Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = terrain spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 28014 KiB  
Article
A Shadow Detection Method Combining Topography and Spectra for Remote Sensing Images in Mountainous Environments
by Huagui Xu, Jingxing Zhu, Feng Wang, Hongjian You and Wenzhi Wang
Appl. Sci. 2025, 15(9), 4899; https://doi.org/10.3390/app15094899 - 28 Apr 2025
Viewed by 403
Abstract
Shadow in remote sensing images can obscure important details of land features, making shadow detection crucial for enhancing the accuracy of subsequent analyses and applications. Current shadow detection methods primarily rely on the spectral information of images, which can often result in shadow [...] Read more.
Shadow in remote sensing images can obscure important details of land features, making shadow detection crucial for enhancing the accuracy of subsequent analyses and applications. Current shadow detection methods primarily rely on the spectral information of images, which can often result in shadow misdetection due to the phenomenon of spectral confusion of different objects. To mitigate this issue, we propose a method that combines topography and spectra (CTS). Firstly, we introduce a new DEM-based shadow coarse detection method to obtain the DEM rough shadow mask, which uses a relationship between the magnitude of terrain height angle and solar elevation angle to determine shadow properties. Then, we use the MC3 (modified C3 component) index-based shadow fine detection method to obtain an MC3 mean map, which includes image enhancement with a stretching process and multi-scale superpixel segmentation. We then derive the Shadow pixel Proportion Map (SPM) by counting the DEM rough shadow mask in terms of superpixels. The Joint Shadow probability Map (JSM) is obtained by combining the SPM and the MC3 mean map with specific weights. Finally, a multi-level Otsu threshold method is applied to the JSM to generate the shadow mask. We compare the proposed CTS method against several state-of-the-art algorithms through both qualitative assessments and quantitative metrics. The results show that the CTS method demonstrates superior accuracy and consistency in detecting true shadows, achieving an average overall accuracy of 95.81% on mountainous remote sensing images. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

15 pages, 12073 KiB  
Article
Classification of Hydrometeors During a Stratiform Precipitation Event in the Rainy Season of Liupanshan
by Nansong Feng, Zhiliang Shu and Yujun Qiu
Atmosphere 2025, 16(2), 132; https://doi.org/10.3390/atmos16020132 - 26 Jan 2025
Viewed by 547
Abstract
This study conducted a classification analysis of hydrometeor types during a typical stratiform mixed cloud precipitation event in the rainy season using data from the Liupan Mountains micro rain radar power spectra. The primary research findings are as follows: (1) Utilizing the RaProM [...] Read more.
This study conducted a classification analysis of hydrometeor types during a typical stratiform mixed cloud precipitation event in the rainy season using data from the Liupan Mountains micro rain radar power spectra. The primary research findings are as follows: (1) Utilizing the RaProM method synthesizes the information of particle falling velocity, equivalent radar reflection coefficient, particle scale characteristics at different stages, and the location of the bright zone in the zero-degree layer to classify hydrometeors during this precipitation process, and the results show that drizzle and raindrop distribution time periods do not match with the raindrop spectra and rain intensities observed by the DSG5 ground-based precipitation gauge. (2) Sensitivity experiments conducted on the RaProM method revealed that after modifying the discrimination thresholds for drizzle and raindrops, the distributions of drizzle and raindrops were more aligned with ground-based raindrop spectrum observations. Furthermore, these adjustments also showed better consistency with the radar reflectivity factor, Doppler velocity, and velocity spectrum width thresholds used by existing millimeter-wave cloud radars to discriminate between drizzle and raindrops. (3) Various kinds of hydrometeors show different vertical distribution characteristics in three precipitation stages: weak, strong, and weak. In the two weak precipitation stages, hydrometeors mainly existed in the form of snowflakes at altitudes above the zero-degree layer and in the form of drizzle at altitudes below the zero-degree layer. The vertical distribution disparity of hydrometeors between the mountain peak and base sites demonstrates that terrain significantly influences hydrometeors during the precipitation process. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

