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Abstract: In this study, repeat-pass synthetic aperture radar interferometry (repeat-pass THz InSAR)
is first extended to the terahertz band, and it has tremendous potential in the application of high-
resolution three-dimensional (3D) imaging due to its shorter wavelength, larger bandwidth, and
greater sensitivity to elevation variation. The super-resolution and high sensitivity of THz InSAR
pose greater demands on the baseline calibration for high-precision digital elevation model (DEM)
generation. To meet the elevation accuracy requirement of THz InSAR, we propose a baseline calibra-
tion method relying on the estimation of the azimuth fringe frequency (EAFF) of the interferometric
phase. Initially, a model for non-parallel sampling path errors within the squint SAR repeat-pass
interferometry was established, and then, we conducted the theoretical analysis of the phase errors
induced by the non-parallel errors. Following this, using a reference DEM, the relationship between
the fringe frequency of the error phase and the bias in the repeat-path positioning was established.
This allowed the estimation of the position errors to be transformed into the frequency spectrum
estimation based on the FFT, which would mitigate the impact of unknown SAR sampling positions.
Ultimately, we investigated the accuracy of the proposed EAFF calibration method, and the simula-
tion showed that it can achieve the theoretical accuracy when the correlation coefficient exceeds 0.3.
Furthermore, we configured the repeat-pass THz InSAR system with the 0.3 THz stepped-frequency
radar. Compared to the conventional calibration based on ground control points (GCPs), the 3D
reconstruction of both a knife and a terrain model, calibrated using the proposed EAFF algorithm,
demonstrated that the elevation accuracy can achieve millimeter-level precision across the entire
image swath. The above results also proved the great potential of THz InSAR in high-precision 3D
imaging and remote sensing.

Keywords: terahertz SAR; repeat-pass interferometry; baseline calibration; fringe frequency estimation;
three-dimensional (3D) imaging; remote sensing

1. Introduction

The terahertz range lies between the microwave and infrared domain in the spectrum,
which generally refers to the band ranging from 0.1 to 10.0 THz. After being extended
to SAR, terahertz SAR (THz-SAR) and MIMO-SAR have had a substantial impact on the
high-precision imaging and 3D reconstruction fields [1–8]. SAR interferometry (InSAR)
is a potent technology for 3D reconstruction in remote sensing, but there is virtually no
research on InSAR in the terahertz band as far as we know. In fact, terahertz InSAR
holds the potential for high-precision 3D reconstruction owing to its shorter wavelength,
broader bandwidth, and greater sensitivity to elevation variation in comparison to the
microwave spectrum. Although constrained by the source power at present, terahertz
radar is not widely applicable in remote sensing. Through the utilization of a scaled-down
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imaging geometry, investigations and explorations into THz InSAR technology can be
conducted at close range. This holds substantial implications for the prospective realization
of high-precision remote sensing.

Obtaining a high-precision digital elevation model (DEM) is paramount for the study
of terahertz InSAR technology. The accuracy of the DEM is influenced by many errors,
such as interferometric baseline errors and phase errors [9]. In this context, baseline errors
can have a substantial impact on DEM generation, and the challenges associated with the
baseline calibration in THz InSAR become more pronounced. Compared to the microwave
spectrum, the shorter wavelength of the terahertz wave spectrum leads to a heightened
sensitivity to elevation and the increased accuracy of elevation measurements, and this
requires stricter baseline calibration accuracy in THz InSAR. The baseline standards impose
a stringent precision of the high-frequency pulse sampling positioning of terahertz SAR [10]
of at least the sub-millimeter level, which can entail significant expenses when implemented
via hardware solutions. Moreover, the baseline always changes along the sampling path,
so a single and coarse estimation is insufficient to compensate for the entire elevation error.
Last but not least, it is customary for terahertz radar to exhibit a lower signal-to-noise ratio
compared to the microwave band [11,12].

Although research on THz InSAR is limited, substantial research has been devoted to
the advancement of baseline calibration algorithms in microwave InSAR. The calibration
methods can be classified into two primary approaches. The first approach employs
ground control points (GCPs) in iterative procedures, with a primary focus on utilizing the
sensitivity matrix [13–15]. The accuracy of baseline calibration based on GCPs is intricately
linked to the level of phase noise [16], and given the more-severe noise corruption in the
THz band, which can result in millimeter-level discrepancies, it is deemed inadequate for
high-accuracy DEM generation. The second method establishes the relationship between
the interferometric phase and baseline configuration, facilitating the calculation of baseline
errors using observed phase information [17–19]. For similar outcomes, the estimation
accuracy based on the local window and wavenumber shift in the range direction is limited,
and thus, it cannot address the minor changes in the baseline that occur as the radar
operates. The external DEM can also be used in the baseline calibration [16,20]. It is
important to gain an accurate DEM to obtain high-precision baseline calibration.

To solve the problem of the high-accuracy baseline estimation mentioned above, the
baseline calibration method relying on the estimation of the azimuth fringe frequency
(EAFF) of the interferometric phase is proposed. A model for non-parallel sampling path
errors within the squint SAR repeat-pass interferometry was established, and then, the
theoretical analysis of the phase errors induced by the non-parallel errors was conducted.
Following this, using a reference DEM, the relationship between the azimuth fringe fre-
quency of the error phase and the bias in the repeat-path positioning was established. This
allowed the estimation of the baseline errors to be transformed into the frequency spectrum
estimation based on the Fast Fourier Transform (FFT), which sidesteps the unknown SAR
sampling positions. Then, taking into account the theoretical elevation resolution within the
terahertz band, the parameter accuracy with the FFT is provided in detail. Consequently,
the proposed EAFF calibration algorithm enabled global interference phase compensation
and guaranteed the generation of a higher-precision DEM.

Compared to the enhancement of the precision positioning system for THz SAR, tra-
jectory errors were compensated by the EAFF through software-based solutions, offering
the advantages of efficiency and cost-effectiveness. Compared to other calibration methods,
the proposed EAFF algorithm effectively integrates the correlation between the sampling
trajectory deviations and phase errors. These enhancements effectively convert the chal-
lenge related to minute baseline changes into a precise frequency estimation. Utilizing the
exceptional sensitivity to elevation of THz InSAR, it becomes easier to achieve spectrum
analysis in the frequency domain. Meanwhile, exploiting its high resolution, the EAFF
method enables a significantly elevated level of precision in the baseline estimation for
THz InSAR. According to the detailed formulations, the adjustment of the FFT sampling
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rates ensures high-precision trajectory error and baseline estimation, meeting the demand
for superior elevation resolution. An ancillary advantage of this method is its operational
efficiency, as it eliminates the need for iterative algorithms.

