Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,048)

Search Parameters:
Keywords = terrain complexity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2913 KB  
Article
Emissivity-Driven Directional Biases in Geostationary Satellite Land Surface Temperature: Integrated Comparison and Parametric Analysis Across Complex Terrain in Hunan, China
by Jiazhi Fan, Qinzhe Han, Bing Sui, Leishi Chen, Luping Yang, Guanru Lv, Bi Zhou and Enguang Li
Remote Sens. 2026, 18(2), 284; https://doi.org/10.3390/rs18020284 - 15 Jan 2026
Abstract
Land surface temperature (LST) is fundamental for monitoring surface energy balance and environmental dynamics, with remote sensing providing the primary means of acquisition. However, directional anisotropy (DA) introduces systematic bias in satellite-derived LST products, particularly over complex landscapes. This study examines the impact [...] Read more.
Land surface temperature (LST) is fundamental for monitoring surface energy balance and environmental dynamics, with remote sensing providing the primary means of acquisition. However, directional anisotropy (DA) introduces systematic bias in satellite-derived LST products, particularly over complex landscapes. This study examines the impact of angular effects on LST retrievals from three leading East Asian geostationary satellites (FengYun 4A, FengYun 4B, and Himawari 9) across Hunan Province, China, using integrated comparison with in situ measurements and reanalysis data. Results show that all products exhibit a systematic cold bias, with FY4B achieving the highest accuracy. Diurnal retrieval precision increases with higher solar zenith angles (SZA), while no consistent relationship is observed between viewing zenith angle (VZA) and retrieval accuracy. Notably, the retrieval bias of the FY4 series increases significantly when the sun and sensor are aligned in azimuth, particularly when the relative azimuth angle (RAA) is less than or equal to 30°. Parametric modeling reveals that emissivity kernel-induced anisotropy is the principal driver of significant LST deviations in central Hunan, while solar kernel effects result in LST overestimation in mountainous regions and underestimation in plains. Increases in elevation or vegetation density reduce emissivity-induced errors but amplify errors caused by shadowing and sunlit effects. Emissivity anisotropy is thus identified as the primary source of LST DA. These findings deepen the understanding of LST DA in remote sensing and provide essential guidance for refining retrieval algorithms and improving the applicability of LST products in complex terrains. Full article
Show Figures