13 pages, 3510 KiB  
Article
Laboratory Validation of 3D Model and Investigating Its Application to Wind Turbine Noise Propagation over Rough Ground
by James Naylor and Qin Qin
Wind 2024, 4(4), 363-375; https://doi.org/10.3390/wind4040018 - 7 Nov 2024
Cited by 2 | Viewed by 898
Abstract
In an investigation into how wind turbine noise interacts with the surrounding terrain, its propagation over rough ground is simulated using a parabolic equation code using a modified effective impedance model, which characterizes the effects of a three-dimensional, rigid roughness within a relatively [...] Read more.
In an investigation into how wind turbine noise interacts with the surrounding terrain, its propagation over rough ground is simulated using a parabolic equation code using a modified effective impedance model, which characterizes the effects of a three-dimensional, rigid roughness within a relatively long wavelength limit (ka1). The model is validated by comparison to experiments conducted within an anechoic chamber wherein different source–receiver geometries are considered. The relative sound pressure level spectra from the parabolic equation code using the modified effective impedance model highlight a sensitivity to the roughness parameters. At a low frequency and far distance, the relative sound pressure level decreased as the roughness coverage increased. A difference of 4.9 dB has been reported. The simulations highlight how the roughness shifts the ground effect dips, resulting in the sound level at the distance of 2 km being altered. However, only the monochromatic wave has been discussed. Further work on broadband noise is desirable. Furthermore, due to the long wavelength limit, only a portion of audible wind turbine noise can be investigated. Full article
Show Figures

Figure 1

11 pages, 2736 KiB  
Article
Identification of Topographic Seismic Site Periods in Sloping Terrains
by Edgar Giovanny Diaz-Segura and Jorge Eduardo Oviedo-Veas
Appl. Sci. 2024, 14(17), 7506; https://doi.org/10.3390/app14177506 - 25 Aug 2024
Cited by 2 | Viewed by 1064
Abstract
The fundamental period of a terrain is a key parameter for characterizing the maximum soil amplification. Since the 1960s, research has been conducted for sloping terrains with a focus on evaluating topographic effects. However, few studies have focused on identifying whether the site [...] Read more.
The fundamental period of a terrain is a key parameter for characterizing the maximum soil amplification. Since the 1960s, research has been conducted for sloping terrains with a focus on evaluating topographic effects. However, few studies have focused on identifying whether the site topography induces an amplification peak that is associated with a characteristic period of sloping terrain. This study conducts a parametric analysis to identify a potential amplification pattern attributable to terrain geometry, using two-dimensional finite element models subjected to the action of a dynamic signal. The periods in which amplification peaks are generated are evaluated and compared with the amplification response recorded in the free field on horizontal terrain. The results reveal that the dynamic response of sloping terrain is a combination of the response from the surrounding terrain to the sloping zone and vice versa, and a distinctive amplification peak linked to the topography is identified. A new expression is proposed to define a topographic seismic site period in terms of shear wave velocity and the total soil thickness from the bedrock to the crest of sloping terrain. This study advances the processes of characterizing the seismic response of sloping terrains by demonstrating that the topographic seismic site period is consistent regardless of the slope angle. This provides engineers with a new dimension of analysis for the practical definition of criteria to determine topographic effects in design spectra. Full article
(This article belongs to the Special Issue Geotechnical Earthquake Engineering: Current Progress and Road Ahead)
Show Figures

Figure 1

20 pages, 5296 KiB  
Article
A Hybrid Index for Monitoring Burned Vegetation by Combining Image Texture Features with Vegetation Indices
by Jiahui Fan, Yunjun Yao, Qingxin Tang, Xueyi Zhang, Jia Xu, Ruiyang Yu, Lu Liu, Zijing Xie, Jing Ning and Luna Zhang
Remote Sens. 2024, 16(9), 1539; https://doi.org/10.3390/rs16091539 - 26 Apr 2024
Cited by 7 | Viewed by 2254
Abstract
The detection and monitoring of burned areas is crucial for vegetation recovery, loss assessment, and anomaly analysis. Although vegetation indices (VIs) have been widely used, accurate vegetation detection is challenging due to potential confusion in the spectra of different types of land cover [...] Read more.
The detection and monitoring of burned areas is crucial for vegetation recovery, loss assessment, and anomaly analysis. Although vegetation indices (VIs) have been widely used, accurate vegetation detection is challenging due to potential confusion in the spectra of different types of land cover and the interference of shadow effects caused by terrain. In this work, a novel Vegetation Anomaly Spectral Texture Index (VASTI) is proposed, which leverages the merits of both spectral and spatial texture features to identify abnormal pixels for extracting burned vegetation areas. The performance of the VASTI and its components, the Global Environmental Monitoring Index (GEMI), the Enhanced Vegetation Index (EVI), and the texture feature Autocorrelation (AC) were assessed based on a global dataset previously established, which contains 1774 pairs of samples from 10 different sites. The results illustrated that, compared with the GEMI and EVI, the VASTI improved the user’s accuracy (UA), producer’s accuracy (PA), and kappa coefficient across the ten study areas by approximately 5% to 10%. Compared to AC, the VASTI improved the accuracy of abnormal vegetation detection by 13% to 25%. The improvements were mainly caused by the fact that the incorporation of texture features can reduce spectral confusion between pixels. The innovation of the VASTI is that it considers the relationship between anomalous pixels and surrounding pixels by explicitly integrating spatial texture features with traditional spectral features. Full article
Show Figures