This article is organized as follows. Section 2 performs the principle study of InSAR,
including the high-precision model, the corresponding height error analysis, and the
coherence analysis of the terahertz band, which determines the elevation accuracy of
THz InSAR. Section 3 investigates the principles, implementation process, and parameter
accuracy of the EAFF methods in detail. In Section 4, we perform the simulation to
estimate the practical accuracy under various noise levels, which serves as a reference for
the experiments. Section 5 presents the experiment using the repeat-pass THz InSAR with a
0.3 THz stepped-frequency radar. The results of both the knife and terrain models demonstrate
that the elevation accuracy can achieve the millimeter level within the whole swath coverage.
Section 6 concludes the entire paper and outlines the directions for further research.

2. Theory of High-Precision THz InSAR Model
2.1. The Principle of SAR Interferometry

Figure 1 shows the classic InSAR geometry with baseline B, inclined at α. It is well
known that the information of the phase is of great interest for InSAR, and the interfero-
metric phase ϕ of the “ping-pong” mode is

ϕ = −4π

λ
(R1 − R2) =

4π

λ
∆R (1)

where λ is the radar wavelength, R1 and R2 refer to the distances from one target to
antennas A1 and A2, respectively, and P is an imaginary point whose altitude is h with
respect to the ground, and its corresponding reference point is P0. The look angle θ is related
to the point height h, and the difference of the look angle of P and P0 is δθ. According to
the geometric relationship between the slope distance difference ∆R and B, one can obtain

∆R = −B sin(θ + δθ − α)

= −B sin(θ − α) cos(δθ)− B cos(θ − α) sin(δθ)

≈ −B sin(θ − α)(1 − δθ2

2
)− B cos(θ − α)(δθ − δθ3

6
)

(2)

With the help of Taylor expansion, the trigonometric functions in (2) can be approxi-
mated as the combination of the polynomials to simplify the equation. Unlike the conven-
tional interferometric model, a higher-order approximation is used in the high-precision 3D
close-range imaging scenario. Because the radar look angle varies greatly in the near-field,
the first-order approximation generates a large approximation error, which causes a huge
height error and reduces the height resolution.

Figure 1. Cross-track SAR interferometry imaging geometry.
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Generally speaking, ϕ consists of the terrain phase and the reference phase. Using the
concept of the wavenumber, which is 4π/λ in “ping-pong” mode, (2) can be transformed
into the formation of the phase difference, and its important is in removing the reference
phase because it does not contribute to the extraction of the altitude, but aggravates the
wrapped phase. Thus, the terrain phase is as follows:

ϕh
kB

= − cos(θ − α)δθ − sin(θ − α)
δθ2

2
+ cos(θ − α)

δθ3

6
(3)

By transforming (3) into a standard cubic equation, the relationship between δθ and
the terrain phase ϕh can be solved, expressed as δθ(ϕh). The detailed procedure is described
in the Appendix A. To date, we have identified the approach to transforming the interfer-
ometric phase into δθ; however, it is still necessary to establish the connection between
δθ and the target altitude h. Based on the geometry of the antennas and targets shown in
Figure 1, one can obtain {

cos θ = H/R1

cos(θ + δθ) = (H − h)/R1
(4)

and

cos(θ + δθ) ≈ cos θ(1 − δθ2

2
)− sin θ(δθ − δθ3

6
)

= cos θ(1 − δθ2

2
)−

√
(1 − cos2 θ)(δθ − δθ3

6
)

(5)

By substituting (4) to (5), one can obtain

h(δθ) = −

√
R2

1 − H2

6
δθ3 +

H
2

δθ2 +
√

R2
1 − H2δθ (6)

By replacing can be estimated from the interferogram. The height sensitivity is usually
defined as the height variation when δθ = 2π. Due to the shorter wavelength, the height
sensitivity of THz InSAR is much smaller than that of microwave InSAR.

To demonstrate the efficacy of our model, the simulations of the elevation estimation
using both the first-order and higher-order approximations are conducted. The main
antenna is positioned at an elevation of 0.32 m, and the target is situated at an distance
of 3 m. As shown in Figure 2, both two approximation models provide good fits to the
theoretical values, especially when the target is relatively low. However, as the target’s
altitude increases, the first-order model exhibits noticeable estimation errors, leading to
a significant reduction in the height accuracy. Conversely, the higher-order model yields
accurate predictions. Proved by the simulations, the relative height errors are minimized
using the higher-order approximation model, demonstrating its exceptional accuracy
and resilience.

Figure 2. Results of the height estimation of different approximations.
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2.2. The Analysis of Height Errors Based on InSAR Parameter Errors

After refining the interferometric model in the preceding subsection, the height errors
resulting from various factors are analyzed in the following paragraphs. It is essential
to determine an achievable elevation accuracy. As shown in Figure 1, for point P, the
expression of its height z and distance y can be obtained by

z = H − R1 cos θ = H − R1 cos(θ − α + α)

= H − R1

[√
1 − sin2(θ − α) cos(α)− sin(θ − α) sin(α)

] (7)

y = R1 sin θ (8)

By applying the Law of Cosines in the triangle ∆PA1 A2, the relationship among B, R1,
θ, and α can be derived as follows:

sin(θ − α) =
−(2R1 + ∆R)∆R + B2

2R1B
(9)

where the offset ∆R = ϕ/k, and ϕ represents the phase difference . By the way, both ϕ and
∆R are less than 0 because of their definitions.

