Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = terrestrial mosses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6040 KiB  
Article
Systematics and Palaeoecology of Three New Acrocarpous Mosses from the Mid-Cretaceous of Kachin, Myanmar
by Zhen-Zhen Tan, Yi-Ming Cui, Lwin Mar Saing, Chun-Xiang Li and Ya Li
Plants 2025, 14(14), 2124; https://doi.org/10.3390/plants14142124 - 9 Jul 2025
Viewed by 431
Abstract
The mid-Cretaceous Kachin amber deposit from northern Myanmar is currently a promising locality for reconstructing Cretaceous bryophyte floras. However, the vast majority of bryophyte fossils reported from Kachin amber are epiphytic leafy liverworts of Porellales and pleurocarpous mosses of Hypnodendrales, while acrocarpous mosses [...] Read more.
The mid-Cretaceous Kachin amber deposit from northern Myanmar is currently a promising locality for reconstructing Cretaceous bryophyte floras. However, the vast majority of bryophyte fossils reported from Kachin amber are epiphytic leafy liverworts of Porellales and pleurocarpous mosses of Hypnodendrales, while acrocarpous mosses are rarely discovered. In addition, terrestrial-to-lithophytic bryophytes have never been reported from Kachin amber. In this study, we describe three new species of acrocarpous mosses, Calymperites proboscideus sp. nov., Calymperites chenianus sp. nov., and Ditrichites aristatus sp. nov. (Dicranales s.l.), based on 34 whole plants and 11 fragments embedded in 13 pieces of Kachin amber. Calymperites chenianus is an epiphytic species based on the connection to a bark fragment, while the other two species are the first terrestrial-to-lithophytic bryophytes from Kachin amber, based on the attachment of rhizoids to soil or rock. Calymperites chenianus and Calymperites proboscideus probably represent stem group members of Calymperaceae. Ditrichites aristatus is likely a member of Ditrichaceae or Dicranaceae. These new findings provide compelling evidence for palaeoecological habitat reconstruction of acrocarpous mosses and significantly expand our understanding of the species diversity of bryophyte communities in the Cretaceous amber forest of Myanmar. Full article
(This article belongs to the Special Issue Diversity and Classification of Bryophytes)
Show Figures

Figure 1

28 pages, 7610 KiB  
Article
Spatiotemporal Responses of Global Vegetation Growth to Terrestrial Water Storage
by Chao Wang, Aoxue Cui, Renke Ji, Shuzhe Huang, Pengfei Li, Nengcheng Chen and Zhenfeng Shao
Remote Sens. 2025, 17(10), 1701; https://doi.org/10.3390/rs17101701 - 13 May 2025
Cited by 1 | Viewed by 526
Abstract
Global vegetation growth is dynamically influenced and regulated by hydrological processes. Understanding vegetation responses to terrestrial water storage (TWS) dynamics is crucial for predicting ecosystem resilience and guiding water resource management under climate change. This study investigated global vegetation responses to a terrestrial [...] Read more.
Global vegetation growth is dynamically influenced and regulated by hydrological processes. Understanding vegetation responses to terrestrial water storage (TWS) dynamics is crucial for predicting ecosystem resilience and guiding water resource management under climate change. This study investigated global vegetation responses to a terrestrial water storage anomaly (TWSA) using NDVI and TWSA datasets from January 2004 to December 2023. We proposed a Pearson-ACF time lag analysis method that combined dynamic windowing and enhanced accuracy to capture spatial correlations and temporal lag effects in vegetation responses to TWS changes. The results showed the following: (1) Positive NDVI-TWSA correlations were prominent in low-latitude tropical regions, whereas negative responses occurred mainly north of 30°N and in South American rainforest, covering 38.96% of the global vegetated land. (2) Response patterns varied by vegetation type: shrubland, grassland, and cropland exhibited short lags (1–4 months), while tree cover, herbaceous wetland, mangroves, and moss and lichen typically presented delayed responses (8–9 months). (3) Significant bidirectional Granger causality was identified in 16.39% of vegetated regions, mainly in eastern Asia, central North America, and central South America. These findings underscored the vital role of vegetation in the global water cycle, providing support for vegetation prediction, water resource planning, and adaptive water management in water-scarce regions. Full article
Show Figures

