Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = terahertz synthetic aperture radar (THz-SAR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 22655 KiB  
Article
A High-Precision Baseline Calibration Method Based on Estimation of Azimuth Fringe Frequency with THz Interferometry SAR
by Zeyu Wang, Chao Li, Guohua Zhang, Shen Zheng, Xiaojun Liu and Guangyou Fang
Remote Sens. 2023, 15(24), 5755; https://doi.org/10.3390/rs15245755 - 16 Dec 2023
Cited by 1 | Viewed by 1535
Abstract
In this study, repeat-pass synthetic aperture radar interferometry (repeat-pass THz InSAR) is first extended to the terahertz band, and it has tremendous potential in the application of high-resolution three-dimensional (3D) imaging due to its shorter wavelength, larger bandwidth, and greater sensitivity to elevation [...] Read more.
In this study, repeat-pass synthetic aperture radar interferometry (repeat-pass THz InSAR) is first extended to the terahertz band, and it has tremendous potential in the application of high-resolution three-dimensional (3D) imaging due to its shorter wavelength, larger bandwidth, and greater sensitivity to elevation variation. The super-resolution and high sensitivity of THz InSAR pose greater demands on the baseline calibration for high-precision digital elevation model (DEM) generation. To meet the elevation accuracy requirement of THz InSAR, we propose a baseline calibration method relying on the estimation of the azimuth fringe frequency (EAFF) of the interferometric phase. Initially, a model for non-parallel sampling path errors within the squint SAR repeat-pass interferometry was established, and then, we conducted the theoretical analysis of the phase errors induced by the non-parallel errors. Following this, using a reference DEM, the relationship between the fringe frequency of the error phase and the bias in the repeat-path positioning was established. This allowed the estimation of the position errors to be transformed into the frequency spectrum estimation based on the FFT, which would mitigate the impact of unknown SAR sampling positions. Ultimately, we investigated the accuracy of the proposed EAFF calibration method, and the simulation showed that it can achieve the theoretical accuracy when the correlation coefficient exceeds 0.3. Furthermore, we configured the repeat-pass THz InSAR system with the 0.3 THz stepped-frequency radar. Compared to the conventional calibration based on ground control points (GCPs), the 3D reconstruction of both a knife and a terrain model, calibrated using the proposed EAFF algorithm, demonstrated that the elevation accuracy can achieve millimeter-level precision across the entire image swath. The above results also proved the great potential of THz InSAR in high-precision 3D imaging and remote sensing. Full article
Show Figures

Graphical abstract

22 pages, 17769 KiB  
Article
An Efficient Spectrum Reconstruction Algorithm for Non-Uniformly Sampled Signals and Its Application in Terahertz SAR
by Guohua Zhang, Chao Li, Zeyu Wang, Jianmin Hu, Shen Zheng, Xiaojun Liu and Guangyou Fang
Remote Sens. 2023, 15(18), 4427; https://doi.org/10.3390/rs15184427 - 8 Sep 2023
Cited by 2 | Viewed by 1780
Abstract
An efficient spectrum reconstruction algorithm based on the Tikhonov regularization for terahertz (THz) synthetic aperture radar (SAR) azimuth non-uniform sampling is proposed in this article. The high bandwidth, high azimuth resolution, and high frame rate characteristics of THz SAR contribute to its wide [...] Read more.
An efficient spectrum reconstruction algorithm based on the Tikhonov regularization for terahertz (THz) synthetic aperture radar (SAR) azimuth non-uniform sampling is proposed in this article. The high bandwidth, high azimuth resolution, and high frame rate characteristics of THz SAR contribute to its wide application prospects in both military and civilian remote sensing fields. However, the higher azimuth sampling rate also leads to the more severe non-uniform sampling issues of THz SAR. Traditional methods based on the hardware adjustment of pulse repetition frequency (PRF) and simple interpolation for azimuth resampling struggle to meet the higher imaging quality requirements. The back projection algorithm (BPA) can accurately focus non-uniformly sampled data but requires significant computational resources. The algorithm proposed in this paper, which can reconstruct the wavenumber spectrum of SAR azimuth non-uniformly sampled signals, transforms the spectrum reconstruction problem into a linear equation system and solves it using Tikhonov regularization, thereby exhibiting higher computational efficiency compared to BPA. Furthermore, the proposed algorithm is derived from precise theoretical formulations and controls the solution error by utilizing a regularization parameter, leading to a superior imaging quality compared to the azimuth resampling algorithm. In this paper, an accurate spectrum reconstruction formula of non-uniform sampling signals with a finite length is derived, the influence of noise error on the solution is analyzed, and the THz SAR azimuth non-uniform sampling signals are processed from the wavenumber domain. Finally, simulation and experimental results verify the effectiveness of the proposed algorithm. Full article
Show Figures

