] Read more.
Taking into account the worrying scenario of water scarcity, it is essential to enable more efficient technologies for wastewater treatment. Wastewater may be treated by conventional biological processes that remove pathogenic organisms, particulate and soluble organic compounds, and other components. However, secondary effluents from treatment plants may still contain toxic elements or high concentrations of inorganic nutrients (mainly nitrogen and phosphorus), which enable the growth of photosynthetic microorganisms in water bodies, resulting in eutrophication. In this context, cultivation of photosynthetic microorganisms in secondary wastewater from sewage treatment allows the removal of nutrients from such wastewater, reducing the possibility of eutrophication. Moreover, microalgal biomass, produced in this tertiary wastewater treatment, may be harvested by different methods with the potential for different applications, such as fertilizer and biofuel. Full article
Show Figures

Figure 1

11 pages, 1366 KiB  
Article
A Fixed-Film Bio-Media Process Used for Biological Nitrogen Removal from Sewage Treatment Plant
by Jesmin Akter, Jaiyeop Lee and Ilho Kim
Nitrogen 2022, 3(3), 528-538; https://doi.org/10.3390/nitrogen3030034 - 5 Sep 2022
Cited by 4 | Viewed by 3599
Abstract
In this study, a lab-scale fixed-film bio-media process was developed and operated to evaluate nitrogen removal from domestic sewage treatment plants. For nitrogen removal, the fixed-film bio-media process was applied in series with anaerobic, anoxic, and aerobic units in three separate reactors that [...] Read more.
In this study, a lab-scale fixed-film bio-media process was developed and operated to evaluate nitrogen removal from domestic sewage treatment plants. For nitrogen removal, the fixed-film bio-media process was applied in series with anaerobic, anoxic, and aerobic units in three separate reactors that were operated continuously at the same loading rates and hydraulic retention time. A biofilm separation bioreactor was developed for on-site domestic wastewater treatment and the bioreactor employed synthetic fiber modules so that the biomass could be completely attached to the media. In this paper, the performance of the fixed-film bio-media process with an average flow rate was evaluated before and after stabilization of the treatment system for nitrogen removal. The results show that the fixed-film bio-media process was successful for improved nitrogen removal from secondary and tertiary treated wastewater, with a 77% decrease in the total nitrogen discharge. Rapid nitrification could be achieved, and denitrification was performed in the anoxic filter with external carbon supplements during tertiary treated sewage wastewater. However, aeration was supplied after the stabilization process to achieve the nitrification and denitrification reaction for nitrogen removal. However, stable aeration supply could enhance nitrification at moderate temperature with benefits from complete retention of nitrifying bacteria within the system due to bio-media separation. Full article
Show Figures

Figure 1

19 pages, 52247 KiB  
Article
Improving the Performance of the Reverse Osmosis Process with Fiber Filter and Ultrafiltration: Promoting Municipal Sewage Reclamation and Reuse for Industrial Processes
by Shih-Shuo Chan and Jung-Hua Wu
Sustainability 2022, 14(9), 5443; https://doi.org/10.3390/su14095443 - 30 Apr 2022
Cited by 1 | Viewed by 2778
Abstract
Wastewater reuse presents a promising solution to the growing need for the sustainable use of available water resources. The reclamation of municipal sewage through reverse osmosis can be applied for diverse uses to alleviate chronic water scarcity. In this study, a pilot plant [...] Read more.
Wastewater reuse presents a promising solution to the growing need for the sustainable use of available water resources. The reclamation of municipal sewage through reverse osmosis can be applied for diverse uses to alleviate chronic water scarcity. In this study, a pilot plant was fabricated to measure the efficiency and the costs that are associated with pretreatment by the fiber filtration and ultrafiltration of secondary effluent from a water resource recovery facility in Taiwan. The results of this dual-membrane process meet the quantity and quality standards for industrial reuse. The pretreatment produced feedwater with a silt density index (SDI15) lower than 4.1, and with average turbidity removal rates of 42.7% (fiber filtration) and 99.2% (ultrafiltration). Following reverse osmosis, a 97.9% rejection of the electrolyte conductivity was achieved in the reclaimed water. The fouling of the membranes was controlled through the application of intensive backwash, chemically enhanced backflushing, and cleaning in place. The proposed system improves the feasibility, reliability, and economy of the dual-membrane process as a tertiary treatment for safe water reuse, and it thereby demonstrates that this technology has reached maturity for the full-scale implementation of sustainable water reuse. Full article
(This article belongs to the Special Issue Technology for Sustainable Wastewater Treatment)
Show Figures