The sources of elevation errors can be classified into directness and indirectness, as
described in Reference [21]. The instinct error refers to the error directly caused by the
model itself, while the indirect error refers to the one caused by location errors indirectly
affecting the estimation. The instinct errors include the estimation errors of a baseline B,
a tilt angle α, an interferometric phase ϕ, an antenna height H , and a slant range R1. We
express them by δzB, δzα, δzϕ, δzH , and δzR1 , respectively. τx and τy represent the tilt angles
in the azimuth and distance directions. If a distance position error is δy, the corresponding
altitude error will be δzδy = tan(τy)δy. By combining (7)–(9), the elevation errors related to
the aforementioned factors are expressed by

δzB = (sin(θ) + tan τx cos(θ)) ·
(
−R1 tan(θ1 − α)

B
+

1
cos(θ1 − α)

)
δB (10)

δzα = R1(sin θ + tan τx cos θ)δα (11)

δzϕ = −R1(sin(θ1) + tan τx cos(θ))
kB cos(θ − α)

R1 + ∆r
R1

δφ (12)

δzH = δH (13)

δzR1 = − cos θδR1 (14)

Quantifying each error will be advantageous for the calculation of the elevation
accuracy. On the ond hand, the quantified errors associated with most parameters can be
regarded as the systemic biases which typically exhibit nearly constant deviations within
the imaging range. Among these biases, the baseline bias, including δB and δα, significantly
impacts the height accuracy. On the other hand, the phase error plays a crucial role in
determining the height accuracy, as it is closely connected to a relative height variation.
Minimizing the interferometric phase error, as outlined in (12), can yield an optimal imaging
scheme. Subsequently, the following subsection will furnish a comprehensive analysis of
the coherence of InSAR imaging.

2.3. The Coherence of InSAR System

The expression of the impulse response function of SAR is [22]:

W(x, y) = si nc
(

πx
Rx

)
si nc

(
πy
Ry

)
(15)
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where Rx and Ry are the azimuth and range resolutions, respectively. In InSAR, the return
waveforms s1 and s2 of a point (x0, y0) are

s1(x0, y0) =
∫∫

f (x, y) exp
(
−j

4πR1

λ

)
· W(x − x0, y − y0)dxdy + n1 (16)

s2(x0, y0) =
∫∫

f (x, y) exp
(
−j

4πR2

λ

)
· W(x − x0, y − y0 + δy)dxdy + n2 (17)

where f (x, y) is a two-dimensional complex scattering function of scatters. R1 and R2
represent the slant ranges from the target to the two antennas, and an image registration
error δy is introduced. n1 and n2 represent the Gaussian white-noise in two channels. It is
assumed that the complex scattering functions are the zero-mean two-dimensional complex
Gaussian white noise with the same root mean square, and their cross-correlation function
is [21] 〈

f (x, y) f ∗
(
x′, y′

)〉
= δ

(
x − x′, y − y′

)
σ0 (18)

Therefore, the complex cross-correlation function of the main and auxiliary images
can be expressed as

⟨s1s∗2⟩ =
∫∫∫∫

f (x1, y1) f ∗(x2, y2) exp
(
−j

4π(R1 − R2)

λ

)
· W(x1 − x0, y1 − y0)W(x2 − x0, y2 − y0 + δy)dx1dy1dx2dy2

(19)

By substituting (18) into (19), the cross-correlation coefficient of the same pixel can be
obtained as

⟨s1s∗2⟩ = σ0

∫∫
exp

(
−j

4π(R1 − R2)

λ

)
W(x − x0, y − y0)W(x − x0, y − y0 + δy)dxdy (20)

The slant range difference is approximated as [21]

R1 − R2 ≈ B sin(θ0 − α)− B⊥
r0

(y − y0) cos θ0 (21)

B⊥ = B cos(θ0 − α) (22)

By replacing (21) and (22) into (20), one can obtain

⟨s1s∗2⟩ =σ0Rx exp
(
−j

4π

λ
B sin(θ0 − α)

) ∫
exp

(
j
4π

λ

B⊥
r0

(y − y0) cos θ0

)
·

sin π(y − y0)
/

Ry

π(y − y0)
/

Ry

sin π(y − y0 + δy)
/

Ry

π(y − y0 + δy)
/

Ry
dy

(23)

Integrating (23) with respect to y, one can obtain

⟨s1s∗2⟩ = σ0RxRy exp
(
−j

4π

λ
B sin(θ0 − α)

)
α (24)

α =
(
1 −

∣∣αy
∣∣Ry

)
exp

(
jπαyδy

) sin πδy
(
1 −

∣∣αy
∣∣Ry

)/
Ry

πδy
(
1 −

∣∣αy
∣∣Ry

)/
Ry

, αy =
kB⊥

2πr0 tan θ0
(25)

Considering that the auto-correlation functions of both images are as follows [23]

⟨s1s∗1⟩ = σ0RxRy + N, ⟨s2s∗2⟩ = σ0RxRy + N (26)
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where N =
〈
n2

1
〉
=

〈
n2

2
〉
. Then, the correlation coefficient of InSAR is expressed as

γ =
|⟨s1s∗2⟩|√〈
s1s∗1

〉〈
s2s∗2

〉 =
|α|

1 + SNR−1 (27)

where SNR is the signal-to-noise rate. Assuming that δy = 0, the correlation coefficient γ
can be expressed as

γ = γSNR · γsur f ace (28)

γSNR =
1

1 + SNR−1 (29)

γsur f ace = 1 −
kB⊥Ry

2πR0 tan θ0
(30)

Considering a single-look situation, the standard deviation of the interferometric
phase related to γ obeys [24]

σ∆φ =

√
1 − γ2

2γ2 (31)

It can be inferred that a smaller γ leads to more severe phase noise in the interferogram,
according to (31). However, there have been studies focusing on the phase noise caused
by the geometric decorrelation. The reference [17] pointed out that the relative shifts
of the ground wavenumber spectra occurred in InSAR images. Based on that, a pre-
filtering method was proposed for an improvement of the interferogram quality. The phase
noise caused by the geometric decorrelation could be filtered significantly. Moreover, the
reference [25] focused on the phase noise of multilook InSAR resulted from the geometric
decorrelation. A spectral model relying on the spectra of the individual channels and
multilook averaging windows in range was proposed. The results showed that this model
aligned well with the numerical simulations.

3. Processing of the EAFF Calibration Method
3.1. The Establishment of Models and Theoretical Framework

For InSAR imaging, the elevation is obtained based on the phase difference caused by
the difference in slant ranges resulting from different imaging geometries. For both single-
pass and repeat-pass interferometry, the position difference of two antennas constitutes the
baseline. The variable baseline errors at different azimuth positions will result in height
errors in cross-track interferometry. If the calibration precision of the baseline is deficient,
it can introduce substantial elevation inaccuracies, consequently resulting in a marked
reduction of 3D reconstruction.