Figure 1

21 pages, 31189 KiB  
Article
A Novel Multistage Back Projection Fast Imaging Algorithm for Terahertz Video Synthetic Aperture Radar
by Qibin Zheng, Shuangli Shang, Yinwei Li and Yiming Zhu
Remote Sens. 2023, 15(10), 2602; https://doi.org/10.3390/rs15102602 - 16 May 2023
Cited by 2 | Viewed by 2130
Abstract
Terahertz video synthetic aperture radar (THz-ViSAR) has tremendous research and application value due to its high resolution and high frame rate imaging benefits. However, it requires more efficient imaging algorithms. Thus, a novel multistage back projection fast imaging algorithm for the THz-ViSAR system [...] Read more.
Terahertz video synthetic aperture radar (THz-ViSAR) has tremendous research and application value due to its high resolution and high frame rate imaging benefits. However, it requires more efficient imaging algorithms. Thus, a novel multistage back projection fast imaging algorithm for the THz-ViSAR system is proposed in this paper to enable continuous playback of images like video. The radar echo data of the entire aperture is first divided into multiple sub-apertures, as with the fast-factorized back projection algorithm (FFBP). However, there are two improvements in sub-aperture imaging. On the one hand, the back projection algorithm (BPA) is replaced by the polar format algorithm (PFA) to improve the sub-aperture imaging efficiency. The imaging process, on the other hand, uses the global Cartesian coordinate system rather than the local polar coordinate system, and the wavenumber domain data of the full aperture are obtained step by step through simple splicing and fusion, avoiding the amount of two-dimensional (2D) interpolation operations required for local polar coordinate system transformation in FFBP. Finally, 2D interpolation for full-resolution images is carried out to image the ground object targets in the same coordinate system due to the geometric distortion caused by linear phase error (LPE) and the mismatch of coordinate systems in different imaging frames. The simulation experiments of point targets and surface targets both verify the effectiveness and superiority of the proposed algorithm. Under the same conditions, the running time of the proposed algorithm is only about 6% of FFBP, while the imaging quality is guaranteed. Full article
(This article belongs to the Special Issue SAR-Based Signal Processing and Target Recognition)
Show Figures

Figure 1

22 pages, 4009 KiB  
Article
Estimation of High-Frequency Vibration Parameters for Airborne Terahertz SAR Using Chirplet Decomposition and LS Sequential Estimators
by Zhaoxin Hao, Jinping Sun, Qing Li and Tao Shan
Remote Sens. 2022, 14(14), 3416; https://doi.org/10.3390/rs14143416 - 16 Jul 2022
Cited by 9 | Viewed by 1837
Abstract
Due to the short wavelength of the terahertz wave, airborne terahertz synthetic aperture radar (THz-SAR) suffers from echo phase errors caused by the high-frequency vibration of the platform. These errors will result in defocusing and the emergence of ghost targets, which will degrade [...] Read more.
Due to the short wavelength of the terahertz wave, airborne terahertz synthetic aperture radar (THz-SAR) suffers from echo phase errors caused by the high-frequency vibration of the platform. These errors will result in defocusing and the emergence of ghost targets, which will degrade the quality of the image. Therefore, it is necessary to compensate for phase errors in order to bring the image into focus. This paper proposes a multi-component high-frequency vibration parameter estimation method based on chirplet decomposition and least squares (LS) sequential estimators, which differs from other methods that can only be applied to simple harmonic vibrations. In particular, we first obtain the instantaneous chirp rate (ICR) of the signal by chirplet decomposition. Then, we employ the LS sequential estimators in conjunction with separable regression technique (SRT) to estimate vibration parameters. The estimated parameters are subsequently used to re-establish the ICR components for each vibration component and these parameters are further re-estimated to improve their accuracy. Based on the estimated parameters, phase compensation functions can be constructed to suppress the defocusing and ghost targets in airborne THz-SAR imaging. Simulated results on point targets and distributed imaging scenes demonstrate that the proposed method is accurate and reliable even at low signal-to-noise ratios (SNRs). Full article
(This article belongs to the Special Issue Advances in Synthetic Aperture Radar Remote Sensing)
Show Figures