Figure 1

10 pages, 813 KiB  
Article
Evaluating Fecal Indicator and Pathogen Relationships in Sewage Impacted Surface Waters to Blend with Reclaimed Water for Potable Reuse in North Carolina
by Emily S. Bailey, Margret Hopkins, Lisa Casanova and Mark D. Sobsey
Pathogens 2021, 10(12), 1603; https://doi.org/10.3390/pathogens10121603 - 9 Dec 2021
Cited by 8 | Viewed by 2833
Abstract
Surface waters used for drinking water supply often receive upstream wastewater effluent inputs, resulting in de facto wastewater reuse for drinking water and recreation. As populations grow, demands on water supplies increase. As this trend continues, it creates the need to understand the [...] Read more.
Surface waters used for drinking water supply often receive upstream wastewater effluent inputs, resulting in de facto wastewater reuse for drinking water and recreation. As populations grow, demands on water supplies increase. As this trend continues, it creates the need to understand the risks associated with such reuse. In North Carolina, potable reuse has been proposed as a combination of at least 80% surface water with up to 20% tertiary-treated, dual-disinfected, reclaimed wastewater, which is then stored for 5 days and further treated using conventional drinking water treatment methods. The state of North Carolina has set standards for both intake surface water and for the reclaimed water produced by wastewater utilities, using indicator microorganisms to measure compliance. The goal of this study was to quantify fecal indicator microorganisms, specifically E. coli, coliphages, and C. perfringens as well as key pathogens, specifically Salmonella spp. bacteria, adenoviruses, noroviruses, and the protozoan parasites Cryptosporidium and Giardia, in two types of water representing potential candidates for potable reuse in North Carolina, (1) run of river surface water and (2) sewage-impacted surface waters, with the purpose of determining if there are predictive relationships between these two microorganism groups that support microbial indicator reliability. Full article
(This article belongs to the Special Issue Viruses in Water)
Show Figures

Figure 1

12 pages, 1249 KiB  
Article
The Energetic Aspect of Organic Wastes Addition on Sewage Sludge Anaerobic Digestion: A Laboratory Investigation
by Aleksandra Szaja, Agnieszka Montusiewicz and Magdalena Lebiocka
Energies 2021, 14(19), 6113; https://doi.org/10.3390/en14196113 - 25 Sep 2021
Cited by 5 | Viewed by 2055
Abstract
One of the possibilities to achieve energy neutrality of wastewater treatment plants (WWTPs) is the implementation of the anaerobic co-digestion strategy. However, a key factor in its successful implementation on the technical scale is the application of components with complementary composition to sewage [...] Read more.
One of the possibilities to achieve energy neutrality of wastewater treatment plants (WWTPs) is the implementation of the anaerobic co-digestion strategy. However, a key factor in its successful implementation on the technical scale is the application of components with complementary composition to sewage sludge (SS). In the 7resent study, the influence of adding various co-substrates on the energy balance of anaerobic digestion was evaluated. The following organic wastes were used as additional components to SS: organic fraction of municipal solid waste (OFMSW) and distillery spent wash (DW) applied in two- and three-component systems. The experiments were performed in semi-flow anaerobic reactors with the volume of 40 L under mesophilic conditions (35 °C) at hydraulic retention time (HRT) of 20, 18, and 16 d. The application of substrates to SS resulted in enhancements of methane yields as compared to SS mono-digestion. The statistically significant differences were observed in tertiary mixtures at both HRT of 18 and 16 d. Therein, average values were 0.20 and 0.23 m3 kg−1VSadd at HRT of 18 and 16 d, respectively. Among all co-digestion series, the most beneficial effect on energy balance was found in 20% v/v DW presence in both two- and three-component systems at HRT of 16 d. Full article
(This article belongs to the Special Issue Water and Wastewater Treatment- Energy Efficiency)
Show Figures