Figure 1

21 pages, 10364 KiB  
Article
Tissue-Specific Differential Distribution of Cell Wall Epitopes in Sphagnum compactum and Marchantia polymorpha
by Ioannis-Dimosthenis S. Adamakis, Penelope Sotiriou, Natalia Ntanou, Jessica M. Nelson and Eleni Giannoutsou
Int. J. Mol. Sci. 2025, 26(8), 3602; https://doi.org/10.3390/ijms26083602 - 11 Apr 2025
Viewed by 746
Abstract
Bryophytes, or non-vascular plants, provide valuable models for studying plant adaptation to land, as their physiology differs significantly from that of vascular plants. This study examines the cell wall structure of bryophytes, focusing on the tissue-specific distribution of cell wall epitopes in Sphagnum [...] Read more.
Bryophytes, or non-vascular plants, provide valuable models for studying plant adaptation to land, as their physiology differs significantly from that of vascular plants. This study examines the cell wall structure of bryophytes, focusing on the tissue-specific distribution of cell wall epitopes in Sphagnum compactum (a peat moss) and Marchantia polymorpha (the model liverwort) using specific stains and immunolabeling techniques. In S. compactum, chlorocysts and hyalocysts exhibit distinct polysaccharide compositions, with methylesterified and demethylesterified homogalacturonans, arabinans, and hemicelluloses contributing to water retention, structural integrity, and photosynthetic efficiency. In contrast, M. polymorpha demonstrates a simpler yet polarized distribution of homogalacturonans, arabinans, mannans, and xyloglucans, with arabinogalactan proteins uniquely localized in rhizoids, improving their flexibility and anchorage to the substrate. Cellulose was uniformly distributed throughout all tissues in both bryophytes, while crystalline cellulose was only faintly observed. These findings highlight how cell wall adaptations contribute to ecological specialization, providing insights into the evolutionary innovations that enable bryophytes to thrive in terrestrial environments. Full article
Show Figures

Figure 1

14 pages, 11580 KiB  
Article
Discovery of Arbuscular Mycorrhizae in Mosses of the Pottiaceae Family from the Chaco Serrano (Tucumán, Argentina)
by Myriam del V. Catania, Patricia L. Albornoz, Atilio O. Rausch, Tamara M. Ledesma, Shanshan Dong, Yuqing Cai, Yuying Zeng, Yang Liu, Guillermo M. Suárez and Javier E. Moreno
Plants 2025, 14(7), 1048; https://doi.org/10.3390/plants14071048 - 28 Mar 2025
Viewed by 716
Abstract
Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi that associate with the vast majority of terrestrial plants. Among non-vascular plants, while AMF associations are well-documented in liverworts and hornworts, there is a broad consensus that symbiotic associations do not occur in mosses. Here, we [...] Read more.
Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi that associate with the vast majority of terrestrial plants. Among non-vascular plants, while AMF associations are well-documented in liverworts and hornworts, there is a broad consensus that symbiotic associations do not occur in mosses. Here, we report the presence of AMF in the living material of mosses found in Chaco Serrano (Tucumán, Argentina). We found all characteristic structures of AMF when establishing an intimate connection with two moss species of Pottiaceae (Bryophyta). While Gertrudiella uncinicoma exhibited AMF with both Arum- and Paris-type morphologies, Pleurochaete luteola only displayed an Arum-type morphology. Plant tissue samples were subjected to high-throughput sequencing for AMF identification. We determined that Rhizophagus irregularis was a clear dominant species in both moss species, with Glomus sp. also being present as a less abundant element. In addition, we also reported the presence of vesicles, arbuscules, and spores adhered to the hyphae and the presence of septate endophytes. This finding expands our understanding of the interactions between AMF and non-vascular plants and prompt us to further characterize this interaction by considering the diversity of mycorrhizal associations with concurrent implications for the ecology of mosses and the functionality of the ecosystems. Full article
Show Figures