Graphical abstract

23 pages, 33239 KiB  
Article
Lunar Surface Resource Exploration: Tracing Lithium, 7 Li and Black Ice Using Spectral Libraries and Apollo Mission Samples
by Susana del Carmen Fernández, Fernando Alberquilla, Julia María Fernández, Enrique Díez, Javier Rodríguez, Rubén Muñiz, Javier F. Calleja, Francisco Javier de Cos and Jesús Martínez-Frías
Remote Sens. 2024, 16(7), 1306; https://doi.org/10.3390/rs16071306 - 8 Apr 2024
Viewed by 2710
Abstract
This is an exercise to explore the concentration of lithium, lithium-7 isotope and the possible presence of black dirty ice on the lunar surface using spectral data obtained from the Clementine mission. The main interest in tracing the lithium and presence of dark [...] Read more.
This is an exercise to explore the concentration of lithium, lithium-7 isotope and the possible presence of black dirty ice on the lunar surface using spectral data obtained from the Clementine mission. The main interest in tracing the lithium and presence of dark ice on the lunar surface is closely related to future human settlement missions on the moon. We investigate the distribution of lithium and 7 Li isotope on the lunar surface by employing spectral data from the Clementine images. We utilized visible (VIS–NIR) imagery at wavelengths of 450, 750, 900, 950 and 1000 nm, along with near-infrared (NIR–SWIR) at 1100, 1250, 1500, 2000, 2600 and 2780 nm, encompassing 11 bands in total. This dataset offers a comprehensive coverage of about 80% of the lunar surface, with resolutions ranging from 100 to 500 m, spanning latitudes from 80°S to 80°N. In order to extract quantitative abundance of lithium, ground-truth sites were used to calibrate the Clementine images. Samples (specifically, 12045, 15058, 15475, 15555, 62255, 70035, 74220 and 75075) returned from Apollo missions 12, 15, 16 and 17 have been correlated to the Clementine VIS–NIR bands and five spectral ratios. The five spectral ratios calculated synthesize the main spectral features of sample spectra that were grouped by their lithium and 7 Li content using Principal Component Analysis. The ratios spectrally characterize substrates of anorthosite, silica-rich basalts, olivine-rich basalts, high-Ti mare basalts and Orange and Glasses soils. Our findings reveal a strong linear correlation between the spectral parameters and the lithium content in the eight Apollo samples. With the values of the 11 Clementine bands and the 5 spectral ratios, we performed linear regression models to estimate the concentration of lithium and 7 Li. Also, we calculated Digital Terrain Models (Altitude, Slope, Aspect, DirectInsolation and WindExposition) from LOLA-DTM to discover relations between relief and spatial distribution of the extended models of lithium and 7 Li. The analysis was conducted in a mask polygon around the Apollo 15 landing site. This analysis seeks to uncover potential 7 Li enrichment through spallation processes, influenced by varying exposure to solar wind. To explore the possibility of finding ice mixed with regolith (often referred to as `black ice’), we extended results to the entire Clementine coverage spectral indices, calculated with a library (350–2500 nm) of ice samples contaminated with various concentrations of volcanic particles. Full article
(This article belongs to the Special Issue Future of Lunar Exploration)
Show Figures