Conventional InSAR depends on the inertial navigation systems or the Global Posi-
tioning System (GPS) to acquire the positions of sampling points [26,27]. In our particular
sampling context, the vehicle’s wheel controls the emitting and receiving pulses at pre-
determined intervals. However, given the higher baseline accuracy of THz InSAR, it
necessitates a heightened level of positioning precision on the order of millimeters or
even sub-millimeters. Implementing hardware systems for such precision would signifi-
cantly increase the cost. Consequently, we mitigate baseline errors that arise during the
two scanning procedures through the innovative EAFF calibration algorithm.

The theoretical data acquisition trajectories for a specific baseline should remain
parallel during a sampling process. In practice, the imaging trajectory invariably exhibits
rotations and offsets. Let dx, dy, and dz represent deviations in the azimuth, distance,
and altitude, respectively. Also, θz, θx, and θy denote rotation angles around the axis of
height, azimuth and distance, in that order. Figure 3 depicts the schematic representation
of the target localization, trajectory rotations, and translation offsets projected onto the x–y
plane. The two solid black lines with arrows signify the actual sampling paths, while the
black dashed line represents the theoretical one paralleled to the other. In the coordinate
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system of the main trajectory, the points T1 and T2 correspond to the same distances
but different azimuths. The angle θz leads to noticeable changes in the slant ranges of
these points, resulting in distinct phase differences between them. Furthermore, as their
azimuths diverge, the slant range errors become more pronounced. Similarly, for points T1
and T3 sharing the same azimuths, the slant range errors also manifest due to differences
in distances.

Figure 3. The geometric diagram of x–y plane projection of repeat-pass track after shifted by θz.

Next, it is time to analyze in detail the impact of the various track error parameters.
Taking the theoretical radar sampling path as the imaging coordinate system’s x-axis, for a
point P⃗ = (x, y, z)T , its theoretical SAR coordinates are

P⃗ = (X, R)T =

(
x,
√

y2 + z2
)T

(32)

On the one hand, when the translation errors occur, the coordinates can be represented as

P⃗′
trans =

 x′trans
y′trans
z′trans

 =

 x
y
z

+

 dx
dy
dz

 =

 x + dx
y + dy
z + dz

 (33)

and the corresponding SAR coordinates are

P⃗trans =

[
x′trans√

(y′trans)
2 + (z′trans)

2

]
=

[
x + dx√

(y + dy)2 + (z + dz)2

]
(34)

According to (34), the first-order sensitivity matrix for three-dimensional coordinates
is as follows

FT =
[

∂P⃗
∂x

∂P⃗
∂y

∂P⃗
∂z

]
=

[
∂X
∂x

∂X
∂y

∂X
∂z

∂R
∂x

∂R
∂y

∂R
∂z

]
=

[
1 0 0
0 y

R
z
R

]
(35)

Therefore, the positioning errors caused by the translation offset ∆P⃗trans are

∆P⃗trans =

[
∆Xtrans
∆Rtrans

]
= FT ·

 dx
dy
dz

 =

[
dx

y
R dy + z

R dz

]
(36)
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On the other hand, the coordinates after undergoing a triple angle rotation can be
expressed as

P⃗′
rot = R · P⃗ (37)

where the rotation matrix R can be represented as

R = RZ(θz)RX(θx)RY
(
θy
)

(38)

RZ(θz) =

 cos θz − sin θz 0
sin θz cos θz 0

0 0 1

, RX(θx) =

 1 0 0
0 cos θx − sin θx
0 sin θx cos θx

, RY
(
θy
)
=

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 (39)

and the SAR coordinates are

P⃗rot =

(
x′rot,

√
(y′rot)

2 + (z′rot)
2
)

(40)

After rotations, the coordinates become more intricate. By taking into account the
experimental conditions, we can eliminate specific interfering terms to improve the practi-
cality and pertinence of the rotation model. Given that the x-axis aligns with the radar’s
motion direction, and θx corresponds to changes in the radar’s look angle. According to
the radar positioning theory, for a target, both its slant range and azimuth remain constant
when the look angle varies. Therefore, we assume that RX = I, and I is the unit matrix. θy
characterizes the variations in terrain between two scans. In the experiment, we adopt a
method of constructing the baseline through a scene translation, and further details will be
provided in the experimental section. The radar’s position exhibits minimal deviations. We
assume that RY = I, given the flat terrain and relatively short imaging distances. Based on
the analysis above, in the experiment, θz makes a highest impact on the height accuracy.
Therefore, we focus on addressing the estimation problem related to θz. Due to θz, the
position variations are

∆P⃗θz =

[
∆Xθz

∆Rθz

]
=

[
x(cos θz − 1)− y sin θz

y
R [y(cos θz − 1) + x sin θz]

]
(41)

As (41) shows, the slant range difference ∆Rθz is related to three coordinates and the
trajectory offset angle θz. The larger value of these variables, the more severe deviation will
be. This leads to the undesirable error difference phase (EDP)

EDP = k · ∆Rθz (42)

in the azimuth direction obviously, due to the large wavenumber k. For example, if
θz = 0.5◦, an EDP with different imaging centers is shown in Figure 4. The values are rather
close when the target’s distances are 3 m, 5 m, and 7 m. However, the phase wrapping
occurs according to the rising azimuth internal between two targets. For the discrete corner
reflectors, it becomes more difficult to calculate an integer period of wraps when θz is
relatively large. Unfortunately, even with only a 0.5◦ deviation, there is still significant EDP
in small imaging ranges.
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Figure 4. EDF corresponding to varying azimuth interval ∆x in three range centers.