Figure 1

13 pages, 2315 KiB  
Article
Lobelia Lakes’ Vegetation and Its Photosynthesis Pathways Concerning Water Parameters and the Stable Carbon Isotopic Composition of Plants’ Organic Matter
by Eugeniusz Pronin, Krzysztof Banaś, Rafał Chmara, Rafał Ronowski, Marek Merdalski, Anne-Lise Santoni and Olivier Mathieu
Plants 2024, 13(17), 2529; https://doi.org/10.3390/plants13172529 - 9 Sep 2024
Cited by 4 | Viewed by 1246
Abstract
Most of the aquatic vegetation produces organic substances via the C3 photosynthetic pathway (mosses, isoetids—Lobelia dortmanna L., Luronium natans (L.) Raf., and vascular plants) or Crassulacean acid metabolism (CAM, e.g., Littorella uniflora (L.) Asch. and Isoëtes lacustris L.) or by their ability to use HCO3 [...] Read more.
Most of the aquatic vegetation produces organic substances via the C3 photosynthetic pathway (mosses, isoetids—Lobelia dortmanna L., Luronium natans (L.) Raf., and vascular plants) or Crassulacean acid metabolism (CAM, e.g., Littorella uniflora (L.) Asch. and Isoëtes lacustris L.) or by their ability to use HCO3 via carbon concentration mechanisms (CCMs—some elodeids and charophytes). Differentiating these predominant photosynthetic pathways in aquatic vegetation based on their organic matter (OM) carbon stable isotopes (δ13CORG) is a complex task, in contrast to terrestrial plants. This study investigates the OM deposition, characterized by δ13CORG values in 10 macrophyte species with different photosynthetic pathways (C3, CAM, and CCM) collected from 14 softwater Lobelia lakes in northern Poland. The higher δ13CORG values distinguish the CCM group, indicating their use of 13C-enriched HCO3¯ in photosynthesis. CAM species show slightly higher δ13CORG values than C3, particularly in lower pH lakes. Principal component analysis of isotopic and environmental data did not yield clear distinctions by the groups, but still, they significantly differ in light of analyzed parameters and isotopic signals (PRMANOVA = 5.08, p < 0.01; K-W H = 27.01, p < 0.001). The first two PCA dimensions showed that the water pH and Ca2+ concentration positively influenced δ13C values. The influence of light conditions on δ13CORG values revealed by third PCA components seems to also be important. In summary, northern Polish Lobelia lakes serve as a key differentiation point between vegetation employing CCMs and those relying on C3/CAM photosynthesis without HCO3 utilization, providing insights into transitions in plant communities within these ecosystems. Full article
(This article belongs to the Special Issue Physiology and Ecology of Aquatic Plants)
Show Figures

Figure 1

2 pages, 130 KiB  
Abstract
Microplastics and Their Impact on Moss Ecosystem Functions: A Comprehensive Review
by Prosper Onochie and Elohor-Oghene Amarie
Proceedings 2024, 105(1), 131; https://doi.org/10.3390/proceedings2024105131 - 28 May 2024
Viewed by 500
Abstract
Microplastic pollution has become a global environmental concern due to its pervasive presence in terrestrial and aquatic ecosystems [...] Full article
22 pages, 1487 KiB  
Review
Plant Tissues as Biomonitoring Tools for Environmental Contaminants
by Mariam Tarish, Rania T. Ali, Muhammad Shan, Zarmeena Amjad, Qingchen Rui, Sayed Abdul Akher and Abdullah Al Mutery
Int. J. Plant Biol. 2024, 15(2), 375-396; https://doi.org/10.3390/ijpb15020030 - 28 Apr 2024
Cited by 11 | Viewed by 3279
Abstract
Environmental toxins pose significant threats to ecosystems and human health. Monitoring and assessing these toxins are crucial for effective environmental management and public health protection. Recently, plant species have garnered increasing attention as potential bioindicators for identifying and evaluating ecological toxins. Since plants [...] Read more.
Environmental toxins pose significant threats to ecosystems and human health. Monitoring and assessing these toxins are crucial for effective environmental management and public health protection. Recently, plant species have garnered increasing attention as potential bioindicators for identifying and evaluating ecological toxins. Since plants often come into touch with harmful compounds in soil, water, and the atmosphere, they are particularly valuable for analyzing how human activities influence the terrestrial ecosystem, the aquatic system, and the atmosphere. This review paper emphasizes using plant species as a resource for tracking environmental pollution and analyzing contaminants. We focused on plants because they are significant indicators of soil, water, and air quality changes. Many plants have been used as bio-indicators to assess and predict pollution, toxicity, and environmental changes. These include Allium cepa, Vicia faba, Pisum sativum, Zea mays, Nicotiana tabacum, lichens, and mosses. The idea of bioindicators is discussed in the current paper, with a focus on plants as possible candidates for bioindicators for toxin assessment and related outcomes. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