Graphical abstract

14 pages, 3647 KiB  
Article
Greenhouse Gas Emission Assessment of Simulated Wastewater Biorefinery
by Carla Silva
Resources 2021, 10(8), 78; https://doi.org/10.3390/resources10080078 - 28 Jul 2021
Cited by 4 | Viewed by 2942
Abstract
A wastewater treatment plant (WWTP) can be considered a system where dirty water enters and fresh water (by means of treatment processes) and other co-products such as sludge and biogas exit. Inside the system, typically, the following steps occur: preliminary treatment, primary treatment, [...] Read more.
A wastewater treatment plant (WWTP) can be considered a system where dirty water enters and fresh water (by means of treatment processes) and other co-products such as sludge and biogas exit. Inside the system, typically, the following steps occur: preliminary treatment, primary treatment, secondary treatment, tertiary treatment, disinfection, and solids handling. The system transforms biomass into several energy and non-energy products, which fall into the definition of a biorefinery. This research compares three simulated WWTP in terms of their environmental greenhouse gas (GHG) emission release to the atmosphere: a generic one (without co-product valorization), one that converts co-products into fertilizer, heat, and electricity, and a third one that converts co-products into heat, electricity, fertilizer, and bioplastic. Heat and electricity are used to provide its energy needs. The chosen impact category is GHG, and the aim is to project the best scenario to the European context in terms of GHG avoidance (savings). The scope is the upstream electricity and natural gas production, the in-use emissions, and the avoided emissions by substituting equivalent fossil-based products. The functional unit is 1 L of sewage (“dirty water”). The GHG savings are evaluated by comparing a generic WWTP scenario, without co-product valorization, with alternative scenarios of co-product valorization. Conventional LCA assuming all the emissions occurs at instant zero is compared to a more realistic environment where for each year, the average of the variable emission pulses occurs. Variable emissions pulses are taken from variable inflows data publicly available from European COST actions (COST Action 682 “Integrated Wastewater Management” as well as within the first IAWQ (later IWA) Task Group on respirometry-based control of the activated sludge process), within the later COST Action 624 on “Optimal Management of Wastewater Systems”). The GHG uncertainty is estimated based on the inputs benchmark data from the WWTP literature and by having different available global warming potential dynamic models. The conventional LCA versus dynamic LCA approach is discussed especially because a WWTP is by nature a dynamic system, having variable inputs along time and therefore variable output GHG emission pulses. It is concluded that heat needs are fully covered by biogas production in the anaerobic digester and combustion, covering its own energy needs and with a potential for heat district supply. Only 30–40% of electricity needs are covered by combined heat and power. Bioplastics and/or fertilizer yields potentially represent less than 3% of current European needs, which suggests the need to reduce their consumption levels. In comparison to generic WWTP, GHG savings are 20%, considering the uncertainty in the benchmark input assumptions. The former is much higher than the uncertainty in the dynamic global warming potential model selection, which means that the model selection is not important in this case study. Full article
Show Figures

Figure 1

8 pages, 383 KiB  
Article
On-Site Pilot Testing of Hospital Wastewater Ozonation to Reduce Pharmaceutical Residues and Antibiotic-Resistant Bacteria
by Sofia Svebrant, Robert Spörndly, Richard H. Lindberg, Therese Olsen Sköldstam, Jim Larsson, Patrik Öhagen, Hanna Söderström Lindström and Josef D. Järhult
Antibiotics 2021, 10(6), 684; https://doi.org/10.3390/antibiotics10060684 - 8 Jun 2021
Cited by 12 | Viewed by 4423
Abstract
Hospital sewage constitutes an important point source for antibiotics and antibiotic-resistant bacteria due to the high antibiotic use. Antibiotic resistance can develop and cause problems in sewage systems within hospitals and municipal wastewater treatment plants, thus, interventions to treat hospital sewage on-site are [...] Read more.
Hospital sewage constitutes an important point source for antibiotics and antibiotic-resistant bacteria due to the high antibiotic use. Antibiotic resistance can develop and cause problems in sewage systems within hospitals and municipal wastewater treatment plants, thus, interventions to treat hospital sewage on-site are important. Ozonation has proven effective in treating relatively clean wastewater, but the effect on untreated wastewater is unclear. Therefore, we piloted implementation of ozonation to treat wastewater in a tertiary hospital in Uppsala, Sweden. We measured active pharmaceutical ingredients (APIs) using liquid chromatography-mass spectrometry and antibiotic-resistant Enterobacteriaceae using selective culturing pre- and post-ozonation. Comparing low (1 m3/h) and high (2 m3/h) flow, we obtained a ‘dose-dependent’ effect of API reduction (significant reduction of 12/29 APIs using low and 2/29 APIs using high flow, and a mean reduction of antibiotics of 41% using low vs. 6% using high flow, 25% vs. 6% for all APIs). There was no significant difference in the amount of antibiotic-resistant Enterobacteiaceae pre- and post-ozonation. Our results demonstrate that ozonation of untreated wastewater can reduce API content. However, due to the moderate API decrease and numerous practical challenges in the on-site setting, this specific ozonation system is not suitable to implement at full scale in our hospital. Full article
Show Figures

