Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,798)

Search Parameters:
Keywords = terminal pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3407 KB  
Article
Functional and Epigenomic Consequences of DNMT1 Variants in Inherited Neurological Disorders
by Jun-Hui Yuan, Yujiro Higuchi, Masahiro Ando, Akiko Yoshimura, Satoshi Nozuma, Yusuke Sakiyama, Takashi Kanda, Masahiro Nomoto, Takeshi Nakamura, Yasuyuki Nobuhara and Hiroshi Takashima
Int. J. Mol. Sci. 2026, 27(3), 1232; https://doi.org/10.3390/ijms27031232 - 26 Jan 2026
Abstract
DNMT1 variants are linked to complex neurodegenerative syndromes, yet their variant-specific functional and epigenomic consequences remain poorly defined. DNMT1 variants were identified in eight patients using gene-panel or whole-exome sequencing. Functional effects were assessed by site-directed mutagenesis and transient expression in HEK293T cells. [...] Read more.
DNMT1 variants are linked to complex neurodegenerative syndromes, yet their variant-specific functional and epigenomic consequences remain poorly defined. DNMT1 variants were identified in eight patients using gene-panel or whole-exome sequencing. Functional effects were assessed by site-directed mutagenesis and transient expression in HEK293T cells. Genome-wide methylation profiling of peripheral blood leukocyte DNA was performed using Nanopore sequencing, enabling direct quantification of 5-methylcytosine (5mC). CpG island-level differential methylation and gene set enrichment analysis (GSEA) were conducted. Variants in the replication foci targeting sequence (RFTS) domain (p.Y511H, p.Y540C, p.H569R) exhibited reduced DNMT1 protein expression, decreased enzymatic activity, and cytosolic aggregation. Variants in the C-terminal catalytic domain (p.A1334V and p.P1546S) showed reduced protein expression with relatively mild enzymatic impairment. Patients carrying the p.Y511H variant demonstrated a significant reduction in global 5mC levels compared with controls. Principal component analysis revealed distinct methylomic profiles separating most patients from controls, with marked intra- and inter-familial heterogeneity. CpG island-level analysis identified a single significantly hypomethylated region in p.Y511H carriers, and GSEA revealed differential enrichment of multiple Gene Ontology biological pathways. This study defines domain-dependent functional effects of DNMT1 variants and provides the first nanopore-based methylome analysis, revealing variant-specific and heterogeneous epigenomic alterations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
14 pages, 3401 KB  
Article
Selective Complement Inhibition in Anti-p200 Pemphigoid: Immune Infiltrate Profiles and Therapeutic Implications Compared to Bullous Pemphigoid
by Shirin Emtenani, Tina Rastegar Lari, Charlotte Kiehne, Nina van Beek, Maike M. Holtsche and Enno Schmidt
Biomolecules 2026, 16(2), 182; https://doi.org/10.3390/biom16020182 - 23 Jan 2026
Viewed by 96
Abstract
Anti-p200 pemphigoid is an autoimmune blistering disease (AIBD) caused by autoantibodies against laminin β4 and/or γ1, and clinically resembles bullous pemphigoid (BP) as well as the inflammatory variant of epidermolysis bullosa acquisita (EBA). All three diseases show IgG and/or C3 deposition along the [...] Read more.
Anti-p200 pemphigoid is an autoimmune blistering disease (AIBD) caused by autoantibodies against laminin β4 and/or γ1, and clinically resembles bullous pemphigoid (BP) as well as the inflammatory variant of epidermolysis bullosa acquisita (EBA). All three diseases show IgG and/or C3 deposition along the cutaneous basement membrane zone (BMZ). Although complement activation is central to BP and EBA pathogenesis, its role in anti-p200 pemphigoid remains unclear. To investigate this, we analyzed inflammatory infiltrates in lesional and perilesional skin from anti-p200 pemphigoid patients (n = 11), revealing a neutrophil-predominant pattern, with mixed neutrophil–eosinophil infiltrates in 81% of cases, which contrasted with the eosinophil-rich infiltrates typical of BP. Infiltrating neutrophils expressed C5aR1 and