15 pages, 1130 KiB  
Communication
Exploring the Metatranscriptome of Bacterial Communities of Two Moss Species Thriving in Different Environments—Terrestrial and Aquatic
by Vesselin Baev, Gana Gecheva, Elena Apostolova, Mariyana Gozmanova and Galina Yahubyan
Plants 2024, 13(9), 1210; https://doi.org/10.3390/plants13091210 - 26 Apr 2024
Cited by 2 | Viewed by 2379
Abstract
Mosses host diverse bacterial communities essential for their fitness, nutrient acquisition, stress tolerance, and pathogen defense. Understanding the microbiome’s taxonomic composition is the first step, but unraveling their functional capabilities is crucial for grasping their ecological significance. Metagenomics characterizes microbial communities by composition, [...] Read more.
Mosses host diverse bacterial communities essential for their fitness, nutrient acquisition, stress tolerance, and pathogen defense. Understanding the microbiome’s taxonomic composition is the first step, but unraveling their functional capabilities is crucial for grasping their ecological significance. Metagenomics characterizes microbial communities by composition, while metatranscriptomics explores gene expression, providing insights into microbiome functionality beyond the structure. Here, we present for the first time a metatranscriptomic study of two moss species, Hypnum cupressiforme (Hedw.) and Platyhypnidium riparioides (Hedw.) Dixon., renowned as key biomonitors of atmospheric and water pollution. Our investigation extends beyond taxonomic profiling and offers a profound exploration of moss bacterial communities. Pseudomonadota and Actinobacteria are the dominant bacterial phyla in both moss species, but their proportions differ. In H. cupressiforme, Actinobacteria make up 62.45% and Pseudomonadota 32.48%, while in P. riparioides, Actinobacteria account for only 25.67% and Pseudomonadota 69.08%. This phylum-level contrast is reflected in genus-level differences. Our study also shows the expression of most genes related to nitrogen cycling across both microbiomes. Additionally, functional annotation highlights disparities in pathway prevalence, including carbon dioxide fixation, photosynthesis, and fatty acid biosynthesis, among others. These findings hint at potential metabolic distinctions between microbial communities associated with different moss species, influenced by their specific genotypes and habitats. The integration of metatranscriptomic data holds promise for enhancing our understanding of bryophyte–microbe partnerships, opening avenues for novel applications in conservation, bioremediation, and sustainable agriculture. Full article
(This article belongs to the Special Issue Roles of Bryophytes in Aquatic Ecology)
Show Figures

Figure 1

18 pages, 1721 KiB  
Article
Updated List of Bryophytes from Cape Verde Archipelago
by Manuela Sim-Sim, Anabela Martins and Cesár Augusto Garcia
Diversity 2024, 16(4), 217; https://doi.org/10.3390/d16040217 - 31 Mar 2024
Cited by 2 | Viewed by 1830
Abstract
The aim of the present study is to update the list of bryophytes in the Cape Verde archipelago, with a focus on its distinctive terrestrial biota. The research was carried out through a combination of herbarium collections revision and fieldwork conducted from 2016 [...] Read more.
The aim of the present study is to update the list of bryophytes in the Cape Verde archipelago, with a focus on its distinctive terrestrial biota. The research was carried out through a combination of herbarium collections revision and fieldwork conducted from 2016 to 2019. The revised list includes 185 bryophyte taxa (175 species, 5 subspecies, and 5 varieties) from 93 genera and 42 families. Notably, 8 taxa are endemic, and the inclusion of 35 new taxa further enriches the bryophyte diversity of the archipelago. The distribution of bryophyte taxa varies across islands, with Santo Antão, São Nicolau, and Fogo exhibiting particularly high diversity. Acrocarpous mosses are the most common growth form (58.4%), followed by pleurocarpous mosses, thalloid liverworts (15.1% each), and leafy liverworts (11.4%). In conclusion, this study provides valuable insights into the bryophyte diversity of southern Macaronesia enhancing our understanding of its unique flora and emphasizing the imperative need for conservation efforts. Full article
(This article belongs to the Topic Plant Systematics and Taxonomy)
Show Figures