Figure 1

14 pages, 2870 KiB  
Article
Assessment of Microplastics in a Municipal Wastewater Treatment Plant with Tertiary Treatment: Removal Efficiencies and Loading per Day into the Environment
by Javier Bayo, Sonia Olmos and Joaquín López-Castellanos
Water 2021, 13(10), 1339; https://doi.org/10.3390/w13101339 - 11 May 2021
Cited by 45 | Viewed by 8375
Abstract
This study investigates the removal of microplastics from wastewater in an urban wastewater treatment plant located in Southeast Spain, including an oxidation ditch, rapid sand filtration, and ultraviolet disinfection. A total of 146.73 L of wastewater samples from influent and effluent were processed, [...] Read more.
This study investigates the removal of microplastics from wastewater in an urban wastewater treatment plant located in Southeast Spain, including an oxidation ditch, rapid sand filtration, and ultraviolet disinfection. A total of 146.73 L of wastewater samples from influent and effluent were processed, following a density separation methodology, visual classification under a stereomicroscope, and FTIR analysis for polymer identification. Microplastics proved to be 72.41% of total microparticles collected, with a global removal rate of 64.26% after the tertiary treatment and within the average retention for European WWTPs. Three different shapes were identified: i.e., microfiber (79.65%), film (11.26%), and fragment (9.09%), without the identification of microbeads despite the proximity to a plastic compounding factory. Fibers were less efficiently removed (56.16%) than particulate microplastics (90.03%), suggesting that tertiary treatments clearly discriminate between forms, and reporting a daily emission of 1.6 × 107 microplastics to the environment. Year variability in microplastic burden was cushioned at the effluent, reporting a stable performance of the sewage plant. Eight different polymer families were identified, LDPE film being the most abundant form, with 10 different colors and sizes mainly between 1–2 mm. Future efforts should be dedicated to source control, plastic waste management, improvement of legislation, and specific microplastic-targeted treatment units, especially for microfiber removal. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 2254 KiB  
Article
Effluent Water Reuse Possibilities in Northern Cyprus
by Gozen Elkiran, Fidan Aslanova and Salim Hiziroglu
Water 2019, 11(2), 191; https://doi.org/10.3390/w11020191 - 23 Jan 2019
Cited by 18 | Viewed by 5218
Abstract
Northern Cyprus (NC) is suffering from limited water resources and reiterated drought condition experiences due to global warming effects. Previous studies revealed that the water management policy in the country is not sustainable from the perspective of demand and balance. Apparently, the reuse [...] Read more.
Northern Cyprus (NC) is suffering from limited water resources and reiterated drought condition experiences due to global warming effects. Previous studies revealed that the water management policy in the country is not sustainable from the perspective of demand and balance. Apparently, the reuse of recycled water will be an alternative resource and can be utilized for some specific purposes to reduce water extraction from the ground. It is expected that treated wastewater will reach 20 million cubic meters (MCM) per year after the completion of the new sewage system for Lefkosa. Today, 20,000 m3 of wastewater is treated at the Lefkosa Central Treatment Plant up to the secondary treatment level, in which the degree of treatment varies from 60% to 95% owing to the weather conditions in the country during the year. Effluent water reuse in NC was not accepted due to cultural belief. However, water scarcity was experienced in the country during the last decade, forcing the farmers to benefit from the recycled water. There is no regulatory framework available in the country for effluent water reuse. However, preparation studies are almost finalized after discussions among government and European Union (EU) agencies. Cyprus, as an EU country, has an obligation to treat the wastewater up to the secondary level before releasing it in an environmentally friendly nature, following the Directive 91/271/EEC. This paper analyzes the effluent water reuse possibilities as a component of integrated water resource management in Northern Cyprus considering laboratory experiment results. It appears that applying tertiary treatment in Northern Cyprus will allow 20 MCM of water contribution to the water budget and it will help protect the vulnerable environment. Also, since the cost of tertiary treatment will be 0.2 United States dollars (USD)/m3, it would be reasonable to prefer this process to the desalination of water, which costs of 1 USD/m3. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