Figure 1

33 pages, 5541 KB  
Article
Multiscale Dynamics Organizing Heavy Precipitation During Tropical Cyclone Hilary’s (2023) Remnant Passage over the Southwestern U.S.
by Jackson T. Wiles, Michael L. Kaplan and Yuh-Lang Lin
Atmosphere 2026, 17(1), 82; https://doi.org/10.3390/atmos17010082 - 14 Jan 2026
Abstract
The Weather Research and Forecasting Model (WRF-ARW) version 4.5 was used to simulate the synoptic to mesoscale evolving atmosphere of Tropical Cyclone (TC) Hilary’s (2023) remnant passage over the southwestern United States. The atmospheric dynamic processes conducive to the precursor rain events were [...] Read more.
The Weather Research and Forecasting Model (WRF-ARW) version 4.5 was used to simulate the synoptic to mesoscale evolving atmosphere of Tropical Cyclone (TC) Hilary’s (2023) remnant passage over the southwestern United States. The atmospheric dynamic processes conducive to the precursor rain events were extensively studied to determine the effects of mid-level jetogenesis. Concurrently, the dynamics of mesoscale processes related to the interaction of TC Hilary over the complex topography of the western United States were studied with several sensitivity simulations on a nested 2 km × 2 km grid. The differential surface heating between the cloudy California coast and clear/elevated Great Basin plateau had a profound impact on the lower-mid-tropospheric mass field resulting in mid-level jetogenesis. Diagnostic analyses of the ageostrophic flow support the importance of both isallobaric and inertial advective forcing of the mid-level jetogenesis in response to differential surface sensible heating. This ageostrophic mesoscale jet ultimately transported tropical moisture in multiple plumes more than 1000 km poleward beyond the location of the extratropical transition of the storm, resulting in anomalous flooding precipitation within a massive arid western plateau. Full article
(This article belongs to the Section Meteorology)
28 pages, 5996 KB  
Article
Spatiotemporal Wind Speed Changes Along the Yangtze River Waterway (1979–2018)
by Lei Bai, Ming Shang, Chenxiao Shi, Yao Bian, Lilun Liu, Junbin Zhang and Qian Li
Atmosphere 2026, 17(1), 81; https://doi.org/10.3390/atmos17010081 - 14 Jan 2026
Abstract
Long-term wind speed changes over the Yangtze River waterway have critical implications for inland shipping efficiency, emission dispersion, and renewable energy potential. This study utilizes a high-resolution 5 km gridded reanalysis dataset spanning 1979–2018 to conduct a comprehensive spatiotemporal analysis of surface wind [...] Read more.
Long-term wind speed changes over the Yangtze River waterway have critical implications for inland shipping efficiency, emission dispersion, and renewable energy potential. This study utilizes a high-resolution 5 km gridded reanalysis dataset spanning 1979–2018 to conduct a comprehensive spatiotemporal analysis of surface wind climatology, variability, and trends along China’s primary inland waterway. A pivotal regime shift was identified around 2000, marking a transition from terrestrial stilling to a recovery phase characterized by wind speed intensification. Multiple change-point detection algorithms consistently identify 2000 as a pivotal turning point, marking a transition from the late 20th century “terrestrial stilling” to a recovery phase characterized by wind speed intensification. Post-2000 trends reveal pronounced spatial heterogeneity: the upstream section exhibits sustained strengthening (+0.02 m/s per decade, p = 0.03), the midstream shows weak or non-significant trends with localized afternoon stilling in complex terrain (−0.08 m/s per decade), while the downstream coastal zone demonstrates robust intensification exceeding +0.10 m/s per decade during spring–autumn daytime hours. Three distinct wind regimes emerge along the 3000 km corridor: a high-energy maritime-influenced downstream sector (annual means > 3.9 m/s, diurnal peaks > 6.0 m/s) dominated by sea breeze circulation, a transitional midstream zone (2.3–2.7 m/s) exhibiting bimodal spatial structure and unique summer-afternoon thermal enhancement, and a topographically suppressed upstream region (<2.0 m/s) punctuated by pronounced channeling effects through the Three Gorges constriction. Critically, the observed recovery contradicts widespread basin greening (97.9% of points showing significant positive NDVI trends), which theoretically should enhance surface roughness and suppress wind speeds. Correlation analysis reveals that wind variability is systematically controlled by large-scale atmospheric circulation patterns, including the Northern Hemisphere Polar Vortex (r ≈ 0.35), Western Pacific Subtropical High (r ≈ 0.38), and East Asian monsoon systems (r > 0.60), with distinct seasonal phase-locking between baroclinic spring dynamics and monsoon-thermal summer forcing. These findings establish a comprehensive, fine-scale climatological baseline essential for optimizing pollutant dispersion modeling, and evaluating wind-assisted propulsion feasibility to support shipping decarbonization goals along the Yangtze Waterway. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