Figure 1

11 pages, 1609 KiB  
Article
Effects of Vegetation Succession on Soil Microbial Communities on Karst Mountain Peaks
by Wenyu Wang, Peiqin Peng, Jiangnan Li, Xionghui Liao, Wei Zhang, Kelin Wang and Jie Zhao
Forests 2024, 15(4), 586; https://doi.org/10.3390/f15040586 - 24 Mar 2024
Cited by 4 | Viewed by 1762
Abstract
Soil microorganisms are vital components of the karst terrestrial ecosystem. However, their responses to the vegetation succession on karst mountain peaks remain unclear as to whether soil microbial diversity and community compositions change with vegetation succession. We investigated the diversity and community compositions [...] Read more.
Soil microorganisms are vital components of the karst terrestrial ecosystem. However, their responses to the vegetation succession on karst mountain peaks remain unclear as to whether soil microbial diversity and community compositions change with vegetation succession. We investigated the diversity and community compositions of soil bacteria and fungi and associated environmental factors along a vegetation succession from moss crusts (MC) to moss crusts with sparse grasses (MCG) to sparse grasses (G) on karst mountain peaks. The results indicated that soil organic carbon and total nitrogen generally increased, and soil pH changed in the range of 8.19–8.44 and slightly declined with vegetation succession. Overall, there was an increase in microbial biomass along the vegetation succession, with the dominant phyla of bacteria, including Proteobacteria, Acidobacteria, Actinobacteria, Choroflexi, Gemmatiomnadates, Bacteroidetes, and Planctomycetes, and the dominated phyla of fungi, including Basidiomycota and Ascomycota. Notably, both the bacterial and fungal community compositions were different among the three successional stages. Spearman’s correction analysis showed that soil organic carbon and total nitrogen had stronger and more significant influences on the soil microbial community compositions compared to soil water content, pH, and C:N ratio. Overall, our results provide evidence for the changes and influencing factors of the microbial community with the succession vegetation on karst mountain peaks. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 4815 KiB  
Article
Photosynthetic Responses of Racomitrium japonicum L. to Strontium Stress Evaluated through Chlorophyll a Fluorescence OJIP Transient Analysis
by Hui Ren, Yunmei Lu, Yunlai Tang, Peng Ren, Hao Tang, Qunlong Chen, Peigang Kuang, Renhua Huang, Wenkun Zhu and Ke Chen
Plants 2024, 13(5), 591; https://doi.org/10.3390/plants13050591 - 22 Feb 2024
Cited by 5 | Viewed by 1682
Abstract
Nuclides pollution and its biological effects are of great concern, especially for bryophytes during their terrestrial adaptation. Understanding PSII activity and electron transport response is vital for comprehending moss abiotic stress reactions. However, little is known about the photosynthetic performance of moss under [...] Read more.
Nuclides pollution and its biological effects are of great concern, especially for bryophytes during their terrestrial adaptation. Understanding PSII activity and electron transport response is vital for comprehending moss abiotic stress reactions. However, little is known about the photosynthetic performance of moss under nuclide treatment. Therefore, this study aimed to evaluate the chlorophyll fluorescence of Racomitrium japonicum L. The moss was subjected to Sr2+ solutions at concentrations of 5, 50, and 500 mg/L to evaluate chlorophyll a fluorescence using the OJIP test. Moderate and high Sr2+ stress led to inner cell membrane dissolution and reduced chlorophyll content, indicating impaired light energy absorption. At 5 mg/L Sr2+, fluorescence kinetics showed increased light energy capture, energy dissipation, and total photosynthetic driving force, thus stimulating transient photosynthetic activity of PSII and improving PSI reduction. Linear electron transfer and PSII stability significantly decreased under moderate and high Sr2+ stress, indicating potential photosynthetic center damage. Cyclic electron transfer (CEF) alleviated photosynthetic stress at 5 mg/L Sr2+. Thus, low Sr2+ levels stimulated CEF, adjusting energy flux and partitioning to protect the photosynthetic apparatus. Nevertheless, significant damage occurred due to inefficient protection under high Sr2+ stress. Full article
Show Figures