18 pages, 987 KiB  
Article
Serial Use of Helosciadum nodiflorum and Typha latifolia in Mediterranean Constructed Wetlands to Naturalize Effluents of Wastewater Treatment Plants
by Antonio Camacho, Antonio Picazo, Carlos Rochera, María Peña, Daniel Morant, Javier Miralles-Lorenzo, Anna C. Santamans, Héctor Estruch, Tatiana Montoya, Gloria Fayos and Carmen Ferriol
Water 2018, 10(6), 717; https://doi.org/10.3390/w10060717 - 1 Jun 2018
Cited by 4 | Viewed by 5337
Abstract
Constructed wetlands are commonly used for sewage treatment. However, as the natural processes operate, these artificial ecosystems can also be used to enhance the equalization of water features to those of the receiving environments, thus reducing the impacts of the treated water on [...] Read more.
Constructed wetlands are commonly used for sewage treatment. However, as the natural processes operate, these artificial ecosystems can also be used to enhance the equalization of water features to those of the receiving environments, thus reducing the impacts of the treated water on the natural systems. Here, we studied, by a year-round survey, the simultaneous and separated operation of two subsurface wetlands that were used as a tertiary treatment to enhance the naturalization of wastewaters that had already been treated in a waste water treatment plant (WWTP). These wetlands were operating serially, with the first wetland being covered by the riparian plant Helosciadum nodiflorum, which has not been described so far as being used in treatment wetland, whereas the second was covered by Typha latifolia. The changes in the concentrations and transformation among the different types of pollutants and other physical and chemical parameters, as well as in the bacterial abundance and activity, were studied under different operational conditions of serial co-operation or of separately-operating wetlands. Both wetlands were differentially efficient in the reduction and transformation of the remaining pollutants, with very active nitrification and denitrification processes, which reduced the ammonium concentrations by more than 65%, although they changed according to the operational status of each wetland. They also reduced the already low organic matter contents by around 30% and promoted slight shifts in the dominant types of dissolved organic matter to less labile compounds. To a certain extent, the Typha-covered wetland also contributed to phosphorus removal, by up to 35%. Noticeably, both of the wetlands contributed greatly to the reduction of bacterial abundance, which was even 50% lower after the wetland transit, although the resulting community increased its activity, thus keeping the capacity for pollutant removal and transformation. Overall, the wetlands’ operation increased the similarity between the poured waters and those of the receiving stream, thus diminishing its environmental impact. Full article
Show Figures

Figure 1

16 pages, 5471 KiB  
Article
Comprehensive Forecast of Urban Water-Energy Demand Based on a Neural Network Model
by Ziyi Yin, Benyou Jia, Shiqiang Wu, Jiangyu Dai and Deshan Tang
Water 2018, 10(4), 385; https://doi.org/10.3390/w10040385 - 26 Mar 2018
Cited by 36 | Viewed by 5496
Abstract
Water-energy nexus has been a popular topic of rese arch in recent years. The relationships between the demand for water resources and energy are intense and closely connected in urban areas. The primary, secondary, and tertiary industry gross domestic product (GDP), the total [...] Read more.
Water-energy nexus has been a popular topic of rese arch in recent years. The relationships between the demand for water resources and energy are intense and closely connected in urban areas. The primary, secondary, and tertiary industry gross domestic product (GDP), the total population, the urban population, annual precipitation, agricultural and industrial water consumption, tap water supply, the total discharge of industrial wastewater, the daily sewage treatment capacity, total and domestic electricity consumption, and the consumption of coal in industrial enterprises above the designed size were chosen as input indicators. A feedforward artificial neural network model (ANN) based on a back-propagation algorithm with two hidden layers was constructed to combine urban water resources with energy demand. This model used historical data from 1991 to 2016 from Wuxi City, eastern China. Furthermore, a multiple linear regression model (MLR) was introduced for comparison with the ANN. The results show the following: (a) The mean relative error values of the forecast and historical urban water-energy demands are 1.58 % and 2.71%, respectively; (b) The predicted water-energy demand value for 2020 is 4.843 billion cubic meters and 47.561 million tons of standard coal equivalent; (c) The predicted water-energy demand value in the year 2030 is 5.887 billion cubic meters and 60.355 million tons of standard coal equivalent; (d) Compared with the MLR, the ANN performed better in fitting training data, which achieved a more satisfactory accuracy and may provide a reference for urban water-energy supply planning decisions. Full article
(This article belongs to the Special Issue Water Quality: A Component of the Water-Energy-Food Nexus)
Show Figures

Figure 1

Back to TopTop