C5aR2. Complement fixation test (CFT) of patient sera demonstrated C3c deposition at the BMZ in 40% (20/50) of anti-p200 pemphigoid cases and 87% (13/15) of BP cases. Patients in both cohorts could be stratified into high, mild, and non-complement-fixating groups. Pharmacological inhibition of C1s (sutimlimab), C3 (compstatin), C5 (tesidolumab), or C5aR1 (avacopan) significantly blocked C3c or C5 deposition in vitro. These findings indicate that selective blockade of the classical, alternative, or terminal complement pathways effectively prevents BMZ complement deposition, highlighting pathway-specific complement inhibition as a potential therapeutic strategy for anti-p200 pemphigoid. Full article
14 pages, 3433 KB  
Article
Defect Reduction in HEMT Epilayers on SiC Meta-Substrates
by Vin-Cent Su, Ting-Yu Wei, Meng-Hsin Chen, Chien-Te Ku and Guan-Shian Liu
Nanomaterials 2026, 16(3), 158; https://doi.org/10.3390/nano16030158 - 23 Jan 2026
Viewed by 66
Abstract
Dislocation reduction in gallium nitride (GaN) epitaxial layers remains a critical challenge for high-performance GaN-based electronic devices. In this study, GaN epitaxial growth on newly-developed 4H-Silicon Carbide (SiC) meta-substrates was systematically investigated to elucidate the role of surface pattern geometry in modulating dislocation [...] Read more.
Dislocation reduction in gallium nitride (GaN) epitaxial layers remains a critical challenge for high-performance GaN-based electronic devices. In this study, GaN epitaxial growth on newly-developed 4H-Silicon Carbide (SiC) meta-substrates was systematically investigated to elucidate the role of surface pattern geometry in modulating dislocation propagation. A series of truncated-hexagonal-pyramid meta-structures with a fixed array period and varying pattern ratios (R) were designed and fabricated to enable controlled tuning of the effective surface morphology. Atomic force microscopy confirmed comparable surface flatness for all samples after epitaxial growth. Cathodoluminescence analysis revealed a non-monotonic dependence of defect density on R, indicating the existence of an optimal pattern geometry. Among all configurations, the outstanding sample exhibited the lowest defect density, achieving a 54.96% reduction in threading dislocations (edge + mixed) compared with a planar reference. Cross-sectional transmission electron microscopy further confirmed a substantially reduced dislocation density and clear evidence of dislocation bending and termination near the meta-structured regions. These results demonstrate that geometry-engineered 4H-SiC meta-substrates provide an effective and scalable strategy for dislocation modulation in GaN epitaxy on SiC meta-substrates, offering a promising pathway toward advanced GaN power and RF devices. Full article
(This article belongs to the Special Issue Nonlinear Optics of Nanostructures and Metasurfaces)
28 pages, 1484 KB  
Article
Rational Design, Synthesis, and Molecular Docking of Novel Terpene Analogues of Imatinib, and Their Inhibition on Downstream BCR-ABL Signaling
by Rositsa Mihaylova, Asine Dailova-Barzeva, Irena Philipova, Georgi Momekov, Irini Doytchinova, Mariyana Atanasova and Georgi Stavrakov
Pharmaceuticals 2026, 19(2), 198; https://doi.org/10.3390/ph19020198 - 23 Jan 2026
Viewed by 79
Abstract
Background/Objectives: Imatinib, the first tyrosine kinase inhibitor, marks the beginning of a revolution in clinical oncology. Disrupting oncogenic kinase-dependent signaling pathways represents a key strategy for advancing targeted cancer therapies. Terpene analogues of imatinib were developed to probe the influence of terminal ring [...] Read more.