3.2. The Processing and Resolution Analysis of the EAFF Method

The preceding section delved into the origins of errors, resembling the error compen-
sation. In this subsection, we delineate the error estimation procedure and the precision
of each parameter. Given the high sensitivity of EDP to ∆x, we establish a connection
between the rate of phase variation in a reference DEM and θz. Thus, θz can be computed by
estimating the fringe frequency in the interferogram. When a minor azimuth displacement
∆x arises, one can derive

4π

λ
∆Rθz = 2π fx∆x (43)

where fx is the fringe frequency of the interference phase in the azimuth direction. Actually,
if θz = 1◦, there will be sin(1◦) = 0.0175 and cos(1◦)− 1 = −1.5230 × 10−4. Due to the
fact that (cos θz − 1) ≪ sin θz, we can ignore the cosine impact. By combining (41)–(43),
one can obtain

sin θz =
λ

2
fx

R
y

(44)

Therefore, by estimating the azimuth fringe frequency of the calibration plane, the
offset angle of the trajectory can be obtained. Then, based on the relationship among the
slant range error and the various parameters as described in (42) and (43), the interference
phase can be calculated. Compensating the interference phase back into the interferogram
allows for the higher height accuracy. It is worth noting that the sampling rate must be at
least twice the frequency of the signal according to Nyquist’s theorem. Following (44), θz
and fx are directly proportional. It is necessary for | fx| < 1/2 to be satisfied, implying that
θz < arcsin(λR/4y) must also be fulfilled. This indicates that the EAFF algorithm is more
suitable for estimating precise deviations.

According to (41), it is evident that a broader imaging range results in larger phase
errors. For a determined height accuracy, this implies greater demand for the precision of
θz for larger image scales. As a result, we establish a correlation between the image ranges
and parameter accuracies. Assuming the range in azimuth direction is denoted as Lx, the
maximum EDF within this range can be expressed as follows:

EDP =
ky
R

Lx sin θz (45)

Thus, we can obtain that within the given imaging range, if the acceptable phase error
is ρ∆φ, the resolution of θz will be

ρθz = arcsin
(

ρ∆φR
kLxy

)
(46)
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Then, the baseline accuracy caused by ρθz is

ρB =
ρa sin(ρθz)

cos α
(47)

where ρa represents the radar’s azimuthal resolution. According to (44), we can obtain the
frequency resolution as

ρ fx =
ky

2πR
sin(ρθz) =

ρ∆φ

2πLx
(48)

Here, the 2D FFT transformation is applied to estimate the fringe frequency. By
implementing the 2D-FFT on the interference phase of the calibration plane, represented by
sp(τ, η), the fundamental frequency in the azimuth direction, i.e., the fringe frequency of
the interference phase, can be obtained

f̂x = arg max
fx

(abs(FFT(sp(τ, η)))) (49)

where abs() is the operation of taking absolute values. This enables the acquisition of the
correct interferometric phase. If the sampling frequency Fs is known, then the number of
sampling points Ns should satisfy the following

Ns >
Fs

ρ fx

(50)

In summary, we can delineate the complete algorithmic processing steps, as illustrated
in the flowchart presented in Figure 5. Furthermore, we can employ both the forward and
reverse cognitive approaches to assess the elevation accuracy. The forward thinking centers
on attaining the necessary parameter accuracy for the algorithmic processing, guided by the
elevation accuracy of an entire scene. This approach proves valuable in an image scheme
design, allowing the establishment of calibration precision aligned with the desired height
accuracy. The reverse cognition involves gauging the achievable elevation accuracy based
on the estimated accuracy of parameters, and it serves as the foundation for the global
height error estimation.

Figure 5. Workflow of the EAFF calibration algorithm. Given the desirable accuracy ρh or ρ∆φ

and swath range L for DEM generation, the parameter can be exact calculated to guide the
EAFF algorithm.

4. The Simulation for EAFF Baseline Calibration Accuracy

Section 3 provides a detailed analysis of the principles, implementation process, and
estimation accuracy analysis of the calibration method based on the fringe frequency estima-
tion. The noise intensity is related to the coherence coefficient, according to (31). Therefore,
we need to simulate different levels of the covered noise to assess whether the estimation ac-
curacy can meet the theoretical requirement. Considering that actual interferometric phase
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images may be significantly affected by the white noise, the simulations introduce a flat
model and incorporates the interference phase noiseThe phase errors consist of EDF caused
by rotation angles and the Gaussian white noise with varying thermal noise intensity. The
simulated parameters are as shown in Table 1.

Table 1. Simulation parameters of FFT-based EDF estimation.

Parameter Symbol Value Unit

Range sampling number N f ast 64 -
Azimuth sampling number Nslow 64 -

Range resolution ρr 0.005 m
Azimuth resolution ρa 0.005 m

Wavelength λ 0.001 m
Radar look angle θ 75 ◦

Radar height H 0.33 m
Baseline length B 0.1 m

Baseline tilted angle α 0 ◦

Height ambiguous ∆h 0.0238 m
Rotation angle accuracy ρθz 0.001 rad

Frequency accuracy ρ fx 1.93 Hz
Up-sampling number Ns 128 -

Figure 6 provides the noisy phase images corresponding to the different coherence
coefficients when θz = 0.0087 rad . Figure 6a is obtained by calculating (41) and (42) without
the white noise. Consistent with the line chart in Figure 4, the conspicuous wrapping fringes
are observed in the azimuth direction, whereas they remain nearly unchanged in the range
direction. Figure 6b–f depict increasing coherence coefficients, leading to the progressively
clearer fringes. The analysis suggests that there is probably a lowest limit for the noise
intensity. It is necessary to simulate the relationship between ρ fx and γ to avoid the situation
where the algorithm is failed because of the white noise.

(a) (b) (c)

(d) (e) (f)

Figure 6. The interferometric fringe formed by θz = 0.0087 rad with different γ. (a) γ = 1. (b) γ = 0.1.
(c) γ = 0.3. (d) γ = 0.5. (e) γ = 0.7. (f) γ = 0.9.



Remote Sens. 2023, 15, 5755 13 of 25

Figure 7 displays the estimation phase errors for three rotational angles, each with
varying coherence coefficients. In general, considering an accuracy of 0.001 rad, the FFT-
based estimation satisfies the requirements for all three rotation angles when γ > 0.3 . The
fringe frequency appears to exert no substantial influence on the estimation accuracy, as
long as the sampling number is compliant. The line chart indicates that the slightly higher
fringe frequency offers an advantage for the estimation. Reference [28] also concluded that
the error estimation of the fringe was irrelevant to its center frequency, by analyzing the
comparison of various estimation methods such as the complex signal phase derivative
(CSPD) and the maximum likelihood (ML).