Figure 1

17 pages, 12970 KiB  
Article
Object Recognition in High-Resolution Indoor THz SAR Mapped Environment
by Aman Batra, Fawad Sheikh, Maher Khaliel, Michael Wiemeler, Diana Göhringer and Thomas Kaiser
Sensors 2022, 22(10), 3762; https://doi.org/10.3390/s22103762 - 15 May 2022
Cited by 10 | Viewed by 3148
Abstract
Synthetic aperture radar (SAR) at the terahertz (THz) spectrum has emerging short-range applications. In comparison to the microwave spectrum, the THz spectrum is limited in propagation range but benefits from high spatial resolution. The THz SAR is of significant interest for several applications [...] Read more.
Synthetic aperture radar (SAR) at the terahertz (THz) spectrum has emerging short-range applications. In comparison to the microwave spectrum, the THz spectrum is limited in propagation range but benefits from high spatial resolution. The THz SAR is of significant interest for several applications which necessitate the mapping of indoor environments to support various endeavors such as rescue missions, map-assisted wireless communications, and household robotics. This paper addresses the augmentation of the high-resolution indoor mapped environment for object recognition, which includes detection, localization, and classification. Indoor object recognition is currently dominated by the usage of optical and infrared (IR) systems. However, it is not widely explored by radar technologies due to the limited spatial resolution at the most commonly used microwave frequencies. However, the THz spectrum provides a new paradigm of possible adaptation of object recognition in the radar domain by providing image quality in good compliance to optical/IR systems. In this paper, a multi-object indoor environment is foremost mapped at the THz spectrum ranging from 325 to 500 GHz in order to investigate the imaging in highly scattered environments and accordingly create a foundation for detection, localization, and classification. Furthermore, the extraction and clustering of features of the mapped environment are conducted for object detection and localization. Finally, the classification of detected objects is addressed with a supervised machine learning-based support vector machine (SVM) model. Full article
(This article belongs to the Special Issue Terahertz and Millimeter Wave Sensing and Applications)
Show Figures

Figure 1

19 pages, 4171 KiB  
Article
A High-Frequency Vibration Error Compensation Method for Terahertz SAR Imaging Based on Short-Time Fourier Transform
by Yinwei Li, Qi Wu, Jiawei Jiang, Xia Ding, Qibin Zheng and Yiming Zhu
Appl. Sci. 2021, 11(22), 10862; https://doi.org/10.3390/app112210862 - 17 Nov 2021
Cited by 5 | Viewed by 2303
Abstract
High-frequency vibration error of a moving radar platform easily introduces a non-negligible phase of periodic modulation in radar echoes and greatly degrades terahertz synthetic aperture radar (THz-SAR) image quality. For solving the problem of THz-SAR image-quality degradation, the paper proposes a multi-component high-frequency [...] Read more.
High-frequency vibration error of a moving radar platform easily introduces a non-negligible phase of periodic modulation in radar echoes and greatly degrades terahertz synthetic aperture radar (THz-SAR) image quality. For solving the problem of THz-SAR image-quality degradation, the paper proposes a multi-component high-frequency vibration error estimation and compensation approach based on the short-time Fourier transform (STFT). To improve the robustness of the method against noise effects, STFT is used to extract the instantaneous frequency (IF) of a high-frequency vibration error signal, and the vibration parameters are coarsely obtained by the least square (LS) method. To reduce the influence of the STFT window widths, a method based on the maximum likelihood function (MLF) is developed for determining the optimal window width by a one-dimensional search of the window widths. In the case of high noise, many IF estimation values seriously deviate from the true ones. To avoid the singular values of IF estimation in the LS regression, the random sample consensus (RANSAC) is introduced to improve estimation accuracy. Then, performing the STFT with the optimal window width, the accurate vibration parameters are estimated by LS regression, where the singular values of IF estimation are excluded. Finally, the vibration error is reconstructed to compensate for the non-negligible phase of the platform-induced periodic modulation. The simulation results prove that the error compensation method can meet THz-SAR imaging requirements, even at a low signal-to-noise ratio (SNR). Full article
(This article belongs to the Special Issue Applications of Millimeter-Wave and Terahertz Technologies)
Show Figures