Background/Objectives: Imatinib, the first tyrosine kinase inhibitor, marks the beginning of a revolution in clinical oncology. Disrupting oncogenic kinase-dependent signaling pathways represents a key strategy for advancing targeted cancer therapies. Terpene analogues of imatinib were developed to probe the influence of terminal ring modifications on BCR-ABL inhibition and downstream oncogenic signaling. Methods: Nine novel imatinib analogues bearing bulky aliphatic moieties were designed, synthesised, and structurally characterized by 1H/13C NMR spectroscopy and high-resolution mass spectrometry (HRMS). Molecular docking calculations were performed to assess the binding modes and intermolecular interactions. The cytotoxicity of the newly synthesized imatinib derivatives was evaluated across a panel of BCR-ABL+ leukemia cell lines. Results: Molecular docking analyses demonstrated conserved interactions within the ATP-binding site of BCR-ABL for all derivatives, with calculated docking scores ranging between 123 and 128, while modifications at the terminal ring introduced subtle changes in electrostatic and steric profiles. Biological evaluation using MTT-based cytotoxicity assays in BCR-ABL+ leukemic cell lines revealed enhanced antiproliferative activity compared with imatinib, with compounds 6a (flexible cyclohexyl) and 6d (rigid camphane-type (+)-isopinocampheyl) exhibiting the lowest micromolar activity in the AR-230 model (IC50 values of 1.1 and 1.2 μM, respectively). Proteome-wide phosphokinase profiling demonstrated shared suppression of STAT5/3/6, RSK1/2, S6K1/p70, and Pyk2, confirming effective disruption of canonical BCR-ABL pathways. Critically, the terpene moiety dictated downstream pathway bias: 6a preferentially attenuated CREB activation, whereas 6d more effectively suppressed the PI3K/Akt oncogenic axis and strongly activated proapoptotic p53-mediated stress responses. Conclusions: Our findings establish terpene-engineered imatinib analogues as tunable modulators and promising candidates for targeting downstream BCR-ABL signaling pathways in leukemia treatment. Full article
(This article belongs to the Special Issue Targeting Enzymes in Drug Design and Discovery)
32 pages, 34411 KB  
Article
A Single-Cell Transcriptomic Atlas of Epithelial Cell Heterogeneity During the Crown-to-Root Transition in the Mouse Molar
by Fei Bi, Tian Chen, Jiusi Guo, Wei Qiao, Zhi Liu and Xianglong Han
Int. J. Mol. Sci. 2026, 27(3), 1162; https://doi.org/10.3390/ijms27031162 - 23 Jan 2026
Viewed by 99
Abstract
The mechanisms driving the crown-to-root transition in tooth development remain incompletely understood, particularly the functional heterogeneity of dental epithelium. To address this gap and deconstruct this complexity, we aimed to analyze dental epithelial heterogeneity during this critical transition and to identify subpopulation-specific programs [...] Read more.
The mechanisms driving the crown-to-root transition in tooth development remain incompletely understood, particularly the functional heterogeneity of dental epithelium. To address this gap and deconstruct this complexity, we aimed to analyze dental epithelial heterogeneity during this critical transition and to identify subpopulation-specific programs relevant to root development. We therefore established a single-cell transcriptomic atlas of the mouse molar at postnatal days 3.5 and 7.5, integrating 30,951 cells to profile the pan-tissue landscape and performing an in-depth analysis of 4323 dental epithelial cells. Our results reveal that the dental epithelium is composed of seven distinct subpopulations with a clear lineage hierarchy, originating from multipotent progenitors and bifurcating into self-renewing and differentiating trajectories. The identified particular functions of each subcluster include the following: structural maintaining progenitor that inhibits mineralization (Cluster 4), proliferation driver (Cluster 0), key signaling center (Cluster 1), terminally differentiated executing enamel formation (Cluster 3 and Cluster 6), and extracellular matrix-organizing hub (Cluster 5), communicating extensively via the Bmp, Tgf-β, and Wnt pathways. Our work defines dental epithelium as a dynamic and heterogeneous orchestrator of root morphogenesis, providing a foundational framework for understanding developmental biology and pioneering future regenerative strategies based on precise epithelial cell functions. Full article
(This article belongs to the Special Issue Genome Structure, Function and Dynamic Regulation of Cell Fate)
Show Figures