Figure 1

15 pages, 5436 KiB  
Article
Research on the Terrain Characteristics of Changbai Mountain and Their Impact on Precipitation and Wind Distribution
by Li Liang, Wanxiu Ai, Xiaodan Yang and Luqiang Zhao
Atmosphere 2024, 15(3), 272; https://doi.org/10.3390/atmos15030272 - 24 Feb 2024
Viewed by 1576
Abstract
The terrain of Changbai Mountain has great influence on the distribution of atmospheric flows and the occurrence and development of precipitation. However, quantitative studies on the real terrain characteristics and the terrain effect on precipitation distribution in this region are scant at present. [...] Read more.
The terrain of Changbai Mountain has great influence on the distribution of atmospheric flows and the occurrence and development of precipitation. However, quantitative studies on the real terrain characteristics and the terrain effect on precipitation distribution in this region are scant at present. This study quantitatively analyzes the regional characteristic of topographic perturbations and the relationship between terrain, wind, and precipitation in Changbai Mountain region by using a spectral analysis of the two-dimensional discrete cosine transform. Three domains with relatively heavy summer precipitation are selected as the study region. The results indicate that the overall terrain of the Changbai Mountain region exhibits anisotropic characteristics. The terrain spectra of domain B are less than those of domains A and C across the whole wavelength (λ) bands, indicating that the large-scale topographic perturbations of domain B are relatively weak. The largest topographic spectral peak of domain C shows the most pronounced undulation of terrain among the three domains. The dominant wavelengths of terrain height variance for domains A and C, both close to the respective maximum wavelengths, indicate more prominent large-scale topographic perturbations. For domain A, the variation of the precipitation spectra is consistent with that of the wind spectra at the wavelength bands of λ < 390 km, showing a high correlation between wind field and the occurrence of rainfall. The inverse relationship at larger wavelengths indicates that multiple factors contribute to the occurrence of rainfall. For domain B, there is consistency in the fluctuations of terrain spectra, precipitation spectra, and wind spectra at the wavelength bands of λ < 278.3 km, implying that the smaller-scale terrain has an important effect on the occurrence of summer precipitation. For domain C, the variations of terrain spectra, precipitation spectra, and wind spectra are almost consistent across the whole wavelength bands, indicating that the large-scale terrain and minor terrain both play a crucial role in atmospheric uplift and the occurrence and development of summer rainfall. Full article
(This article belongs to the Special Issue Extreme Weather Events in a Warming Climate)
Show Figures

Figure 1

16 pages, 4767 KiB  
Article
Influences of Summer Precipitation Occurrence Time on Raindrop Spectrum Characteristics over the Northeastern Tibetan Plateau
by Yuxin Zhang, Huibang Han, Boyue Zhang and Yonghui Hou
Atmosphere 2024, 15(1), 41; https://doi.org/10.3390/atmos15010041 - 29 Dec 2023
Cited by 1 | Viewed by 1456
Abstract
The impact of unique terrain on the microphysics of nighttime precipitation on the Tibetan Plateau (TP) has not been fully appreciated, due to a lack of observation. In this study, we used three raindrop spectrometers deployed in the northeastern TP to analyze the [...] Read more.
The impact of unique terrain on the microphysics of nighttime precipitation on the Tibetan Plateau (TP) has not been fully appreciated, due to a lack of observation. In this study, we used three raindrop spectrometers deployed in the northeastern TP to analyze the characteristics of the raindrop spectrum during two types of summer precipitation. These two types are classified according to their occurrence times: one starting in the daytime and lasting into the night (DP), while the other started at night and continuing into the daytime (NP). The results show that precipitation with a rain rate ranging from 1.0 to 5.0 mm h−1 contributes the most to the total precipitation, with this contribution rate being higher in the NP than in the DP. All the raindrop spectra follow a single-peak distribution pattern, and the logarithm of the generalized intercept parameter (lgNw) rises with the rain rate. The spectral widths of the DP-n (the nighttime part of the DP) are broader than those of the DP-d (the daytime part of the DP). Moreover, the average lgNw and mass-weighted mean diameter (Dm) over the northeastern TP were 2.65 mm−1 mm−3 and 1.04 mm, respectively, both of which are smaller than their equivalents in the plains. In addition, the gamma distribution can better fit the raindrop size distributions of the two types of precipitation. It is found that precipitation is more likely to occur over the TP at night. The characteristics of NP are reflected in two aspects. First, the sample size of the precipitation at the rain rate of 1.0–5.0 mm h−1 is higher in the NP-n (the nighttime part of the NP), and the precipitation at this rain rate contributes the most to the total precipitation. Second, for the same rain rate, the precipitation particles in the NP-n are larger. Full article
Show Figures