26 pages, 10014 KB  
Article
Dynamic Monitoring and Analysis of Mountain Excavation and Land Creation Projects in Lanzhou Using Multi-Source Remote Sensing and Machine Learning
by Quanfu Niu, Jiaojiao Lei, Qiong Fang and Lifeng Zhang
Remote Sens. 2026, 18(2), 273; https://doi.org/10.3390/rs18020273 - 14 Jan 2026
Abstract
Mountain Excavation and Land Creation Projects (MELCPs) have emerged as a critical strategy for expanding urban development space in mountainous regions facing land scarcity. Dynamic monitoring and risk management of these projects are essential for promoting sustainable urban development. This study develops an [...] Read more.
Mountain Excavation and Land Creation Projects (MELCPs) have emerged as a critical strategy for expanding urban development space in mountainous regions facing land scarcity. Dynamic monitoring and risk management of these projects are essential for promoting sustainable urban development. This study develops an integrated monitoring framework for MELCPs by combining ascending and descending Sentinel-1 SAR data, Sentinel-2 optical imagery, SRTM digital elevation models (DEM), and field survey data. The framework incorporates multi-temporal change detection, random forest classification, and time-series InSAR analysis to systematically capture the spatiotemporal evolution and subsidence mechanisms associated with MELCPs. Key findings include: (1) The use of dual-orbit SAR data significantly improves the detection accuracy of excavation areas, achieving an overall accuracy of 87.1% (Kappa = 0.85) and effectively overcoming observation limitations imposed by complex terrain. (2) By optimizing the combination of spectral, texture, topographic, and polarimetric features using a random forest algorithm, the classification accuracy of MELCPs is enhanced to 91.2% (Kappa = 0.889). This enables precise annual identification of MELCP progression from 2017 to 2022, revealing a three-stage evolution pattern: concentrated expansion, peak activity, and restricted slowdown. Specifically, the reclaimed area increased from 2.66 km2 (pre-2018) to a peak of 12.61 km2 in 2021, accounting for 34.56% of the total area of the study region, before decreasing to 2.69 km2 in 2022. (3) InSAR monitoring from 2017 to 2023 indicates that areas with only filling experience minor shallow subsidence (<50 mm), whereas subsequent building loads and underground engineering activities lead to continuous deep soil consolidation, with maximum cumulative subsidence reaching 333.8 mm. This study demonstrates that subsidence in MELCPs follows distinct spatiotemporal patterns and is predictable, offering important theoretical insights and practical tools for engineering safety management and territorial spatial optimization in mountainous cities. Full article
Show Figures

Figure 1

21 pages, 4867 KB  
Article
Variable Impedance Control for Active Suspension of Off-Road Vehicles on Deformable Terrain Considering Soil Sinkage
by Jiaqi Zhao, Mingxin Liu, Xulong Jin, Youlong Du and Ye Zhuang
Vibration 2026, 9(1), 6; https://doi.org/10.3390/vibration9010006 - 14 Jan 2026
Abstract
Off-road vehicle control designs often neglect the complex tire–soil interactions inherent to soft terrain. This paper proposes a Variable Impedance Control (VIC) strategy integrated with a high-fidelity terramechanics model. First, a real-time sinkage estimation algorithm is derived using experimentally identified Bekker parameters and [...] Read more.
Off-road vehicle control designs often neglect the complex tire–soil interactions inherent to soft terrain. This paper proposes a Variable Impedance Control (VIC) strategy integrated with a high-fidelity terramechanics model. First, a real-time sinkage estimation algorithm is derived using experimentally identified Bekker parameters and the quasi-rigid wheel assumption to capture the nonlinear feedback between soil deformation and vehicle dynamics. Building on this, the VIC strategy adaptively regulates virtual stiffness, damping, and inertia parameters based on real-time suspension states. Comparative simulations on an ISO Class-C soft soil profile demonstrate that this framework effectively balances ride comfort and safety constraints. Specifically, the VIC strategy reduces the root-mean-square of vertical body acceleration by 46.9% compared to the passive baseline, significantly outperforming the Linear Quadratic Regulator (LQR). Furthermore, it achieves a 48.6% reduction in average power relative to LQR while maintaining suspension deflection strictly within the safe range. Moreover, unlike LQR, the VIC strategy improves tire deflection performance, ensuring superior ground adhesion. These results validate the method’s robustness and energy efficiency for off-road applications. Full article
Show Figures

Graphical abstract

24 pages, 3434 KB  
Article
Hierarchical Route Planning Framework and MMDQN Agent-Based Intelligent Obstacle Avoidance for UAVs
by Boyu Dong, Yuzhen Zhang, Peiyuan Yuan, Shuntong Lu, Tao Huang and Gong Zhang
Drones 2026, 10(1), 57; https://doi.org/10.3390/drones10010057 - 13 Jan 2026
Viewed by 35
Abstract
Efficient route planning technology is the core support for ensuring the successful execution of unmanned aerial vehicle (UAV) flight missions. In this paper, the coordination issue of global route planning and local real-time obstacle avoidance in complex mountainous environments is studied. To deal [...] Read more.
Efficient route planning technology is the core support for ensuring the successful execution of unmanned aerial vehicle (UAV) flight missions. In this paper, the coordination issue of global route planning and local real-time obstacle avoidance in complex mountainous environments is studied. To deal with this issue, a hierarchical route planning framework is designed, including global route planning and AI-based local route re-planning using deep reinforcement learning, exhibiting both flexible versatility and practical coordination and deployment efficiency. Throughout the entire flight, the local route re-planning task triggered by dynamic threats can be executed in real time. Meanwhile, a multi-model DQN (MMDQN) agent with a Monte Carlo traversal iterative learning (MCTIL) strategy is designed for local route re-planning. Compared to existing methods, this agent can be directly used to generate local obstacle avoidance routes in various scenarios at any time during the flight, which simplifies the complicated structure and training process of conventional deep reinforcement learning (DRL) agents in dynamic, complex environments. Using the framework structure and MMDQN agent for local route re-planning ensures the safety and efficiency of the mission, as well as local obstacle avoidance during global flights. These performances are verified through simulations based on actual terrain data. Full article
(This article belongs to the Special Issue Advances in AI Large Models for Unmanned Aerial Vehicles)
Show Figures