Figure 1

18 pages, 1430 KB  
Article
Extracellular Lipopolysaccharide Triggers the Release of Unconjugated Interferon-Stimulated Gene 15 (ISG15) Protein from Macrophages via Type-I Interferon/Caspase-4/Gasdermin-D Pathway
by Sudiksha Pandit, Lindsay Grace Miller, Indira Mohanty and Santanu Bose
Pathogens 2026, 15(1), 122; https://doi.org/10.3390/pathogens15010122 - 22 Jan 2026
Viewed by 47
Abstract
Interferon-stimulated gene 15 (ISG15) is an interferon-induced ubiquitin-like protein that plays an important role in antiviral defense and inflammatory responses, primarily through the process of ISGylation, whereby ISG15 is covalently conjugated to target proteins. Beyond its intracellular functions, a portion of free unconjugated [...] Read more.
Interferon-stimulated gene 15 (ISG15) is an interferon-induced ubiquitin-like protein that plays an important role in antiviral defense and inflammatory responses, primarily through the process of ISGylation, whereby ISG15 is covalently conjugated to target proteins. Beyond its intracellular functions, a portion of free unconjugated ISG15 is also released into the extracellular environment during infections and diseases such as cancer. Extracellular ISG15 is known to regulate immune cell activity and cytokine production. Despite its immune-modulatory role, how ISG15 is released from cells has remained unclear. In this study, we have identified a non-lytic mechanism by which human macrophages release ISG15. Using lipopolysaccharide (LPS) as a stimulus, we show that extracellular LPS triggers unconjugated ISG15 release by utilizing plasma membrane-localized Gasdermin D (GSDMD) pores. Mechanistically, LPS via the autocrine/paracrine action of type-I interferon (IFN) activates caspase-4 (Casp4) to cleave the N-terminal domain of GSDMD for the formation of cell surface GSDMD pores that permit the extracellular release of unconjugated ISG15 in the absence of lytic cell death. Together, our studies have identified the IFN-Casp4-GSDMD axis as a previously unrecognized non-classical pathway for unconjugated ISG15 release from cells. Full article
(This article belongs to the Special Issue Pathogen–Host Interactions: Death, Defense, and Disease)
Show Figures

Figure 1

16 pages, 11277 KB  
Article
Hippo and Wnt as Early Initiators: Integrated Multi-Omics Reveals the Signaling Basis for Corona-Induced Diapause Termination in Silkworm
by Quan Sun, Xinghui Liu, Guizheng Zhang, Xinxiang Chen, Wenxin Xie, Pingyang Wang, Xia Wang, Qiuying Cui and Yuli Zhang
Insects 2026, 17(1), 123; https://doi.org/10.3390/insects17010123 - 21 Jan 2026
Viewed by 84
Abstract
Embryonic diapause, a state of developmental arrest in silkworm (Bombyx mori) eggs, poses a challenge for year-round sericulture. While physical stimuli like corona discharge can effectively terminate diapause, the underlying molecular mechanisms, particularly the initial events, remain poorly understood. This study [...] Read more.
Embryonic diapause, a state of developmental arrest in silkworm (Bombyx mori) eggs, poses a challenge for year-round sericulture. While physical stimuli like corona discharge can effectively terminate diapause, the underlying molecular mechanisms, particularly the initial events, remain poorly understood. This study employed an integrated transcriptomic and proteomic approach to analyze silkworm eggs within 48 h after corona treatment. Our time-series analysis revealed that the Hippo and Wnt signaling pathways were specifically activated as early as 1 h post-treatment, preceding the previously reported FoxO pathway response. We identified two temporally distinct gene clusters within the Hippo pathway, including immediate–early genes (e.g., Dachs_17/25/29, Ft_10) and late-phase effector genes, coordinating the exit from cell cycle arrest. Concurrently, the Wnt pathway was rapidly initiated, marked by the sustained upregulation of key regulators Notum and Pontin52, suggesting its role in unlocking the cell cycle. We propose a synergistic model wherein corona discharge triggers the concurrent, early activation of Hippo and Wnt signaling, which collectively reprogram the cell cycle and reinstate the developmental trajectory by promoting proliferation and suppressing apoptosis. These findings provide crucial insights into the initial molecular events of diapause termination, identifying Hippo and Wnt pathways as master regulators in transducing the physical corona stimulus into a developmental signal. Full article
(This article belongs to the Special Issue Insect Transcriptomics)
Show Figures