Figure 1

22 pages, 5718 KiB  
Article
Retrieval of Tropospheric NO2 Vertical Column Densities from Ground-Based MAX-DOAS Measurements in Lhasa, a City on the Tibetan Plateau
by Siyang Cheng, Guijuan Pu, Jianzhong Ma, Hyunkee Hong, Jun Du, Tseten Yudron and Thomas Wagner
Remote Sens. 2023, 15(19), 4689; https://doi.org/10.3390/rs15194689 - 25 Sep 2023
Cited by 8 | Viewed by 1795
Abstract
In order to investigate the abundance of and temporal variation in nitrogen dioxide (NO2) in the troposphere and validate the corresponding satellite products during a normal year and the lockdown period of coronavirus disease 2019 (COVID-19) in Lhasa, a city on [...] Read more.
In order to investigate the abundance of and temporal variation in nitrogen dioxide (NO2) in the troposphere and validate the corresponding satellite products during a normal year and the lockdown period of coronavirus disease 2019 (COVID-19) in Lhasa, a city on the Tibetan Plateau (TP), ground-based remote-sensing measurements captured by applying multi-axis differential optical absorption spectroscopy (MAX-DOAS) were recorded from August 2021 to March 2023 at the Lhasa site (91.14°E, 29.66°N; 3552.5 m altitude). The NO2 differential slant column densities (dSCDs) were retrieved from the spectra of scattered solar light at different elevation angles. Then, the tropospheric NO2 vertical column densities (VCDs) were calculated with the geometric approximation method. Based on the retrieved tropospheric NO2 VCDs, we found that the pattern of monthly variation in tropospheric NO2 VCDs in Lhasa presented two peaks, one in winter and one around May. According to the monthly means of tropospheric NO2 VCDs during the COVID-19 lockdown, the NO2 background level in Lhasa was estimated to be 0.53 × 1015 molecules·cm−2. For diurnal variations in tropospheric NO2 VCDs, the morning and evening peaks disappeared during the COVID-19 lockdown period. The east–west direction (i.e., along the river valley) was the main path of NO2 transport and dispersion in Lhasa, but the tropospheric NO2 VCDs were little dependent on the wind direction or wind speed during the COVID-19 lockdown. The correlation coefficient of tropospheric NO2 VCDs was R = 0.33 (R = 0.43), with the averaged relative deviation of −28% (99%) for the TROPOMI (GEMS) relative to ground-based MAX-DOAS. The monthly deviations of tropospheric NO2 VCDs between ground-based MAX-DOAS and the satellite showed a dependence on NO2 abundance, with the maxima of the monthly positive deviations during the COVID-19 lockdown period. The GEMS could not capture the strong and systematic diurnal variation in tropospheric NO2 VCDs in the “normal” year well. During the COVID-19 lockdown, the GEMS (>2 × 1015 molecules·cm−2) overestimated the hourly levels measured by ground-based MAX-DOAS (<1.6 × 1015 molecules·cm−2). As a whole, these results are beneficial to understanding the influences of anthropogenic activities on NO2 background levels in Lhasa and to learning the accuracy of satellite products over the TP, with its high altitude and complex terrain. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

18 pages, 5639 KiB  
Article
Study on Vibration Characteristics of Paddy Power Chassis under Different Driving Conditions
by Dongyang Yu, Jianfei He, Feihu Peng, Cheng Qian, Ying Zang, Minghua Zhang, Wenwu Yang, Guoxiang Zeng, Jianpeng Chen, Wei Qin and Zaiman Wang
Agriculture 2023, 13(9), 1842; https://doi.org/10.3390/agriculture13091842 - 20 Sep 2023
Cited by 5 | Viewed by 1638
Abstract
To elucidate the vibrational characteristics of power chassis in paddy fields, we examined the Yanmar VPG6G rice transplanter across diverse terrains, including paddy fields, dry land, and concrete roads. Vibrational acceleration measurements, taken in longitudinal, transverse, and vertical orientations at key chassis locations, [...] Read more.
To elucidate the vibrational characteristics of power chassis in paddy fields, we examined the Yanmar VPG6G rice transplanter across diverse terrains, including paddy fields, dry land, and concrete roads. Vibrational acceleration measurements, taken in longitudinal, transverse, and vertical orientations at key chassis locations, revealed noteworthy findings. The Mizuta power chassis exhibited its lowest root-mean-square (RMS) vibrational acceleration on concrete, while the highest was observed on paddy fields. The acceleration power spectra predominantly peaked between 1~14 Hz, with peak values amplifying as speed increased. Additionally, pendant orientation frequencies exceeded those of longitudinal and lateral directions. Both front and rear wheels mirrored the vibrational accelerations of the rear axle, but dynamic load coefficients for the front wheels consistently surpassed the rear, particularly at elevated speeds. This research not only enhances our understanding of terrain-induced vibrations and the intricate dynamics between terrain and tires but also lays the groundwork for designing optimized vibration-damping solutions tailored to prevalent road conditions. Full article
(This article belongs to the Special Issue Agricultural Automation in Smart Farming)
Show Figures