Figure 1

21 pages, 8848 KiB  
Article
Phytochemical Exploration of Ceruchinol in Moss: A Multidisciplinary Study on Biotechnological Cultivation of Physcomitrium patens (Hedw.) Mitt.
by Carlos Munoz, Kirsten Schröder, Bernhard Henes, Jane Hubert, Sébastien Leblond, Stéphane Poigny, Ralf Reski and Franziska Wandrey
Appl. Sci. 2024, 14(3), 1274; https://doi.org/10.3390/app14031274 - 3 Feb 2024
Cited by 2 | Viewed by 2034
Abstract
The moss Physcomitrium patens (P. patens), formerly known as Physcomitrella patens, has ascended to prominence as a pivotal model organism in plant biology. Its simplicity in structure and life cycle, coupled with genetic amenability, has rendered it indispensable in unraveling [...] Read more.
The moss Physcomitrium patens (P. patens), formerly known as Physcomitrella patens, has ascended to prominence as a pivotal model organism in plant biology. Its simplicity in structure and life cycle, coupled with genetic amenability, has rendered it indispensable in unraveling the complexities of land plant evolution and responses to environmental stimuli. As an evolutionary bridge between algae and vascular plants, P. patens offers a unique perspective on early terrestrial adaptation. This research involved the biotechnological cultivation of P. patens, followed by a deep phytochemical investigation of two extracts covering a large polarity range together using an NMR-based dereplication approach combined with GC/MS analyses. Subsequently, a multidisciplinary approach combining bioinformatics, in-silico techniques, and traditional methods was adopted to uncover intriguing molecules such as the diterpene ceruchinol and its potential receptor interactions for future cosmetic applications. The kaurene diterpene ceruchinol, representing up to 50% of the supercritical CO2 extract and also identified in the hydroalcoholic extract, was selected for the molecular docking study, which highlighted several biological targets as CAR, AKR1D1, and 17β-HSD1 for potential cosmetic use. These findings offer valuable insights for novel uses of this plant biomass in the future. Full article
(This article belongs to the Special Issue Development of Innovative Cosmetics)
Show Figures

Figure 1

15 pages, 2547 KiB  
Communication
Telomere Length Variation in Model Bryophytes
by Liia R. Valeeva, Anastasia V. Sannikova, Nadiya R. Shafigullina, Liliia R. Abdulkina, Margarita R. Sharipova and Eugene V. Shakirov
Plants 2024, 13(3), 387; https://doi.org/10.3390/plants13030387 - 28 Jan 2024
Viewed by 2194
Abstract
The ends of linear chromosomes of most eukaryotes consist of protein-bound DNA arrays called telomeres, which play essential roles in protecting genome integrity. Despite general evolutionary conservation in function, telomeric DNA is known to drastically vary in length and sequence between different eukaryotic [...] Read more.
The ends of linear chromosomes of most eukaryotes consist of protein-bound DNA arrays called telomeres, which play essential roles in protecting genome integrity. Despite general evolutionary conservation in function, telomeric DNA is known to drastically vary in length and sequence between different eukaryotic lineages. Bryophytes are a group of early diverging land plants that include mosses, liverworts, and hornworts. This group of ancient land plants recently emerged as a new model for important discoveries in genomics and evolutionary biology, as well as for understanding plant adaptations to a terrestrial lifestyle. We measured telomere length in different ecotypes of model bryophyte species, including Physcomitrium patens, Marchantia polymorpha, Ceratodon purpureus, and in Sphagnum isolates. Our data indicate that all analyzed moss and liverwort genotypes have relatively short telomeres. Furthermore, all analyzed ecotypes and isolates of model mosses and liverworts display evidence of substantial natural variation in telomere length. Interestingly, telomere length also differs between male and female strains of the dioecious liverwort M. polymorpha and dioecious moss C. purpureus. Given that bryophytes are extraordinarily well adapted to different ecological niches from polar to tropical environments, our data will contribute to understanding the impact of natural telomere length variation on evolutionary adaptations in this ancient land plant lineage. Full article
(This article belongs to the Special Issue Bryophyte Biology)
Show Figures