Figure 1

14 pages, 4363 KB  
Article
Drosophila Keap1 Proteins Assemble Nuclear Condensates in Response to Oxidative Stress
by Guangye Ji, Bethany Cross, Thomas Killmer, Bee Enders, Emma Neidviecky, Hayden Huber, Grace Lynch and Huai Deng
Antioxidants 2026, 15(1), 134; https://doi.org/10.3390/antiox15010134 - 21 Jan 2026
Viewed by 128
Abstract
The Keap1-Nrf2 signaling pathway is a central regulator of transcriptional responses to oxidative stress and is strongly linked to diverse pathologies, particularly cancer. In the cytoplasm, Keap1 (Kelch-like ECH-associated protein 1) promotes proteasomal degradation of Nrf2 (NF-E2–related factor 2). Oxidative stimuli disrupt the [...] Read more.
The Keap1-Nrf2 signaling pathway is a central regulator of transcriptional responses to oxidative stress and is strongly linked to diverse pathologies, particularly cancer. In the cytoplasm, Keap1 (Kelch-like ECH-associated protein 1) promotes proteasomal degradation of Nrf2 (NF-E2–related factor 2). Oxidative stimuli disrupt the Keap1-Nrf2 interaction, facilitating Nrf2 nuclear accumulation and activation of antioxidant and detoxifying genes. Recent evidence suggests that Keap1 family proteins also enter the nucleus, bind chromatin, and regulate transcription, but the underlying mechanisms remain less understood. Here, we show that the Drosophila Keap1 ortholog, dKeap1, accumulates in the nucleus and gradually assembles stable nuclear foci in cells following oxidative treatment. FRAP analyses revealed reduced mobility of dKeap1 within these foci. Both the N-terminal (NTD) and C-terminal (CTD) domains of dKeap1 were required for foci formation. Two intrinsically disordered regions (IDRs) were identified within the CTD, and CTD-YFP fusion proteins readily formed condensates in vitro. Conversely, deletion of the Kelch domain resulted in robust cytoplasmic foci even under basal conditions, and in vitro assays also indicated that the Kelch domain suppresses dKeap1 condensate formation. Together, these findings reveal a novel molecular mechanism for the nuclear function of dKeap1, providing new insight into the broader roles of Keap1 factors in oxidative response, development, and disease. Full article
Show Figures

Graphical abstract

38 pages, 3246 KB  
Review
Mitochondrial Ca2+ Signaling at the Tripartite Synapse: A Unifying Framework for Glutamate Homeostasis, Metabolic Coupling, and Network Vulnerability
by Mariagrazia Mancuso, Federico Mezzalira, Beatrice Vignoli and Elisa Greotti
Biomolecules 2026, 16(1), 171; https://doi.org/10.3390/biom16010171 - 20 Jan 2026
Viewed by 122
Abstract
Mitochondrial Ca2+ signaling is increasingly recognized as a key integrator of synaptic activity, metabolism, and redox balance within the tripartite synapse. At excitatory synapses, Ca2+ influx through ionotropic glutamate receptors and voltage-gated channels is sensed and transduced by strategically positioned mitochondria, [...] Read more.
Mitochondrial Ca2+ signaling is increasingly recognized as a key integrator of synaptic activity, metabolism, and redox balance within the tripartite synapse. At excitatory synapses, Ca2+ influx through ionotropic glutamate receptors and voltage-gated channels is sensed and transduced by strategically positioned mitochondria, whose Ca2+ uptake and release tune tricarboxylic acid cycle activity, adenosine triphosphate synthesis, and reactive oxygen species (ROS) generation. Through these Ca2+-dependent processes, mitochondria are proposed to help set the threshold at which glutamatergic activity supports synaptic plasticity and homeostasis or, instead, drives hyperexcitability and excitotoxic stress. Here, we synthesize how mitochondrial Ca2+ dynamics in presynaptic terminals, postsynaptic spines, and perisynaptic astrocytic processes regulate glutamate uptake, recycling, and release, and how subtle impairments in these pathways may prime synapses for failure well before overt energetic collapse. We further examine the reciprocal interplay between Ca2+-dependent metabolic adaptations and glutamate homeostasis, the crosstalk between mitochondrial Ca2+ and ROS signals, and the distinct vulnerabilities of neuronal and astrocytic mitochondria. Finally, we discuss how disruption of this Ca2+-centered mitochondria–glutamatergic axis contributes to synaptic dysfunction and circuit vulnerability in neurodegenerative diseases, with a particular focus on Alzheimer’s disease. Full article
(This article belongs to the Special Issue Neuron–Astrocyte Interactions in Neurological Function and Disease)
Show Figures