Figure 1

23 pages, 5201 KB  
Article
HiFiRadio: High-Fidelity Radio Map Reconstruction for 3D Real-World Scenes
by Ke Liao, Mengyu Ma, Luo Chen, Yifan Zhang and Ning Jing
Technologies 2026, 14(1), 58; https://doi.org/10.3390/technologies14010058 - 12 Jan 2026
Viewed by 83
Abstract
The reconstruction of high-fidelity radio maps is pivotal for wireless network planning but remains challenging due to the tension between physical accuracy and computational efficiency. We propose HiFiRadio, a novel framework that achieves a breakthrough in this balance by integrating centimeter-resolution 3D environmental [...] Read more.
The reconstruction of high-fidelity radio maps is pivotal for wireless network planning but remains challenging due to the tension between physical accuracy and computational efficiency. We propose HiFiRadio, a novel framework that achieves a breakthrough in this balance by integrating centimeter-resolution 3D environmental meshes with semantic-aware propagation modeling. At its core, HiFiRadio introduces a semantic-enhanced 3D indexing structure that efficiently manages complex terrain data, enabling real-time classification of signal paths into line-of-sight, non-line-of-sight, and vegetation-obstructed categories. This classification directly guides a hybrid propagation model, which dynamically applies dedicated loss calculations for buildings and foliage, grounded in physical principles. Extensive experiments demonstrate that HiFiRadio attains an accuracy comparable to commercial ray-tracing tools while being orders of magnitude faster. It also significantly outperforms existing learning-based baselines in both accuracy and scalability, a claim further validated by field measurements. By making high-fidelity, real-time radio map reconstruction practical for large-scale scenes, HiFiRadio establishes a new state of the art with immediate applications in network planning, UAV pathing, and dynamic spectrum access. Full article
(This article belongs to the Topic Challenges and Future Trends of Wireless Networks)
Show Figures

Figure 1

55 pages, 1599 KB  
Review
The Survey of Evolutionary Deep Learning-Based UAV Intelligent Power Inspection
by Shanshan Fan and Bin Cao
Drones 2026, 10(1), 55; https://doi.org/10.3390/drones10010055 - 12 Jan 2026
Viewed by 211
Abstract
With the rapid development of the power Internet of Things (IoT), the traditional manual inspection mode can no longer meet the growing demand for power equipment inspection. Unmanned aerial vehicle (UAV) intelligent inspection technology, with its efficient and flexible features, has become the [...] Read more.
With the rapid development of the power Internet of Things (IoT), the traditional manual inspection mode can no longer meet the growing demand for power equipment inspection. Unmanned aerial vehicle (UAV) intelligent inspection technology, with its efficient and flexible features, has become the mainstream solution. The rapid development of computer vision and deep learning (DL) has significantly improved the accuracy and efficiency of UAV intelligent inspection systems for power equipment. However, mainstream deep learning models have complex structures, and manual design is time-consuming and labor-intensive. In addition, the images collected during the power inspection process by UAVs have problems such as complex backgrounds, uneven lighting, and significant differences in object sizes, which require expert DL domain knowledge and many trial-and-error experiments to design models suitable for application scenarios involving power inspection with UAVs. In response to these difficult problems, evolutionary computation (EC) technology has demonstrated unique advantages in simulating the natural evolutionary process. This technology can independently design lightweight and high-precision deep learning models by automatically optimizing the network structure and hyperparameters. Therefore, this review summarizes the development of evolutionary deep learning (EDL) technology and provides a reference for applying EDL in object detection models used in UAV intelligent power inspection systems. First, the application status of DL-based object detection models in power inspection is reviewed. Then, how EDL technology improves the performance of the models in challenging scenarios such as complex terrain and extreme weather is analyzed by optimizing the network architecture. Finally, the challenges and future research directions of EDL technology in the field of UAV power inspection are discussed, including key issues such as improving the environmental adaptability of the model and reducing computing energy consumption, providing theoretical references for promoting the development of UAV power inspection technology to a higher level. Full article
Show Figures