Figure 1

30 pages, 13121 KiB  
Article
High-Temperature Oxidation of Magnesium- and Iron-Rich Olivine under a CO2 Atmosphere: Implications for Venus
by Shan-Shan Zhong, Yu-Yan Sara Zhao, Honglei Lin, Rui Chang, Chao Qi, Junhu Wang, Bing Mo, Yuanyun Wen, Wen Yu, Di-Sheng Zhou, Xiao-Wen Yu, Xiongyao Li and Jianzhong Liu
Remote Sens. 2023, 15(8), 1959; https://doi.org/10.3390/rs15081959 - 7 Apr 2023
Cited by 5 | Viewed by 3876
Abstract
Understanding crust–atmosphere interactions on Venus is fundamentally important to interpretations of Venus’ surface spectroscopic data. Olivine, in basaltic crust, is oxidized under a heated CO2 atmosphere. However, the oxidation rates, product assemblages and spectral characteristics of olivine samples with different Fa# values [...] Read more.
Understanding crust–atmosphere interactions on Venus is fundamentally important to interpretations of Venus’ surface spectroscopic data. Olivine, in basaltic crust, is oxidized under a heated CO2 atmosphere. However, the oxidation rates, product assemblages and spectral characteristics of olivine samples with different Fa# values remain largely unclear. Herein, we investigated the oxidation of olivine with different Fa# values (Fa09, Fa29 and Fa71) under CO2 atmosphere at 470 °C and 900 °C and characterized the oxidation products (both microscopically and macroscopically), conversion rates and VNIR spectra. The results showed that the oxidation of olivine produced magnesioferrite, magnetite, laihunite, hematite and maghemite at 470 °C and hematite, magnetite, magnesioferrite and amorphous SiO2 at 900 °C. Both high temperature and high Fa# values accelerated the oxidation rates. The production of oxide coatings on olivine grains (74 μm in size) was estimated to be completed within tens to hundreds of years at 470 °C in natural settings, with even shorter periods under higher temperatures. Thus, CO2 oxidation would quickly eliminate olivine spectral characteristics, and spectral parameters at 850 and 1020 nm, as well as other relevant spectral windows (considering shifts induced by the elevated temperature), could be used to trace olivine oxidation processes. This work presented a case study connecting microscopic features to spectral characteristics for Venus’ surface–atmosphere interactions. Further studies considering more realistic Venus’ surface–atmosphere conditions will be essential to better interpret the measured spectroscopic data and determine the origins of the high emissivity detected on elevated terrain on Venus. Full article
Show Figures

Figure 1

18 pages, 9570 KiB  
Article
Evaluation of CFOSAT Wave Height Data with In Situ Observations in the South China Sea
by Bo Li, Junmin Li, Shilin Tang, Ping Shi, Wuyang Chen and Junliang Liu
Remote Sens. 2023, 15(4), 898; https://doi.org/10.3390/rs15040898 - 6 Feb 2023
Cited by 3 | Viewed by 2536
Abstract
The wave spectrometer operated by the China–France Oceanography Satellite (CFOSAT) can provide global ocean wave observation data. Although a lot of work on calibration and verification has been carried out in the open oceans dominated by swells, the quality of the data in [...] Read more.
The wave spectrometer operated by the China–France Oceanography Satellite (CFOSAT) can provide global ocean wave observation data. Although a lot of work on calibration and verification has been carried out in the open oceans dominated by swells, the quality of the data in the relatively enclosed sea area with complex terrain still lacks sufficient examination. The objective of this study is to assess the performance of the significant wave height data of the CFOSAT in the South China Sea (SCS), a unique sea area characterized by semi-enclosed basin and multi-reef terrain, and to recognize the environmental factors affecting the data quality. Compared against the long-term observations from five mooring or buoy sites, we find that the data is well performed in the relatively open and deep areas of the SCS, with an average correlation coefficient as high as 0.87, and a low average root-mean-square error of 0.47 m. However, the combined effects of complex topography, monsoons, and swell proportion variation will affect the performance of data. In the southern deep areas, the waves may be affected by a large number of dotted reefs, leading to wave deformations and energy dissipation in different seasons. In the northern nearshore areas, waves tend to be sheltered by the land or distorted by the shallow topography effects. These processes make it difficult for the swell to fully develop as in the open oceans. The low proportion of swell is a disadvantage for the CFOSAT to correctly observe the wave data and may lead to possible errors. Our results emphasize the importance of more verification when applying the CFOSAT data in certain local seas, and the necessity to adjust the algorithm of inverting wave spectra according to specific environmental factors. Full article
Show Figures