Figure 7. The result of phase error estimation under varying levels of white noise for three θz.

In addition, the planarity of the surfaces will exert an influence on the rotation angle
accuracy. Referring to (41), targets’ coordinates have an impact on the slant range. By
combining (42) and (43), the relationship between fx and the coordinates is given by

fx =
2
λ

[
y2

xR
(cos θz − 1) +

y
R

sin θz

]
(51)

The partial derivatives of fx with respect to the three coordinates are

∂ fx

∂x
= − 2y2

x2λR
(cos θz − 1) (52)

∂ fx

∂y
=

2
λ

[
2y
xR

(cos θz − 1) +
1
R

sin θz

]
(53)

∂ fx

∂z
= − 2z

λR3

[
y2

x
(cos θz − 1) + y sin θz

]
(54)

Assume that the deviations in the azimuth, range and altitude directions are repre-
sented by dx, dy , and dz, respectively. The frequency shift can be obtained by

∆ fx =
∂ fx

∂x
dx +

∂ fx

∂y
dy +

∂ fx

∂z
dz (55)

Combining with (44), the estimation error of the rotation angle is given by

∆θz =
∂θz

∂ fx
∆ fx =

λR
2y|cos θz|

∆ fx (56)

Figure 8 shows that the trend of first-order sensitivity coefficients. With the increasing
distance, the impacts of distance and height coefficients tend to diminish, while the azimuth
coefficient shows an increasing influence. The numerical analysis reveals that the distance
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coefficient has the most pronounced effect. Advantageously, owing to the system’s ultra-
high resolution, the distance errors are confined to the millimeter scale.

(a) (b)

(c)

Figure 8. The first-order sensitivity coefficients with respect to (a) azimuth, (b) distance, and
(c) altitude.

Set θz = 0.1◦ = 0.0017 rad, dx = 0.005 m, dy = 0.005 m and dz = 0.01 m, so the
deviation of the rotation angle θz is depicted in Figure 9. Compared to θz, the estimation
errors are less than 1% of the true value. Moreover, the errors do not exceed the required
estimation accuracy in general. Results indicate that the EAFF algorithm exhibits a certain
level of robustness.

Figure 9. The trend of ∆θz with the increasing distance.

5. The Experimental Results for Repeat-Pass THz InSAR
5.1. The Introduction of THz-SAR System

For the 300 GHz stepped-frequency (SF) SAR system, the block diagram of the mea-
surement hardware system is shown in Figure 10, which depicts the two multiplier chains
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and IF backend. The signal source generates two signals, namely the radio frequency (RF)
signal and the local oscillator (LO) signal. These signals are divided into two channels using
a power divider individually. The 50 MHz signal, down-mixed at mixer 1 by the RF and IF
signals, is then multiplied by a factor of 18 to obtain a 900 MHz intermediate frequency (IF)
signal. Then, the RF signal and the LO signal are utilized to transmit and receive signal
separately after being multiplied by a factor of 18. The echo is down-mixed at mixer 2 to
create the IF signal carrying the target information, and coherently demodulated with the
900 MHz reference IF signal to obtain the baseband echo, which is finally sampled and
sent to the computer for processing. There have been some studies in THz-SAR imaging
algorithms based on this radar, and the resolutions have achieved the millimeter level due
to the large bandwidth [5,10].

Figure 10. The block diagram of the 300G SF radar.

Figure 11 shows the imaging scene of the 300 GHz stepped-frequency SAR system,
mounted on the track. During an operation, the vehicle’s wheel meticulously controls
pulses emission and reception for the precise and uniform sampling. This approach
alleviates the issue of the non-uniform sampling during the signal acquisition process,
leading to the enhanced quality of SAR imagery. The main parameters of the THz-SAR
system are presented in Table 2.

Figure 11. Optical photo of the THz-SAR system and imaging scenery.



Remote Sens. 2023, 15, 5755 16 of 25

Table 2. 300 GHz radar experimental parameters.

Parameters Value Unit

Center frequency 300 GHz
Bandwidth 28.8 GHz

range solution 5.2 mm
Number of frequency steps 1601

Frequency step 18 MHz
Azimuth beam width 6.5 (◦)

Azimuth sampling rate 412.8 Hz
Transmitting power 0.5 mW

5.2. The Experiment of the Knife Model

Initially, we should provide a detailed description of the experimental procedure. As
Figure 12 shows, a mobile target approach was used to construct the baseline. Implementing
repeat-pass interferometry with the radar mounted on a cart necessitates changing the
relative distance between the targets and the radar. However, moving the radar in the
cross-track direction to form a baseline poses significant challenges and undermines the
precise control of a path. In practice, for laboratory targets, the relative distance can be
altered by moving the scene. Therefore, using a fixed 1 mm precision ruler on the ground to
calibrate the relative positions, the baseline could be constructed by positioning the scene
at different locations. The received radar echoes are analogous to those collected from
two distinct tracks, and the baseline error remains within an acceptable range.

After describing the way of acquiring the data of repeat-pass THz InSAR, the elevation
of the experimental scene has been depicted in the following paragraph. Figure 12 illustrates
the imaging scenario of the model knife. The calibration plane was fixed together with
the model to facilitate mobility and maintain their relative positions. There is a noticeable
height variation on the knife surface from the tip to the handle. At the back of the knife, the
absolute height ranges from 1.4 cm to 1.8 cm, with a variation of 4 mm. At the blade, the
absolute height ranges from 0.1 cm to 1.5 cm, with a variation of 1.4 cm. There is a sharp
height transition at the handle, with a height difference of 5 mm at the back and 1 cm at
the blade. By the way, the actual experiment was carried in a tilted plane to eliminate the
strong reflection toward the radar, but the tilted angle was relatively small and did not
make an impact on elevation estimation.

Figure 12. Optical photo of the imaging scenery of knife model. The baseline is constructed by scene
transition.