Figure 1

20 pages, 6235 KB  
Article
Mutation-Induced Resistance of SARS-CoV-2 Mpro to WU-04 Revealed by Multi-Scale Modeling
by Mengting Liu, Derui Zhao, Hui Duan, Junyao Zhu, Liting Zheng, Nan Yuan, Yuanling Xia, Peng Sang and Liquan Yang
Int. J. Mol. Sci. 2026, 27(2), 1000; https://doi.org/10.3390/ijms27021000 - 19 Jan 2026
Viewed by 124
Abstract
The clinical durability of SARS-CoV-2 main protease (Mpro) inhibitors depends on their resilience to emerging resistance mutations. Recent genomic surveillance and functional reports have highlighted substitutions at positions 49, 165, and 301, raising questions about the robustness of the noncovalent inhibitor [...] Read more.
The clinical durability of SARS-CoV-2 main protease (Mpro) inhibitors depends on their resilience to emerging resistance mutations. Recent genomic surveillance and functional reports have highlighted substitutions at positions 49, 165, and 301, raising questions about the robustness of the noncovalent inhibitor WU-04 in variant backgrounds. Here, we combined μs-scale, triplicate molecular dynamics simulations with end-state binding free energy estimates and a network-rewiring inference (NRI) framework that maps long-range dynamical communication across the full protease dimer. We evaluated wild type (WT), single mutants M49K, M165V, S301P, and selected double mutants (M49K & M165V, M49K & S301P). Relative to WT, single substitutions produced reductions in computed binding affinity of up to ~12kcal/mol, accompanied by loss or reshaping of the S2 subsite and altered ligand burial. Notably, the M49K/S301P double mutant partially restored WU-04 engagement, narrowing the ΔΔGrestore gap to within ΔΔGrestore of WT and re-establishing key hydrophobic and hydrogen-bond contacts. NRI analysis revealed that distal residue 301 participates in a communication corridor linking the C-terminal helical domain to the active-site cleft; its substitution rewires inter-domain coupling that can compensate for local disruptions at residue 49. Together, these results identify structural hotspots and network pathways that may inform the design of next-generation Mpro inhibitors with improved mutation tolerance—specifically by strengthening interactions that do not rely solely on the mutable S2 pocket and by engaging conserved backbone features near the 165–166 region. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

27 pages, 2220 KB  
Article
MEP Pathway: First-Synthesized IspH-Directed Prodrugs with Potent Antimycobacterial Activity
by Alizée Allamand, Ludovik Noël-Duchesneau, Cédric Ettelbruck, Edgar De Luna, Didier Lièvremont and Catherine Grosdemange-Billiard
Microorganisms 2026, 14(1), 215; https://doi.org/10.3390/microorganisms14010215 - 17 Jan 2026
Viewed by 186
Abstract
We report the first synthesis of IspH-directed prodrugs targeting the terminal enzyme of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (IspH or LytB). A series of alkyne and pyridine monophosphate cycloSaligenyl (cycloSal) prodrugs were prepared [...] Read more.
We report the first synthesis of IspH-directed prodrugs targeting the terminal enzyme of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (IspH or LytB). A series of alkyne and pyridine monophosphate cycloSaligenyl (cycloSal) prodrugs were prepared to enhance membrane permeability by masking the phosphate group. The effects of electron-withdrawing (Cl, CF3) and electron-donating (OCH3, NH2) substituents were examined, together with amino acid-functionalized and mutual prodrug analogs. Among the synthesized compounds, chlorine-substituted derivatives 5c and 6c displayed the strongest antimycobacterial activity against Mycobacterium smegmatis, surpassing isoniazid in agar diffusion assays. These results indicate that electron-withdrawing substituents accelerate prodrug hydrolysis and facilitate intracellular release of the active inhibitor. This work provides the first experimental evidence of an IspH-targeted prodrug approach, highlighting the cycloSal strategy as a valuable tool for delivering phosphorylated inhibitors and developing novel antimycobacterial agents acting through the MEP pathway. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