Figure 1

18 pages, 5032 KiB  
Article
Evaluation of Linear Kernel-Driven BRDF Models over Snow-Free Rugged Terrain
by Wenzhe Zhu, Dongqin You, Jianguang Wen, Yong Tang, Baochang Gong and Yuan Han
Remote Sens. 2023, 15(3), 786; https://doi.org/10.3390/rs15030786 - 30 Jan 2023
Cited by 12 | Viewed by 2368
Abstract
Semi-empirical kernel-driven models have been widely used to characterize anisotropic reflectance due to their simple form and physically meaningful approximation. Recently, several kernel-driven models have been coupled with topographic effects to improve the fitting of bidirectional reflectance over rugged terrains. However, extensive evaluations [...] Read more.
Semi-empirical kernel-driven models have been widely used to characterize anisotropic reflectance due to their simple form and physically meaningful approximation. Recently, several kernel-driven models have been coupled with topographic effects to improve the fitting of bidirectional reflectance over rugged terrains. However, extensive evaluations of the various models’ performances are required before their subsequent application in remote sensing. Three typical kernel-driven BRDF models over snow-free rugged terrains such as the RTLSR, TCKD, and the KDST-adjusted TCKD (KDST-TCKD) were investigated in this paper using simulated and observed BRFs. Against simulated data, the fitting error (NIR/Red RMSE) of the RTLSR gradually increases from 0.0358/0.0342 to 0.0471/0.0516 with mean slopes (α) increases from 9.13° to 33.40°. However, the TCKD and KDST-TCKD models perform an overall better fitting accuracy: the fitting errors of TCKD gradually decreased from 0.0366/0.0337 to 0.0252/0.0292, and the best fit from the KDST-TCDK model with NIR/Red RMSE decreased from 0.0192/0.0269 to 0.0169/0.0180. When compared to the sandbox data (α from 8.4° to 30.36°), the NIR/Red RMSE of the RTLSR model ranges from 0.0147/0.0085 to 0.0346/0.0165, for the TCKD model from 0.0144/0.0086 to 0.0298/0.0154, and for the KDST-TCKD model from 0.0137/0.0082 to 0.0234/0.0149. Using MODIS data, the TCKD and KDST-TCKD models show more significant improvements compared to the RTLSR model in rugged terrains. Their RMSE differences are within 0.003 over a relatively flat terrain (α < 10°). When α is large (20°–30° and >30°), the RMSE of the TCKD model has a decrease of around 0.01 compared to that of the RTLSR; for KDST-TCKD, it is approximately 0.02, and can even reach 0.0334 in the savannas. Therefore, the TCKD and KDST-TCKD models have an overall better performance than the RTLSR model in rugged terrains, especially in the case of large mean slopes. Among them, the KDST-TCKD model performs the best due to its consideration of topographic effects, geotropic growth, and component spectra. Full article
(This article belongs to the Special Issue Quantitative Remote Sensing Product and Validation Technology)
Show Figures