Figure 1

18 pages, 3907 KB  
Article
Climate Change and Ecological Restoration Synergies Shape Ecosystem Services on the Southeastern Tibetan Plateau
by Xiaofeng Chen, Qian Hong, Dongyan Pang, Qinying Zou, Yanbing Wang, Chao Liu, Xiaohu Sun, Shu Zhu, Yixuan Zong, Xiao Zhang and Jianjun Zhang
Forests 2026, 17(1), 102; https://doi.org/10.3390/f17010102 - 12 Jan 2026
Viewed by 149
Abstract
Global environmental changes significantly alter ecosystem services (ESs), particularly in fragile regions like the Tibetan Plateau. While methodological advances have improved spatial assessment capabilities, understanding of how multiple drivers interact to shape ecosystem service heterogeneity remains limited to regional scales, especially across complex [...] Read more.
Global environmental changes significantly alter ecosystem services (ESs), particularly in fragile regions like the Tibetan Plateau. While methodological advances have improved spatial assessment capabilities, understanding of how multiple drivers interact to shape ecosystem service heterogeneity remains limited to regional scales, especially across complex alpine landscapes. This study aims to clarify whether multi-factor interactions produce nonlinear enhancements in ES explanatory power and how these driver–response relationships vary across heterogeneous terrains. We quantified spatiotemporal patterns of four key ecosystem services—water yield (WY), soil conservation (SC), carbon sequestration (CS), and habitat quality (HQ)—across the southeastern Tibetan Plateau from 2000 to 2020 using multi-source remote sensing data and spatial econometric modeling. Our analysis reveals that SC increased by 0.43 t·hm−2·yr−1, CS rose by 1.67 g·m−2·yr−1, and HQ improved by 0.09 over this period, while WY decreased by 3.70 mm·yr−1. ES variations are predominantly shaped by potent synergies, where interactive explanatory power consistently surpasses individual drivers. Hydrothermal coupling (precipitation ∩ potential evapotranspiration) reached 0.52 for WY and SC, while climate–vegetation synergy (precipitation ∩ normalized difference vegetation index) achieved 0.76 for CS. Such climate–restoration synergies now fundamentally shape the region’s ESs. Geographically weighted regression (GWR) further revealed distinct spatial dependencies, with southeastern regions experiencing strong negative effects of land use type and elevation on WY, while northwestern areas showed a positive elevation associated with WY but negative effects on SC and HQ. These findings highlight the critical importance of accounting for spatial non-stationarity in driver–ecosystem service relationships when designing conservation strategies for vulnerable alpine ecosystems. Full article
Show Figures