Figure 1

24 pages, 8572 KiB  
Article
A Novel Generation Method of High Quality Video Image for High Resolution Airborne ViSAR
by Jingwei Chen, Daoxiang An, Wu Wang, Leping Chen, Dong Feng and Zhimin Zhou
Remote Sens. 2021, 13(18), 3706; https://doi.org/10.3390/rs13183706 - 16 Sep 2021
Cited by 5 | Viewed by 2438
Abstract
Video synthetic aperture radar (ViSAR) can provide long-time surveillance of a region of interest (ROI), which is one of the hotspot directions in the SAR field. In order to better display ViSAR, a high resolution and high frame rate are needed. Azimuth integration [...] Read more.
Video synthetic aperture radar (ViSAR) can provide long-time surveillance of a region of interest (ROI), which is one of the hotspot directions in the SAR field. In order to better display ViSAR, a high resolution and high frame rate are needed. Azimuth integration angle and sub-aperture overlapping ratio, which determine the image resolution and frame rate, respectively, are analyzed in depth in this paper. For SAR imaging algorithm, polar format algorithm (PFA) is applied, which not only has high efficiency but is also easier to integrate with autofocus algorithms. Due to sensitivity to motion error, it is very difficult to obtain satisfactory focus quality, especially for SAR systems with a high carrier frequency. The three-step motion compensation (MOCO) proposed in this paper, which combines GPS-based MOCO, map-drift (MD) and phase gradient autofocus (PGA), can effectively compensate for motion error, especially for short wavelengths. In ViSAR, problems such as jitter, non-uniform grey scale and low image signal noise ratio (SNR) between different aspects images also need to be considered, so a ViSAR generation method is proposed to solve the above problems. Finally, the results of ViSAR in THz and Ku band demonstrate the effectiveness and practicability of the proposed method. Full article
Show Figures

Figure 1

13 pages, 2478 KiB  
Article
A Novel High-Frequency Vibration Error Estimation and Compensation Algorithm for THz-SAR Imaging Based on Local FrFT
by Yinwei Li, Li Ding, Qibin Zheng, Yiming Zhu and Jialian Sheng
Sensors 2020, 20(9), 2669; https://doi.org/10.3390/s20092669 - 7 May 2020
Cited by 19 | Viewed by 2853
Abstract
Compared with microwave synthetic aperture radar (SAR), terahertz SAR (THz-SAR) is easier to achieve ultrahigh-resolution image due to its higher frequency and shorter wavelength. However, higher carrier frequency makes THz-SAR image quality very sensitive to high-frequency vibration error of motion platform. Therefore, this [...] Read more.
Compared with microwave synthetic aperture radar (SAR), terahertz SAR (THz-SAR) is easier to achieve ultrahigh-resolution image due to its higher frequency and shorter wavelength. However, higher carrier frequency makes THz-SAR image quality very sensitive to high-frequency vibration error of motion platform. Therefore, this paper proposes a novel high-frequency vibration error estimation and compensation algorithm for THz-SAR imaging based on local fractional Fourier transform (LFrFT). Firstly, the high-frequency vibration error of the motion platform is modeled as a simple harmonic motion and THz-SAR echo signal received in each range pixel can be considered as a sinusoidal frequency modulation (SFM) signal. A novel algorithm for the parameter estimation of the SFM signal based on LFrFT is proposed. The instantaneous chirp rate of the SFM signal is estimated by determining the matched order of LFrFT in a sliding small-time window and the vibration acceleration is obtained. Hence, the vibration frequency can be estimated by the spectrum analysis of estimated vibration acceleration. With the estimated vibration acceleration and vibration frequency, the SFM signal is reconstructed. Then, the corresponding THz-SAR imaging algorithm is proposed to estimate and compensate the phase error caused by the high-frequency vibration error of the motion platform and realize high-frequency vibration error estimation and compensation for THz-SAR imaging. Finally, the effectiveness of the novel algorithm proposed in this paper is demonstrated by simulation results. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Back to TopTop