We set B = 0.3 m and α = 0◦ for the baseline configuration. The interferogram of the
knife model is depicted in Figure 13. It exhibits three prominent reflections, attributed to
the corner reflectors characterized by significantly high scattering coefficients. The dB map
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values for the blade portion are notably small, with the whole amplitude scale set from
−180 to 0 dB, as shown in Figure 13a. Figure 13b presents the corresponding differential
phase, displaying the distinct interference phase fringes on the calibration board, albeit
with some minor noise. These fringes represent the rate of phase changes and manifest as
an oblique pattern in the range and azimuth directions, signifying phase variations in both
directions. The presence of fringes in the range direction is attributable to the interference
effects of the electromagnetic waves and variations in the terrain height on the inclined
surface, introducing the non-zero terrain phase. The fringes should not appear in the
azimuth direction in the absence of variations. However, as analyzed in Section 3, EDF
emerges in the azimuth direction as the radar follows a trajectory with a bias θz.

(a) (b)

(c) (d)

Figure 13. The interferogram of the knife model. (a) The interferogram magnitude. (b) The raw
interferometric phase. (c) The interferometric phase calibrated by EAFF algorithm. (d) The filtered
phase processed by circular filtering. The range encompassed by the white dashed line in the image
corresponds to the location of the target.

In order to generate the DEM, the terrain phase needs to be obtained from the differ-
ential phase map. Figure 14 shows the frequency spectrum of the error phase fringe. The
zero-padding is used and the oversampling number is increased to 4096 in order to improve
the angle accuracy estimation. The azimuth frequency calculated by the FFT is −0.056 Hz,
so one can obtain θz = −0.3836◦, according to (44) in this experiment. Figure 13c shows
the terrain phase after removing the flat Earth phase and the calibration. Even if the angle
deviation is smaller than −0.4◦, there are the significant phase and elevation errors in
the azimuth direction. This highlights the necessity of the baseline calibration algorithms.
After the calibration using our EAFF algorithm, the phase fringes on the plane are clear,
continuously decreasing, and exhibit the phase wrapping which corresponds to a gradual
increase in height. Due to the severe noise interference, it is difficult for the human eye to
discern the phase distribution in the knife section.



Remote Sens. 2023, 15, 5755 18 of 25

To obtain smooth 3D imaging, it is necessary to implement the phase filter. The classic
circular mean filtering [29] is used, which has strong filtering capabilities and has been
widely utilized. So we always employ the circular mean filter in our study for its robustness.
ϕ and ϕ̂ represent the raw and filtered data, respectively. The output of the filtering is

ϕ̂(p, q) = meanm,n{arg[exp[j
ϕ(m, n)
d(m, n)

]]}+ arg[d(m, n)] (57)

d(m, n) =
p+M

∑
m=p−M

q+N

∑
n=q−N

exp[iϕ(m, n)] (58)

where (p, q) is the position of a center pixel, and (m, n) expresses the pixel position of a
circular mean filter window. d(m, n) represents the average of ϕ(m, n) in an M ∗ N window
centered at (p, q). The window sizes are chosen according to multiples of the resolutions
greater than 1. Considering the azimuth oversampling of the radar, the azimuthal window
size is 15 pixels and the range is 3 pixels. After filtering, the low frequency part of the
interferometric phase is well extracted. As Figure 13d shows, the filtering significantly
reduces residual points, and the filtered phase is more suitable for the subsequent phase
unwrapping and height extraction processes.

Figure 14. The frequency spectrum of phase fringe on calibration plane.

Finally, the 3D images processed in three ways are shown in Figure 15. As Figure 15a
shows, 3D reconstruction of the knife model can be barely identified without calibration.
The details of the height distribution on the target become even more difficult to discern.
Figure 15b illustrates the imaging outcomes following the calibration using the GCPs. The
calibration process involved ten iterations, and the estimation result is B = 0.2987 m. It is
evident that the millimeter-level error falls short of the generation of the high-precision
DEM. On the contrary, as shown in Figure 15c, from a overall perspective, there is a clear
upward trend in height on the blade surface, with smooth height variations, allowing for
a crisp depiction of the 3D shape of the entire model. Along the azimuth direction, the
height change at the blade tip is 1.8 cm, while at the handle protrusion is 1.5 cm. Similarly,
at the back of the knife, the measured height change is 8 mm, and at the handle protrusion
it is 1.3 cm, consistent with the millimeter-scale precision. Due to the inclination of the
scene, the radar is more capable of detecting, bringing about the high-quality data at the
handle position and thus enhancing the 3D contour of the object. As THz InSAR provides
a elevation accuracy at the millimeter level, a highly distinct three-dimensional structure is
observed at the handle position, demonstrating the ability of THz InSAR to achieve higher
precision in three-dimensional imaging.
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5.3. The Experiment of the Terrain Model

Previously, 3D reconstruction was carried out using the relatively simple knife model.
The results indicate that the proposed EAFF algorithm significantly improves the DEM
accuracy. Considering the lower richness of three-dimensional information of the knife
model, the terrain model is built to validate the high-precision elevation accuracy of InSAR
in the THz band. Also, the data acquisition process remains consistent with the procedure
mentioned earlier.

A terrain undulating scenario is constructed, as shown in Figure 16. This scenario
consists of two main parts: the terrain area and the calibration area. The calibration area
is composed of the flat terrain and corner reflectors, which are utilized for the different
calibration methods. The baseline calibration algorithm based on the GCPs is employed for
the comparison with our EAFF algorithm. The terrain area comprises Area 1 and Area 2,
both exhibiting undulating topography. Area 1 has a maximum height of 3 cm and covers
an area of 0.3 × 0.2 m2, while Area 2 reaches a maximum height of 4 cm and spans an area
of 0.2 × 0.2 m2, with steeper undulations compared to Area 1.

(a) (b)

(c)

Figure 15. Three-dimensional reconstruction of the knife model (a) without calibrating, (b) calibrated
based on GCPs, and (c) with calibrating by the EAFF algorithm. High-intensity points in the
interferogram are selected as valid data for three-dimensional visualization. Different colors represent
different heights, allowing for clear visualization of the object’s structure and height variations.
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Figure 16. Optical photo of the imaging scenery of terrain model.

Taking into account the requirements for the height sensitivity and registration, we
set B = 0.09 m and α = 0◦. Figure 17 illustrates the interferometric processing steps. In
Figure 17a, the interferometric amplitude image shows that the azimuthal range extends
from 0.2 to 0.58 m, and the range in distance spans from 1.35 to 1.6 m, with a dynamic dB
range from −10 to 0 dB. The regions below −10 dB are regarded as no target, likely due to
the energy obstruction by the foreground terrain. The five positions with stronger reflections
are also the corner reflectors, which are used for the baseline calibration the GCPs.