16 pages, 3363 KB  
Review
Peptide Identity of Electrochemically Deposited Polyarginine: A Critical Assessment
by Ivan Švancara and Milan Sýs
Chemosensors 2026, 14(1), 27; https://doi.org/10.3390/chemosensors14010027 - 16 Jan 2026
Viewed by 249
Abstract
This review examines the feasibility of electrochemical synthesis of poly-L-arginine (PArg) using repetitive cyclic voltammetry in neutral aqueous phosphate-buffered saline. Previous studies on electrochemical deposition of PArg onto different carbonaceous electrode materials are discussed with respect to the already reported mechanistic models. Some [...] Read more.
This review examines the feasibility of electrochemical synthesis of poly-L-arginine (PArg) using repetitive cyclic voltammetry in neutral aqueous phosphate-buffered saline. Previous studies on electrochemical deposition of PArg onto different carbonaceous electrode materials are discussed with respect to the already reported mechanistic models. Some controversial interpretations are of interest, predominantly the formation of peptide bonds during the electropolymerisation of L-arginine. Several alternative anodic pathways are considered via the possibilities and limitations of ways of attaching L-arginine molecules to the electrode surface. Furthermore, the role of oxygen-containing surface groups is discussed, as this aspect has been largely overlooked in the context of L-arginine deposition, despite the O-terminating character of the electrode surface and its effect on the reactivity of the nucleophilic guanidine group in L-arginine. Also, the application of extremely high potentials around +2 V vs. Ag/AgCl/3 mol L−1 KCl is considered, as it can lead to the generation of reactive oxygen species that may interfere with or even govern the entire deposition process. Thus, the absence of such considerations may raise doubts about the peptide nature of the electrochemically assisted polymerisation of this basic amino acid. Finally, it seems that the identity of the electrochemically synthesised PArg does not correspond to that of this polymer prepared by conventional methods, such as solid-phase peptide synthesis, solution-phase synthesis, or N-carboxy-anhydride polymerisation, and therefore the whole process remains unproved. Full article
(This article belongs to the Special Issue New Electrodes Materials for Electroanalytical Applications)
Show Figures

Figure 1

16 pages, 1234 KB  
Review
Cholinergic Phenotypes of Acetyl-CoA with ATP-Citrate Lyase Link
by Sylwia Gul-Hinc, Agnieszka Jankowska-Kulawy and Andrzej Szutowicz
Int. J. Mol. Sci. 2026, 27(2), 782; https://doi.org/10.3390/ijms27020782 - 13 Jan 2026
Viewed by 185
Abstract
Glycolysis-derived pyruvate is the almost exclusive source of acetyl-CoA for energy production in mitochondrial compartments of all types of neuronal and glial cells. Neurons utilize several times more glucose than glial cells due to their neurotransmitter functions. Cholinergic neurons that are responsible for [...] Read more.
Glycolysis-derived pyruvate is the almost exclusive source of acetyl-CoA for energy production in mitochondrial compartments of all types of neuronal and glial cells. Neurons utilize several times more glucose than glial cells due to their neurotransmitter functions. Cholinergic neurons that are responsible for cognitive functions require additional amounts of acetyl-CoA for acetylcholine-transmitter synthesis in their cytoplasmic compartment. It may be assured by preferential localization of ATP-citrate lyase (ACLY) in the cytoplasm of cholinergic neurons’ perikaryons and axonal terminals. This thesis is supported by the existence of strong regional and developmental correlations of ATP-citrate lyase and choline acetyltransferase (ChAT) activities and ACh levels in the brain. Electrolytic or chemical lesions of cholinergic nuclei cause proportional loss of the above parameters in the respective cortical target areas. On the other hand, the regional activity of mitochondrial pyruvate dehydrogenase complex (PDHC), which synthesizes nearly the whole pool of neuronal acetyl-CoA, displays no correlation with cholinergic innervation. It makes cholinergic neurons highly susceptible to brain pathologies impairing energy metabolism. Therefore, the ACLY pathway, which provides acetyl units directly to the site of acetylcholine synthesis in cholinergic nerve terminals, plays a key role in the maintenance of cholinergic neurotransmission. On the other hand, in cholinergic motor neurons, various ACLY–protein complexes are involved not only in neurotransmission but also in axonal transport of cholinergic elements from the perikaryon to cholinergic neuro-muscular junctions. This review presents findings supporting this thesis. Full article
Show Figures