Figure 1

17 pages, 15010 KB  
Article
Plant Diversity and Seasonal Variation Drive Animal Diversity and Community Structure in Eastern China
by Xiangxiang Chen, Runhan Jiang, Yunhan Chen, Rui Yang, Yan He, Shuai Zou, Jianping Ying, Lixiao Yi, Yuxin Ye, Sili Peng and Zhiwei Ge
Animals 2026, 16(2), 215; https://doi.org/10.3390/ani16020215 - 11 Jan 2026
Viewed by 122
Abstract
Montane forests, characterized by complex terrain and diverse climates, serve as critical global biodiversity hotspots, particularly for birds and mammals. However, the patterns and underlying processes of bird and mammal diversity remain insufficiently studied in the montane forests of eastern China. This study [...] Read more.
Montane forests, characterized by complex terrain and diverse climates, serve as critical global biodiversity hotspots, particularly for birds and mammals. However, the patterns and underlying processes of bird and mammal diversity remain insufficiently studied in the montane forests of eastern China. This study employed infrared-triggered camera trapping to conduct a four-year field monitoring of birds and mammals, analyzing the effects of plant diversity and seasonal variations on the diversity of habitat-associated animals. Our results revealed that species-level habitat visit frequency in ground-dwelling birds exhibited a significant phylogenetic signal, particularly in spring and summer. Plant diversity metrics demonstrated significant positive correlations with corresponding bird metrics of species richness (SR), phylogenetic diversity (PD), and the standardized effect size of PD (Phylo SES PD). In contrast, for mammals, plant diversity metrics were significantly positively correlated with corresponding SR, mean pairwise phylogenetic distance (Phylo MPD), and mean nearest phylogenetic taxon distance (Phylo MNTD), as well as community structure metrics, including the net relatedness index (Phylo NRI) and nearest taxon index (Phylo NTI). Furthermore, the plant Shannon–Wiener index showed significant positive correlations with both bird and mammal metrics of SR, PD, and Phylo SES PD but significant negative correlations with Phylo MNTD. Seasonal variations triggered the mean altitudinal migration in ground-dwelling birds and mammals. There were significant differences in the diversity and community structure metrics of birds (Shannon–Wiener, Funct FNND, and PD) and mammals (Shannon–Wiener, Funct MPD, Funct FNND, PD, Phylo MPD, Phylo MNTD, and Phylo SES PD), which varied across different seasons. These findings emphasize that plant diversity and seasonal changes are closely related to the diversity and community structure of birds and mammals. They provide theoretical support for the role of habitat vegetation and seasonal dynamics in maintaining the stability and functioning of montane animal ecosystems, offering important insights for addressing habitat fragmentation and species migratory behavior. Full article
Show Figures

Figure 1

18 pages, 10127 KB  
Article
A Monitoring Method for Steep Slopes in Mountainous Canyon Regions Using Multi-Temporal UAV POT Technology Assisted by TLS
by Qing-Wen Wen, Zhi-Yu Li, Zhong-Hua Jiang, Hao Wu, Jia-Wen Zhou, Nan Jiang, Yu-Xiang Hu and Hai-Bo Li
Drones 2026, 10(1), 50; https://doi.org/10.3390/drones10010050 - 10 Jan 2026
Viewed by 94
Abstract
Monitoring steep slopes in mountainous canyon areas has always been a challenging problem, especially during the construction of large hydropower projects. Effective monitoring is crucial for construction safety and operational security. However, under complex terrain conditions, existing monitoring methods have significant limitations and [...] Read more.
Monitoring steep slopes in mountainous canyon areas has always been a challenging problem, especially during the construction of large hydropower projects. Effective monitoring is crucial for construction safety and operational security. However, under complex terrain conditions, existing monitoring methods have significant limitations and cannot comprehensively and accurately cover steep slopes. To address the above challenges, this study proposes a multi-temporal UAV-based photogrammetric offset tracking (POT) monitoring method assisted by terrestrial laser scanning (TLS), which is primarily applicable to rocky and texture-rich steep slopes. This method utilizes TLS point cloud data to provide supplementary ground control points (TLS-GCPs) for UAV image modeling, effectively overcoming the difficulty of deploying conventional RTK ground control points (RTK-GCPs) on high and steep slopes, thereby significantly improving the accuracy of UAV-based Structure-from-Motion (SfM) models. In a case study at a hydropower station, we employed TLS-assisted UAV modeling to produce high-precision UAV images. Using POT technology, we successfully identified signs of slope deformation between January 2024 and December 2024. Comparative experiments with traditional algorithms demonstrated that in areas where RTK-GCPs cannot be deployed, this method greatly enhances UAV modeling accuracy, fully meeting the monitoring requirements for steep slopes in complex terrains. Full article
Show Figures