(a) (b)

(c) (d)

Figure 17. The interferogram of the terrain model. (a) The interferogram magnitude. (b) The raw
interferometric phase. (c) The interferometric phase calibrated by EAFF algorithm. (d) The filtered
phase processed by circular filtering.

Figure 18 shows the frequency spectrum of the error phase fringe in the terrain model
experiment. The processing is consistent with the knife experiment. The azimuth frequency



Remote Sens. 2023, 15, 5755 21 of 25

calculated by the FFT is −0.045 Hz, so one can obtain θz = −0.02◦, according to (44).
The rather small angle results in millimeter elevation errors throughout the entire image.
Figure 17b,c represent the interferometric phase images before and after the calibration in
order. It can be observed that, after the compensation, the phase errors in different azimuth
directions are reduced. Figure 17d shows the filtering phase, and the stronger noise has
been eliminated. However, the comparison between the two terrain areas reveals that the
circular filtering is less effective in situations with dense fringes. Preserving the continuity
of phase edges is a crucial study for the phase filtering of THz InSAR in the future.

Figure 18. The frequency spectrum of phase fringe of the terrain model experiment.

Figure 19 illustrates the outcomes produced by three distinct operations. The four spe-
cific points with the same 2D ordinates are labeled for the detailed analysis of the three
processes. As Figure 19a shows, without calibration, a discernible three-dimensional con-
tour is still evident. The reason is that the angle error is relatively small compared to the
knife experiment. The maximum absolute elevation of Area 1 is 0.0298 m, and that of
Area 2 is 0.0462 m. The elevation disparity between the two mountain-like features is
calculated by 0.0462 − 0.0298 = 0.0164 m, which includes a 0.0064 m deviation from the
true value. Following the baseline calibration with the GCPs, Figure 19b shows that the
elevation deviates even further from the actual values. The height difference between the
highest points of two areas shrinks to 0.0027 m. The elevation discrepancy is accentuated
by varying errors in the radar sampling path, and the baseline accuracy calibrated based
on the GCPs is insufficient. Figure 19c showcases the result obtained through the proposed
EAFF algorithm. The elevation variation between the two features has been reduced to
0.0558 − 0.0447 = 0.0111 m, so the elevation bias has been decreased to 0.0011 m by cali-
brating with the EAFF algorithm. The experiment indicates its effectiveness in reducing
relative errors within a certain scene.

(a) (b)

Figure 19. Cont.
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(c)

Figure 19. Three-dimensional reconstruction of the knife model, (a) without calibrating, (b) calibrated
based on GCPs, and (c) with calibrating by the EAFF algorithm. Different colors represent different
heights, allowing for clear visualization of the object’s structure and height variations.

6. Conclusions

In our study, we introduce InSAR imaging technology to the terahertz band, and
propose the EAFF method for the high-precision baseline calibration for THz InSAR. Firstly,
based on the scale-down imaging geometry, we conducted a comprehensive theoretical
analysis of principles, coherence, and elevation accuracy of high-precision THz InSAR
imaging. Secondly, according to the required elevation precision for THz InSAR, we
proposed the EAFF method for the high accuracy baseline calibration to obtain the high-
precision DEM in THz InSAR. Initially, we formulated the model to account for the non-
parallel sampling path errors in repeat-pass THz InSAR, and conducted the theoretical
analysis of the phase errors induced by the non-parallel errors. To further this analysis,
we leveraged a reference DEM to establish a connection between the azimuth fringe
frequency of EDF and the repeat-path angle bias. By transforming the position error into
the frequency spectrum estimation, the influence of unknown SAR sampling positions was
mitigated. In accordance with the desirable elevation accuracy, the estimation accuracy
of frequency spectrum, a rotation angle, and a baseline could be calculated exactly. The
simulations at varying noise levels showed that the EAFF method based on the FFT
can achieve the theoretical accuracy when γ > 0.3, and this is easily satisfied in most
baseline configurations. In the end, we configured repeat-pass THz InSAR system with
the 300 GHz stepped-frequency radar. The application of our EAFF calibration method
significantly enhanced the DEM accuracy for both the knife and terrain models. These
results demonstrate that the EAFF baseline calibration method is well suited for THz InSAR
and significantly contributes to obtaining high-precision interferograms, thereby advancing
further research in the field of high-precision THz InSAR imaging.

By means of the high accuracy of THz SAR, the exploration of InSAR in the THz
band is of great value to the short-range three-dimensional imaging. For example, the
high-precision detailed map of surroundings will improve the ability of smart cars for
the higher spatial sensing and navigation. However, in the context of phase filtering and
unwrapping algorithms, the substantiation in both theory and experiments of THz InSAR
is imperative to enhance the precision of the phase retrieval in THz InSAR interferograms.
Moreover, the condition of our study is that a signal phase and a target range exhibit a
linear relationship. The mathematical model for remote sensing in the terahertz band needs
to be deeply studied in the future.
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Appendix A

In order to convert (3) into standard form of the cubic equation, make

x = δθ, a = 1, b = tan(θ − α), c = −6, d = − 6ϕh
kB cos(θ − α)

To solve a cubic equation, it is necessary to introduce a variable and transform the
cubic equation into a quadratic equation, then let

x = z − b
3

, p = c − b2

3
, q =

2b3

27
− bc

3
+ d

where
p = 36 − 3 tan(θ − α)

q = 2tan2(θ − α) + 6 tan(θ − α) +
6φunwrap

kB cos(θ − α)

and get the equation z3 + pz + q = 0. Then, substitute z = u + v to cubic equation of z
to gain

u3 + v3 = −q, u3v3 = − p3

27
then the quadratic equation in terms of X is given by

X2 + qX − p3

27
= 0, p, q ∈ R

where U = u3 and V = v3 are two complex roots.
Through computation, it is often found that the discriminant

∆ = q2 +
4p3

27

is less than 0, indicating that the equation has three complex roots, which share the
same expression

zk = 2
√
− p

3
cos

(
θ + 2kπ

3

)
∈ R

θk =
1
3

arccos(
3q
2p

√
− 3

p
)− 2kπ

3
, k = 0, 1, 2.
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