Figure 1

23 pages, 1257 KB  
Review
Connective Tissue Disease-Associated Pulmonary Arterial Hypertension: Current Therapeutic Strategies and Future Prospects
by Yukina Mizuno Yokoyama, Ryu Watanabe, Tomohiro Yamaguchi, Ryuhei Ishihara, Mayu Shiomi, Yuya Fujita, Masao Katsushima, Kazuo Fukumoto, Yoichiro Haji, Shinsuke Yamada and Motomu Hashimoto
Biomolecules 2026, 16(1), 140; https://doi.org/10.3390/biom16010140 - 13 Jan 2026
Viewed by 213
Abstract
Connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) is a severe form of pulmonary hypertension with poor prognosis. It most commonly arises in systemic sclerosis (SSc), followed by systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD). Its pathogenesis involves a complex interplay [...] Read more.
Connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) is a severe form of pulmonary hypertension with poor prognosis. It most commonly arises in systemic sclerosis (SSc), followed by systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD). Its pathogenesis involves a complex interplay of immune dysregulation, chronic inflammation, endothelial injury, vascular remodeling, and fibrosis. Although vasodilators targeting the endothelin, nitric oxide, and prostacyclin pathways remain the therapeutic backbone, newer agents—including the activin signal inhibitor sotatercept and inhaled treprostinil—have expanded treatment options. Immune-targeted therapies such as glucocorticoids, cyclophosphamide, mycophenolate mofetil, rituximab, and IL-6 receptor inhibitors may benefit inflammation-dominant PAH phenotypes, while fibrotic phenotypes continue to demonstrate limited responsiveness. In addition to brain natriuretic peptide (BNP), N-terminal (NT)-proBNP and disease-specific autoantibodies, emerging biomarkers show promise for early detection, risk stratification, and personalized treatment, though validation in CTD-PAH is lacking. Advances in animal models replicating immune-mediated vascular injury and fibrosis have further improved mechanistic understanding. Despite these developments, substantial unmet needs remain, including the absence of disease-specific therapeutic strategies, limited biomarker integration into clinical practice, and a scarcity of large, well-designed trials targeting individual CTD subtypes. Addressing these gaps will be essential for improving prognosis in patients with CTD-PAH. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

24 pages, 1612 KB  
Review
Biomarkers in Primary Systemic Vasculitides: Narrative Review
by Mario Sestan, Martina Held and Marija Jelusic
Int. J. Mol. Sci. 2026, 27(2), 730; https://doi.org/10.3390/ijms27020730 - 11 Jan 2026
Viewed by 181
Abstract
Vasculitides are a heterogeneous group of disorders characterized by inflammation of blood vessel walls, leading to tissue ischemia and organ injury. Traditional inflammatory markers such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are widely used but lack diagnostic specificity. This [...] Read more.
Vasculitides are a heterogeneous group of disorders characterized by inflammation of blood vessel walls, leading to tissue ischemia and organ injury. Traditional inflammatory markers such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are widely used but lack diagnostic specificity. This has driven the search for more informative biomarkers across vasculitis subtypes. This review summarizes current evidence for validated and emerging biomarkers in large-, medium-, small-, and variable-vessel vasculitis, as well as single-organ vasculitis. Key analytes reflect systemic inflammation, such as serum amyloid A (SAA) and interleukin-6 (IL-6), as well as endothelial activation, complement pathways, neutrophil and macrophage activation, and organ-specific damage. Promising candidates include pentraxin-3 (PTX3) and matrix metalloproteinase-9 (MMP-9) in large-vessel vasculitis; N-terminal pro-B-type natriuretic peptide (NT-proBNP) and S100 proteins in Kawasaki disease; galactose-deficient immunoglobulin A1 (Gd-IgA1) and urinary angiotensinogen (AGT) in IgA vasculitis; and tissue inhibitor of metalloproteinases-1 (TIMP-1), S100 proteins, complement C3, and PTX3 in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Although these biomarkers provide mechanistic insight, most lack disease-specificity, external validation, or standardized assays. Future progress will require multicenter studies, harmonized testing, and integrated biomarker panels combined with imaging modalities to improve diagnosis, activity assessment, and monitoring. Full article
Show Figures

Figure 1

Back to TopTop