Figure 1

16 pages, 1200 KiB  
Article
Assessment of Atmospheric Pollution by Selected Elements and PAHs during 12-Month Active Biomonitoring of Terrestrial Mosses
by Małgorzata Rajfur, Anca-Iulia Stoica, Paweł Świsłowski, Wolfgang Stach, Falko Ziegenbalg and Eva Maria Mattausch
Atmosphere 2024, 15(1), 102; https://doi.org/10.3390/atmos15010102 - 14 Jan 2024
Cited by 7 | Viewed by 2265
Abstract
Biomonitoring studies are most often used in short-term study periods to quickly obtain information on the state/quality of the environment and its pollution levels. Performing long-term surveys involves a prolonged wait for the result and is therefore not often used and is rather [...] Read more.
Biomonitoring studies are most often used in short-term study periods to quickly obtain information on the state/quality of the environment and its pollution levels. Performing long-term surveys involves a prolonged wait for the result and is therefore not often used and is rather associated with classical air quality monitoring. The aim of this study was to evaluate atmospheric air pollution by selecting 16 elements and 16 polycyclic aromatic hydrocarbons conducted as part of a 12-month ‘moss-bag’ technique of an active biomonitoring method with the use of three moss species: Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum. All analytes were determined by inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography–mass spectrometry (GC-MS). As a result of the experiment, it was found that the concentrations of all elements increased with time of exposure. The total sum of them in D. polysetum moss was 30% and 60% more than in P. schreberi and S. fallax, respectively, which allows us to consider this species’ broader use in active biomonitoring. For PAHs analysis, the best biomonitor in time was P. schreberi, which accumulated 25% and 55% more than S. fallax and D. polysetum, respectively. In this one-year study, most organic compounds accumulated between 5 and 6 months of exposure, depending on the species. Given the low-cost nature of active biomonitoring, it should be concluded that mosses could be used in long-term monitoring of the quality of the atmospheric aerosol in terms of element and organic compound concentration in air. Full article
Show Figures

Figure 1

18 pages, 2447 KiB  
Article
Estimation of Carbon and Nitrogen Contents in Forest Ecosystems in the Background Areas of the Russian Arctic (Murmansk Region)
by Vyacheslav Ershov, Tatyana Sukhareva, Nickolay Ryabov, Ekaterina Ivanova and Irina Shtabrovskaya
Forests 2024, 15(1), 29; https://doi.org/10.3390/f15010029 - 22 Dec 2023
Cited by 1 | Viewed by 1587
Abstract
In this study, carbon and nitrogen contents in the undisturbed terrestrial ecosystems in the northern taiga zone of Russia’s Murmansk region were estimated. The goal of this study was to examine the carbon and nitrogen dynamics in atmospheric precipitation, assimilating organs of coniferous [...] Read more.
In this study, carbon and nitrogen contents in the undisturbed terrestrial ecosystems in the northern taiga zone of Russia’s Murmansk region were estimated. The goal of this study was to examine the carbon and nitrogen dynamics in atmospheric precipitation, assimilating organs of coniferous trees (Picea obovata and Pinus sylvestris), needle litter, soils, and soil water. The objects of our research were the most common dwarf shrub-green moss spruce forests and lichen-dwarf shrub pine forests of the boreal zone. The study was carried out on permanent plots between 1999 and 2020. The long-term dynamics of carbon concentrations in snow demonstrated a trend towards increasing carbon concentrations in forested and treeless areas of the Murmansk region. It was shown that in representative spruce and pine forests, the concentrations and atmospheric precipitation of carbon compounds and carbon leaching with soil water were higher below the tree crowns, compared to between the crowns. In soil water, a decrease was found in carbon concentration with the soil profile depth. For soils, the highest carbon concentrations were found in the organic and illuvial soil horizons. The main soil sinks of carbon and nitrogen in northern taiga forests were found to be located in the organic soil horizon below the crowns. In northern taiga forests, the carbon content of living Picea obovata and Pinus sylvestris needles and Pinus sylvestris needle litter had minor variability; no significant interbiogeocoenotic and age differences were found. We found that the nitrogen content in brown needles and needle litter was significantly lower compared to photosynthetically active needles, probably due to retranslocation processes (withdrawal before needle abscission), corroborating the literature in the results session. The largest stocks of carbon and nitrogen in northern taiga forests are concentrated in the soil organic horizon, and the removal of these elements with soil water is insignificant. Carbon and nitrogen stocks in living and fallen needles are lower than in soil. The least amount of carbon and nitrogen is contained in atmospheric precipitation. Full article
(This article belongs to the Special Issue Monitoring of Forest Ecosystems at Different Scales)
Show Figures

Figure 1

Back to TopTop