Figure 1

23 pages, 9076 KB  
Article
Long-Term Time-Series Dynamics of Lake Water Storage on the Qinghai–Tibet Plateau via Multi-Source Remote Sensing and DEM-Based Underwater Bathymetry Reconstruction
by Xuteng Zhang, Ziyuan Xu, Changxian Qi, Dezhong Xu, Yao Chen and Haiyue Peng
Remote Sens. 2026, 18(2), 225; https://doi.org/10.3390/rs18020225 - 9 Jan 2026
Viewed by 198
Abstract
Lakes on the Qinghai–Tibet Plateau are important indicators of global climate change, and variations in their water storage strongly influence regional hydrological cycles and ecosystems. However, existing studies have largely focused on relative changes in lake volume, while the precise quantification of absolute [...] Read more.
Lakes on the Qinghai–Tibet Plateau are important indicators of global climate change, and variations in their water storage strongly influence regional hydrological cycles and ecosystems. However, existing studies have largely focused on relative changes in lake volume, while the precise quantification of absolute water storage remains insufficient, largely due to the lack of long-term, high-accuracy water storage time series. Constrained by harsh natural conditions and limited in situ observations, conventional approaches struggle to achieve the accurate long-term monitoring of lake water storage across the Plateau. To address this challenge, we propose a DEM-based underwater topography extrapolation method. Under the assumption of continuity between surrounding onshore terrain and submerged lakebed morphology, nearshore DEM data are extrapolated to reconstruct lake bathymetry. By integrating multi-source remote sensing observations of lake area and water level, we estimate and reconstruct 30-year absolute water storage time series for 120 Plateau lakes larger than 50 km2. This method does not require measured water depth data and is particularly suitable for data-scarce, topographically complex, high-altitude lake regions, effectively overcoming key limitations of conventional methods used for absolute water storage monitoring. Validation shows strong agreement between our estimates and an independent validation dataset, with an overall correlation coefficient of 0.95; the reconstructed time series are highly reliable, with correlation coefficients exceeding 0.6. During the study period, the total lake water storage of the Qinghai–Tibet Plateau exhibited a significant increasing trend, with a cumulative growth of approximately 137.297 billion m3, representing a 20.73% increase, and showing notable spatial heterogeneity. The water storage dataset constructed in this study provides reliable data support for research on water cycles, climate change assessment, and regional water resource management on the Qinghai–Tibet Plateau. Full article
Show Figures

Figure 1

20 pages, 5799 KB  
Article
Comparative Evaluation of Multi-Source Geospatial Data and Machine Learning Models for Hourly Near-Surface Air Temperature Mapping
by Zexiang Yan, Yixu Chen, Ruoxue Li and Meiling Gao
Atmosphere 2026, 17(1), 71; https://doi.org/10.3390/atmos17010071 - 9 Jan 2026
Viewed by 185
Abstract
Accurate estimation of hourly near-surface air temperature (NSAT) is critical for climate analysis, environmental monitoring, and urban thermal studies. However, existing temperature datasets remain constrained by coarse spatial resolution and limited hourly accuracy. This study systematically evaluates four widely used land surface temperature [...] Read more.
Accurate estimation of hourly near-surface air temperature (NSAT) is critical for climate analysis, environmental monitoring, and urban thermal studies. However, existing temperature datasets remain constrained by coarse spatial resolution and limited hourly accuracy. This study systematically evaluates four widely used land surface temperature (LST) datasets—MODIS, ERA5-Land, FY-2F, and CGLS—and five machine learning models (RF, MDN, DNN, XGBoost, and GTNNWR) for NSAT estimation across two contrasting regions in Shaanxi, China: a complex-terrain region in southwestern Shaanxi and the urban area of Xi’an. Results demonstrate that single-source LST inputs outperform multi-source LST stacking, largely due to compounded systematic biases across heterogeneous datasets. MODIS provides the best performance in the mountainous region, while CGLS excels in the urban environment. Among all models, GTNNWR—which explicitly captures spatiotemporal non-stationarity—consistently achieves the highest accuracy, reducing RMSE by 44.8% and 44.2% relative to the second-best model in the two study areas, respectively, whereas the remaining four models exhibit broadly comparable performance. This work identifies effective data–model configurations for generating high-resolution hourly NSAT products and provides methodological insights for climate and environmental applications in regions with complex terrain or strong urban heterogeneity. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