Figure 1

18 pages, 4306 KiB  
Article
Influence of Atmospheric Flow Structure on Optical Turbulence Characteristics
by Artem Y. Shikhovtsev, Pavel G. Kovadlo, Anatoly A. Lezhenin, Oleg A. Korobov, Alexander V. Kiselev, Ivan V. Russkikh, Dmitrii Y. Kolobov and Maxim Y. Shikhovtsev
Appl. Sci. 2023, 13(3), 1282; https://doi.org/10.3390/app13031282 - 18 Jan 2023
Cited by 27 | Viewed by 2461
Abstract
This article discusses the quality of astronomical images under conditions of moderate small-scale turbulence and varying meso-scale airflows above the Baikal Astrophysical Observatory (BAO). We applied a Weather Research and Forecasting (WRF) Model, as well as statistical estimations of the Fried parameter from [...] Read more.
This article discusses the quality of astronomical images under conditions of moderate small-scale turbulence and varying meso-scale airflows above the Baikal Astrophysical Observatory (BAO). We applied a Weather Research and Forecasting (WRF) Model, as well as statistical estimations of the Fried parameter from the differential motion of the solar images. The simulations were performed with a fairly high horizontal resolution within a large area of 1600 × 1600 km. A high horizontal resolution provides representative estimations of atmospheric characteristics and correct accounting of large-scale air advection. We considered the influence of atmospheric motions over the cold water area of Lake Baikal, as well as meso-scale vortex structures over rough terrain on solar image quality. A better understanding of structured turbulent small-scale motions and optical turbulence over rough terrain may help to develop advanced methods for diagnostics and prediction of image quality. For the first time, we have shown that the BAO is located at the periphery of a meso-scale atmospheric vortex structure with an anticyclonic direction of airflows in the daytime. An increase in image quality was associated with weakening airflows over Lake Baikal and a decrease in the intensity of wind speed fluctuations. Calculated spectra of atmospheric turbulence in the daytime were close to the classical form. At night and in the morning, the spectra had a steeper slope on small scales. Deformations of the spectra were due to the suppression of turbulence under stable stratification of the atmosphere. The characteristic horizontal scales of the transition from “−5/3” to ∼“−3” spectral slope were 2–2.5 km. The results obtained using the WRF model and analysis of optical turbulence strength (namely, the Fried parameter) indicated that the parameterization schemes used in the WRF model were accurate. Full article
(This article belongs to the Special Issue Advanced Observation for Geophysics, Climatology and Astronomy)
Show Figures

Figure 1

19 pages, 6070 KiB  
Article
Characteristics and Variations of Raindrop Size Distribution in Chengdu of the Western Sichuan Basin, China
by Tao Zhang, Wei Wei, Liying Zheng and Yangruixue Chen
Atmosphere 2023, 14(1), 76; https://doi.org/10.3390/atmos14010076 - 30 Dec 2022
Cited by 2 | Viewed by 2082
Abstract
Knowledge of the microphysical characteristics of precipitation plays a significant role in meteorology, hydrology, and natural hazards management, especially in the western Sichuan Basin (WSB), which is located east of the Tibetan Plateau (TP) in southwestern China and thus has unique terrain conditions [...] Read more.
Knowledge of the microphysical characteristics of precipitation plays a significant role in meteorology, hydrology, and natural hazards management, especially in the western Sichuan Basin (WSB), which is located east of the Tibetan Plateau (TP) in southwestern China and thus has unique terrain conditions and weather systems. Nonetheless, the literature regarding raindrop size distribution (RSD) in the WSB is still very limited. This work investigates RSD characteristics and temporal variations in a site (Chengdu, CD) of the WSB by employing three years of quality-controlled RSD observation collected from a second-generation PARSIVEL disdrometer. The results show that RSD has noticeable seasonal and diurnal variations in CD. Specifically, the broadest mean raindrop spectra can be found in summer and the narrowest in winter, and the raindrop spectra of a day can be the narrowest during 1400–1500 BJT (Beijing Standard Time, UTC+8). In addition, the mass-weighted mean diameter (Dm) is lower in the daytime than in the nighttime, while the logarithm of the generalized intercept parameter (log10Nw, the unit of the Nw is m−3 mm−1) has a larger value in the daytime than in the nighttime. In addition, intercomparisons indicate that the mean Dm of convective rains in CD is smaller than in South China and it is higher than in the eastern slope of TP, East China, and North China; on the other hand, the corresponding mean log10Nw is close to the value at the middle TP. Local empirical relations of shape–slope parameters (μΛ) and reflectivity–rain rate (Z–R) are also presented to provide references for optimizing the RSD parameterization scheme and radar precipitation estimation in the local area. Full article
(This article belongs to the Special Issue Identification and Optimization of Retrieval Model in Atmosphere)
Show Figures

Figure 1

Back to TopTop