25 pages, 10860 KB  
Article
Performance Evaluation of Deep Learning Models for Forest Extraction in Xinjiang Using Different Band Combinations of Sentinel-2 Imagery
by Hang Zhou, Kaiyue Luo, Lingzhi Dang, Fei Zhang and Xu Ma
Forests 2026, 17(1), 88; https://doi.org/10.3390/f17010088 - 9 Jan 2026
Viewed by 90
Abstract
Remote sensing provides an efficient approach for monitoring ecosystem dynamics in the arid and semi-arid regions of Xinjiang, yet traditional forest-land extraction methods (e.g., spectral indices, threshold segmentation) show limited adaptability in complex environments affected by terrain shadows, cloud contamination, and spectral confusion [...] Read more.
Remote sensing provides an efficient approach for monitoring ecosystem dynamics in the arid and semi-arid regions of Xinjiang, yet traditional forest-land extraction methods (e.g., spectral indices, threshold segmentation) show limited adaptability in complex environments affected by terrain shadows, cloud contamination, and spectral confusion with grassland or cropland. To overcome these limitations, this study used three convolutional neural network-based models (FCN, DeepLabV3+, and PSPNet) for accurate forest-land extraction. Four tri-band training datasets were constructed from Sentinel-2 imagery using combinations of visible, red-edge, near-infrared, and shortwave infrared bands. Results show that the FCN model trained with B4–B8–B12 achieves the best performance, with an mIoU of 89.45% and an mFscore of 94.23%. To further assess generalisation in arid landscapes, ESA WorldCover and Dynamic World products were introduced as benchmarks. Comparative analyses of spatial patterns and quantitative metrics demonstrate that the FCN model exhibits robustness and scalability across large areas, confirming its effectiveness for forest-land extraction in arid regions. This study innovatively combines band combination optimization strategies with multiple deep learning models, offering a novel approach to resolving spectral confusion between forest areas and similar vegetation types in heterogeneous arid ecosystems. Its practical significance lies in providing a robust data foundation and methodological support for forest monitoring, ecological restoration, and sustainable land management in Xinjiang and similar regions. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

29 pages, 18123 KB  
Article
Surface Deformation Characteristics and Damage Mechanisms of Repeated Mining in Loess Gully Areas: An Integrated Monitoring and Simulation Approach
by Junlei Xue, Fuquan Tang, Zhenghua Tian, Yu Su, Qian Yang, Chao Zhu and Jiawei Yi
Appl. Sci. 2026, 16(2), 709; https://doi.org/10.3390/app16020709 - 9 Jan 2026
Viewed by 141
Abstract
The repeated extraction of coal seams in the Loess Plateau mining region has greatly increased the severity of surface deformation and associated damage. Accurately characterizing the spatio-temporal evolution of subsidence and the underlying mechanisms is a critical engineering challenge for mining safety. Taking [...] Read more.
The repeated extraction of coal seams in the Loess Plateau mining region has greatly increased the severity of surface deformation and associated damage. Accurately characterizing the spatio-temporal evolution of subsidence and the underlying mechanisms is a critical engineering challenge for mining safety. Taking the Dafosi Coal Mine located in the loess gully region as a case study, this paper thoroughly examines the variations in surface deformation and damage characteristics caused by single and repeated seam mining. The analysis integrates surface movement monitoring data, global navigation satellite system (GNSS) dynamic observations, field surveys, unmanned aerial vehicle (UAV) photogrammetry, and numerical simulation methods. Notably, to ensure the accuracy of prediction parameters, a refined Particle Swarm Optimization (PSO) algorithm incorporating a neighborhood-based mechanism was employed specifically for the inversion of probability integral parameters. The results indicate that the subsidence factor and horizontal movement factor increase markedly following repeated mining. The maximum surface subsidence velocity also increases substantially, and this acceleration remains evident after normalizing by mining thickness and face-advance rate. The fore effective angle is smaller in repeated mining than in single-seam mining, and the duration of surface movement is substantially extended. Repeated mining fractured key strata and caused a functional transition from the classic three-zone response to a two-zone connectivity pattern, while the thick loess cover responds as a disturbed discontinuous-deformation layer, which together aggravates step-like and slope-related damage. The severity of surface damage is strongly influenced by topographic features and geotechnical properties. These findings demonstrate that the proposed integrated approach is highly effective for geological hazard assessment and provides a practical reference for engineering applications in similar complex terrains. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop