Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = tension leg mooring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 8662 KiB  
Article
Comparative Analysis of Catenary and TLP Mooring Systems on the Wave Power Efficiency for a Dual-Chamber OWC Wave Energy Converter
by Dimitrios N. Konispoliatis and Anargyros S. Mavrakos
Energies 2025, 18(6), 1473; https://doi.org/10.3390/en18061473 - 17 Mar 2025
Cited by 1 | Viewed by 426
Abstract
The primary challenge in the design of offshore oscillating water column (OWC) devices lies in maintaining structural integrity throughout their operational lifespan while functioning in challenging environmental conditions. Simultaneously, it is vital for these devices to demonstrate efficiency in wave power absorption across [...] Read more.
The primary challenge in the design of offshore oscillating water column (OWC) devices lies in maintaining structural integrity throughout their operational lifespan while functioning in challenging environmental conditions. Simultaneously, it is vital for these devices to demonstrate efficiency in wave power absorption across a range of environmental scenarios pertinent to the selected installation site. The present manuscript seeks to compare two distinct mooring types for a dual-chamber OWC device to enhance its wave power efficiency. To accomplish this objective, an analysis of wave power absorption efficiency will be conducted on both a catenary mooring system and a tension-leg platform (TLP) mooring arrangement, thereby identifying the most suitable configuration. The study elucidates how OWC mooring characteristics influence wave power absorption efficiency. While the catenary mooring system exhibits two distinct resonant wave frequencies, resulting in enhanced wave power absorption at those frequencies, the TLP mooring system demonstrates superior overall wave power absorption efficiency across a broader range of wave frequencies, thus showcasing its greater potential for wave energy conversion under diverse environmental conditions. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

20 pages, 5542 KiB  
Article
Assessment of Hydrodynamic Performance and Motion Suppression of Tension Leg Floating Platform Based on Tuned Liquid Multi-Column Damper
by Fuyin Cui, Shuling Chen, Hongbin Hao, Changzhi Han, Ruidong Ni and Yueyue Zhuo
J. Mar. Sci. Eng. 2024, 12(2), 328; https://doi.org/10.3390/jmse12020328 - 14 Feb 2024
Viewed by 1514
Abstract
To address the unstable motion of a tension leg platform (TLP) for floating wind turbines in various sea conditions, an improved method of incorporating a tuned liquid multi-column damper (TLMCD) into the TLP foundation is proposed. In order to evaluate the control effect [...] Read more.
To address the unstable motion of a tension leg platform (TLP) for floating wind turbines in various sea conditions, an improved method of incorporating a tuned liquid multi-column damper (TLMCD) into the TLP foundation is proposed. In order to evaluate the control effect of TLMCD on the motion response of the floating foundation, a multiphase flow solver based on a viscous flow CFD method and overlapping grid technique is applied to model the coupled multi-body dynamics interaction problem involving liquid tanks, waves, and a spring mooring system. This method has been proven to accurately capture the high-frequency motions of the structure and account for complex viscous interferences affecting the geometric motions. Additionally, the volume of fluid (VOF) method and the first-order linear superposition method are used to model the focused wave, enabling a simulation of the effects of transient wave loads on the floating foundation. The results show that the tuned damping effect of TLMCD on the TLP is mainly in the pitch motion, with the maximum pitch amplitude control volume ratio of TLMCD reaching up to 86% and the maximum surge amplitude control volume ratio of TLMCD reaching up to 25.2% under the operating conditions. These findings highlight the potential for additional research on and implementation of TLMCD technology. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 9235 KiB  
Article
Design of Experiments Technique Applied to Artificial Neural Network Models for FPSO Mooring System Analysis
by Ehsan Nikkhah, Antonio Carlos Fernandes and Jean-David Caprace
J. Mar. Sci. Eng. 2023, 11(11), 2194; https://doi.org/10.3390/jmse11112194 - 17 Nov 2023
Cited by 2 | Viewed by 2521
Abstract
Online monitoring of mooring system response for the FPSO platform in any operational condition is so far challenging for machine learning (ML). This paper presents a new dynamic NARX ANN model for time series of mooring tension and a static MLP model for [...] Read more.
Online monitoring of mooring system response for the FPSO platform in any operational condition is so far challenging for machine learning (ML). This paper presents a new dynamic NARX ANN model for time series of mooring tension and a static MLP model for the offset chart prediction of a taut-leg moored FPSO with different working scenarios. A novel method for supervised feature selection of the dataset was applied to determine the most influential design features. Additionally, a design of experiments (DOE) technique was implemented for test matrix creation, simulation, database generation, and supervised selection characteristics in ML. The DOE analysis revealed that the mooring configuration, platform loading condition, and environmental loads alter the platform’s six-degree-of-freedom motion response patterns. These input data were used to predict the mooring tension and the offset chart of the floater. The results include the fair values of statistical error for mooring tension (R2 = 0.8–0.98, E ≈ 1.3–5.7%, RMSE ≈ 6–66 kN) and platform offset (E ≈ 0.1–1 m) prediction when testing the trained models with unseen data representing new operational conditions. Faster convergence can be achieved by adding non-numeric (string) input values to dataset numeric features. Supervised feature selection of the dataset is a step forward in ML to improve prediction accuracy. Full article
Show Figures

Figure 1

32 pages, 12862 KiB  
Article
Responses of a Modular Floating Wind TLP of MarsVAWT Supporting a 10 MW Vertical Axis Wind Turbine
by Sung Youn Boo, Steffen Allan Shelley, D. Todd Griffith and Alejandra S. Escalera Mendoza
Wind 2023, 3(4), 513-544; https://doi.org/10.3390/wind3040029 - 6 Nov 2023
Cited by 5 | Viewed by 2726
Abstract
Offshore floating wind foundations supporting a large wind turbine require a large yard facility or significant facility upgrades for their fabrication. To overcome the cost increase associated with facility upgrades, an innovative lightweight modular floating foundation is developed. The foundation comprises multiple modules [...] Read more.
Offshore floating wind foundations supporting a large wind turbine require a large yard facility or significant facility upgrades for their fabrication. To overcome the cost increase associated with facility upgrades, an innovative lightweight modular floating foundation is developed. The foundation comprises multiple modules to enable their assembly on water, offering many benefits and expanding fabrication options for a reduction in the overall cost of the platform. In this paper, the foundation modules and their assembly are briefly described, and an analysis of the platform’s dynamic responses is presented. The modular foundation includes a modular and lightweight tension leg platform (TLP) called “MarsVAWT” which supports a Darrieus 10 MW vertical axis wind turbine (VAWT). The platform is moored with highly pretensioned wire rope tendons. The responses of the platform are analyzed in the time domain in a semi-coupled manner under the turbine operating and parked conditions for an offshore site in the US Northeast. The tower base shear forces and bending moments increase considerably with the combination of wind and waves, compared to those with wind only. The tendon tensions on the weatherside in the operating condition at high wind speeds are comparable to the values of the 50-year extreme (parked). The tendon tension increases are highly correlated to the platform pitch, as well as the horizontal and vertical velocities and vertical acceleration at the tendon porch. The modular platform performances and tendon designs are confirmed to comply with industry standards and practices. Full article
(This article belongs to the Special Issue Floating Wind Energy Advances)
Show Figures

Figure 1

12 pages, 5473 KiB  
Article
Experimental Study on Vortex-Induced Vibration of Tension Leg and Riser for Full Depth Mooring Tension Leg Platform
by Weiwei Zhou, Menglan Duan, Rongqi Chen, Huixian Qiu, Huiming Li, Shisheng Wang and Yi Wang
J. Mar. Sci. Eng. 2023, 11(1), 180; https://doi.org/10.3390/jmse11010180 - 11 Jan 2023
Cited by 2 | Viewed by 1936
Abstract
According to the geometric parameters of the tension leg platform, the test model was made with a scale ratio of 1:61. The model was used to conduct the full-depth simulation test of uniform flow and wave current combination in the test pool. The [...] Read more.
According to the geometric parameters of the tension leg platform, the test model was made with a scale ratio of 1:61. The model was used to conduct the full-depth simulation test of uniform flow and wave current combination in the test pool. The model test results showed that when the reduced speed was between 5.5 and 8.5, and the lateral motion response of the platform was the most significant. In the interval of the reduced speed, the response frequency of transverse vortex-induced motion was close to the natural transverse frequency of the platform, and resonance occurred. The amplitude of surge motion increased with the increase of reduced speed. Due to the pull of the floating body, the tension of tension legs and risers increased with the flow rate but did not increase significantly in the floating body lock zone. The mooring tension had a certain limiting effect on the floating body sway. The displacement modes of tension legs and risers were greatly affected by the flow velocity. With the flow velocity increasing, the mode order increased. In addition, the increase in tension caused by the large displacement of the floating body had a certain impact on the displacement amplitude. The wave could reduce the sway of the floating body and strengthen the surge. Therefore, under the combined action of wave and current, the tension amplitude of the tension leg and riser was increased compared with that under the uniform flow. The conclusions obtained in this paper could be used for reference in the engineering design of tension legs and risers. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 7630 KiB  
Article
Experimental Analysis of CENTEC-TLP Self-Stable Platform with a 10 MW Turbine
by Mohamad Hmedi, Emre Uzunoglu, Antonio Medina-Manuel, Jordi Mas-Soler, Felipe Vittori, Oscar Pires, José Azcona, Antonio Souto-Iglesias and C. Guedes Soares
J. Mar. Sci. Eng. 2022, 10(12), 1910; https://doi.org/10.3390/jmse10121910 - 5 Dec 2022
Cited by 11 | Viewed by 3496
Abstract
This work evaluates the experimental test results regarding the operational performance of a free-float capable tension leg platform with a 10 MW wind turbine. It covers the platform dynamics in the selected installation area: Ribadeo, Spain. The model and the facility are initially [...] Read more.
This work evaluates the experimental test results regarding the operational performance of a free-float capable tension leg platform with a 10 MW wind turbine. It covers the platform dynamics in the selected installation area: Ribadeo, Spain. The model and the facility are initially presented, along with the experimental setup and the load cases. The testing campaign includes a software-in-the-loop method to emulate the rotor thrust and the aerodynamic and gyroscopic moments in pitch and yaw. The result sets are structured to start from basic information from system identification cases and continue with responses against regular and irregular waves accompanied by steady and stochastic wind scenarios. The performance in operational and extreme conditions is assessed as well as fault scenarios. The experiments demonstrate auspicious motion dynamics and mooring line behavior when examined against class society rules. Full article
(This article belongs to the Special Issue Offshore Wind Energy)
Show Figures

Figure 1

18 pages, 4110 KiB  
Article
Hydrodynamic Analysis of a Novel Modular Floating Structure System Integrated with Floating Artificial Reefs and Wave Energy Converters
by Yanwei Li, Nianxin Ren, Xiang Li and Jinping Ou
J. Mar. Sci. Eng. 2022, 10(8), 1091; https://doi.org/10.3390/jmse10081091 - 9 Aug 2022
Cited by 16 | Viewed by 3736
Abstract
A novel modular floating structure (MFS) system moored by tension legs was proposed, which is composed of hexagonal floating modules, floating artificial reefs and wave energy converters (WECs). The integration of floating artificial reefs and WECs into the MFS can improve the marine [...] Read more.
A novel modular floating structure (MFS) system moored by tension legs was proposed, which is composed of hexagonal floating modules, floating artificial reefs and wave energy converters (WECs). The integration of floating artificial reefs and WECs into the MFS can improve the marine environment and produce considerable electricity. The effects of both wave characteristics and the module quantity on the hydrodynamic responses of the MFS system were studied in depth, based on a time-domain numerical model. Both the modules’ hydrodynamic interaction effect and the connectors’ mechanical coupling effect were considered. The results indicate that floating artificial reefs combined with WECs can effectively reduce wave loads and convert wave energy into electricity for the MFS system. More modules involved in the MFS system could significantly reduce motion response and produced more wave energy output, which indicates that the MFS system is suitable for large-scale expansion. The effect of different power take-off (PTO) damping coefficients on the WECs’ performance was further investigated, and the optimal damping coefficient was recommended for the MFS system. Finally, the main extreme responses of the MFS system were further investigated, and its safety was checked thoroughly. One survival strategy was proposed, which could efficiently reduce extreme connector loads by more than 50%. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

23 pages, 4133 KiB  
Article
Numerical Assessment of a Tension-Leg Platform Wind Turbine in Intermediate Water Using the Smoothed Particle Hydrodynamics Method
by Bonaventura Tagliafierro, Madjid Karimirad, Iván Martínez-Estévez, José M. Domínguez, Giacomo Viccione and Alejandro J. C. Crespo
Energies 2022, 15(11), 3993; https://doi.org/10.3390/en15113993 - 28 May 2022
Cited by 26 | Viewed by 4937
Abstract
The open-source code DualSPHysics, based on the Smoothed Particle Hydrodynamics method for solving fluid mechanics problems, defines a complete numerical environment for simulating the interaction of floating structures with ocean waves, and includes external libraries to simulate kinematic- and dynamic-type restrictions. In this [...] Read more.
The open-source code DualSPHysics, based on the Smoothed Particle Hydrodynamics method for solving fluid mechanics problems, defines a complete numerical environment for simulating the interaction of floating structures with ocean waves, and includes external libraries to simulate kinematic- and dynamic-type restrictions. In this work, a full validation of the SPH framework using experimental data available for an experimental test campaign on a 1:37-scale floating offshore wind turbine tension-leg platform (TLP) is presented. The first set of validation cases includes a surge decay test, to assess the quality of the fluid–solid interaction, and regular wave tests, which stimulate the mooring system to a large extent. During this phase, tendons (tension legs) that are simulated by MoorDyn+ are validated. Spectral comparison shows that the model is able to capture the surge and pitch dynamic amplification that occurs around the resonant fundamental mode of vibration. This work concludes with a numerical investigation that estimates the response of TLP under extreme events defined using multiple realizations of irregular sea states; the results suggest that the tendon loads are sensitive to the sea-state realization, providing maximum tendon peak forces in a range of ±10% about the mean. Furthermore, it is shown that the load pattern that forms from considering the relative position of the tendons to the incident wave direction leads to higher forces (≈20%). Full article
Show Figures

Figure 1

16 pages, 21388 KiB  
Article
Investigation on a Large-Scale Braceless-TLP Floating Offshore Wind Turbine at Intermediate Water Depth
by Yiming Zhou, Yajun Ren, Wei Shi and Xin Li
J. Mar. Sci. Eng. 2022, 10(2), 302; https://doi.org/10.3390/jmse10020302 - 21 Feb 2022
Cited by 5 | Viewed by 5782
Abstract
Tension leg platform (TLP) is a cost-effective and high-performance support structure for floating offshore wind turbine (FOWT) because of its small responses in heave, pitch, and roll with the constraint of the tendons. China, as the largest market of offshore wind energy, has [...] Read more.
Tension leg platform (TLP) is a cost-effective and high-performance support structure for floating offshore wind turbine (FOWT) because of its small responses in heave, pitch, and roll with the constraint of the tendons. China, as the largest market of offshore wind energy, has shown a demand for developing reliable, viable floating platform support structures, especially aiming at the intermediate water depth. The present paper described a newly proposed 10-MW Braceless-TLP FOWT designed for a moderate water depth of 60 m. The numerical simulations of the FOWT are carried out using the coupled aero-hydro-servo-elastic-mooring calculation tool FAST. The measured wind and wave data of the target site close to the Fujian Province of China were used to evaluate the performance of the FOWT under the 100-, 50-, 5-, and 2-year-return stochastic weather conditions. The natural periods of the platform in surge, sway, heave, pitch, roll, and yaw were found to be within the range recommended by the design standard DNV-RP-0286 Coupled Analysis of Floating Wind Turbines. The largest surge of the water depth ratio among all the load cases was 15%, which was smaller than the admissible ratio of 23%. The tower top displacements remained between −1 m and 1 m, which were at a similar order to those of a 10-MW monopile-supported offshore wind turbine. The six tendons remained tensioned during the simulation, even under the operational and extreme (parked) environmental conditions. The Braceless-TLP FOWT showed an overall satisfying performance in terms of the structural stability and illustrates the feasibility of this type of FOWT at such a moderate water depth. Full article
(This article belongs to the Special Issue Offshore Wind Turbine Foundations)
Show Figures

Figure 1

18 pages, 5251 KiB  
Article
Fatigue Analysis of the Oil Offloading Lines in FPSO System under Wave and Current Loads
by Xu Zhang, Wenchi Ni and Liping Sun
J. Mar. Sci. Eng. 2022, 10(2), 225; https://doi.org/10.3390/jmse10020225 - 8 Feb 2022
Cited by 17 | Viewed by 2531
Abstract
In this paper, fatigue analysis of oil offloading lines (OOLs) in the floating production storage and offloading (FPSO) catenary anchor leg mooring (CALM) buoy offloading system under wave and current loads in the West Africa Sea area is carried out by the numerical [...] Read more.
In this paper, fatigue analysis of oil offloading lines (OOLs) in the floating production storage and offloading (FPSO) catenary anchor leg mooring (CALM) buoy offloading system under wave and current loads in the West Africa Sea area is carried out by the numerical simulation method. The hydrodynamic coupling response is calculated, and fatigue damage is analyzed. Firstly, the numerical model is verified by comparison with the experimental results. Then, according to the environmental statistics in West Africa, the influence of various parameters on the fatigue damage of OOLs is analyzed, including tension characteristics, wave parameters, and structural parameters. Additionally, the effect of current load is studied. Results show that accumulated fatigue damage mainly occurs near the CALM buoy and is mainly caused by the 0° wind wave. Appropriately reducing the cover length of buoyancy material and increasing the wall thickness can reduce fatigue damage. Moreover, the effect of the shuttle tanker can increase the fatigue damage of the OOL near the CALM buoy by about 1.5 times, and the effect of vortex-induced vibration can increase the fatigue damage of the OOL in the middle part by up to 5–10 times. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

48 pages, 14945 KiB  
Article
Numerical Assessment on the Dynamic Behaviour of Submarine Hoses Attached to CALM Buoy Configured as Lazy-S under Water Waves
by Chiemela Victor Amaechi, Facheng Wang and Jianqiao Ye
J. Mar. Sci. Eng. 2021, 9(10), 1130; https://doi.org/10.3390/jmse9101130 - 15 Oct 2021
Cited by 24 | Viewed by 5001
Abstract
Recent design challenges in ocean observations, energy storage, offloading/discharging, and loading operations in both the offshore-renewable industry have led to advances in the application of catenary anchor leg moorings (CALM) buoys. Due to different seabed profiles, soil stiffness and environmental conditions, there is [...] Read more.
Recent design challenges in ocean observations, energy storage, offloading/discharging, and loading operations in both the offshore-renewable industry have led to advances in the application of catenary anchor leg moorings (CALM) buoys. Due to different seabed profiles, soil stiffness and environmental conditions, there is the need for numerical assessment to investigate the behaviour of the submarine hoses, based on the structural and hydrodynamic behaviour. In this study, experimental and numerical investigations are carried out on the dynamic behaviour of the submarine hoses attached to a CALM buoy in Lazy-S configuration. Six mooring lines are attached to the CALM buoy with a water depth of 100 m in the numerical model. A hydrodynamic model utilising ANSYS AQWA was developed then coupled unto the dynamic model in Orcina’s Orcaflex. The studies were carried out to study the effect of flow angles, wave height, soil stiffness and hydrodynamic loads on the structural behaviour of the submarine hoses. Waves at different angles to the submarine hose affected the effective tension more where the hose bends due to the floats attached. Parametric studies were carried out on both linear and nonlinear seabed models, and recommendations were made from the investigations on the submarine hose models. Full article
(This article belongs to the Special Issue Novel Techno-Economic Solutions for Offshore Renewable Energy Systems)
Show Figures

Graphical abstract

28 pages, 7977 KiB  
Article
REFOS: A Renewable Energy Multi-Purpose Floating Offshore System
by Dimitrios N. Konispoliatis, Georgios M. Katsaounis, Dimitrios I. Manolas, Takvor H. Soukissian, Stylianos Polyzos, Thomas P. Mazarakos, Spyros G. Voutsinas and Spyridon A. Mavrakos
Energies 2021, 14(11), 3126; https://doi.org/10.3390/en14113126 - 27 May 2021
Cited by 25 | Viewed by 3631
Abstract
The present paper deals with the development of a multi-purpose floating tension leg platform (TLP) concept suitable for the combined offshore wind and wave energy resources exploitation, taking into account the prevailing environmental conditions at selected locations along the European coastline. The examined [...] Read more.
The present paper deals with the development of a multi-purpose floating tension leg platform (TLP) concept suitable for the combined offshore wind and wave energy resources exploitation, taking into account the prevailing environmental conditions at selected locations along the European coastline. The examined Renewable Energy Multi-Purpose Floating Offshore System (REFOS) platform encompasses an array of hydrodynamically interacting oscillating water column (OWC) devices, moored through tensioned tethers as a TLP platform supporting a 10 MW wind turbine (WT). The system consists of a triangular platform supported by cylindrical floaters, with the WT mounted at the deck’s center and the cylindrical OWC devices at its corners. Details of the modelling of the system are discussed and hydro-aero-elastic coupling between the floater; the mooring system; and the WT is presented. The analysis incorporates the solutions of the diffraction; the motion- and the pressure-dependent radiation problems around the moored structure, along with the aerodynamics of the WT into an integrated design approach validated through extensive experimental hydrodynamic scaled-down model tests. The verified theoretical results attest to the importance of the WT loading and the OWC characteristics on the dynamics of the system. Full article
Show Figures

Figure 1

24 pages, 5171 KiB  
Article
On the Development of an Offshore Version of the CECO Wave Energy Converter
by Gianmaria Giannini, Paulo Rosa-Santos, Victor Ramos and Francisco Taveira-Pinto
Energies 2020, 13(5), 1036; https://doi.org/10.3390/en13051036 - 26 Feb 2020
Cited by 20 | Viewed by 3475
Abstract
Offshore locations present significant amounts of wave energy and free sea space, which could facilitate the deployment of larger numbers of wave energy converters (WECs) in comparison with nearshore regions. The present study aims to find a suitable design for an offshore floating [...] Read more.
Offshore locations present significant amounts of wave energy and free sea space, which could facilitate the deployment of larger numbers of wave energy converters (WECs) in comparison with nearshore regions. The present study aims to find a suitable design for an offshore floating version of CECO, a sloped motion WEC. For this purpose, a new design methodology is proposed in this paper for identifying and assessing possible floating configurations of CECO, which consists of four distinct set-ups obtained by varying the type of main supporting structure and the mooring system. Two options are based on spar designs and the other two on tension leg platform (TLP) designs. Based on outcomes of time-domain numerical calculations, the aforementioned configurations were assessed in terms of annual wave energy conversion and magnitude of mooring loads. Results indicate that a TLP configuration with an innovative mooring solution could increase the annual energy production by 40% with respect to the fixed version of CECO. Besides, the mooring system is found to be a key component, influencing the overall system performance. Full article
(This article belongs to the Special Issue Wave and Tidal Energy 2020)
Show Figures

Graphical abstract

17 pages, 3444 KiB  
Article
A Comprehensive Study on the Serbuoys Offshore Wind Tension Leg Platform Coupling Dynamic Response under Typical Operational Conditions
by Zhe Ma, Nianxin Ren, Yin Wang, Shaoxiong Wang, Wei Shi and Gangjun Zhai
Energies 2019, 12(11), 2067; https://doi.org/10.3390/en12112067 - 30 May 2019
Cited by 9 | Viewed by 3519
Abstract
A new type of offshore wind tension leg platform (TLP) connected with a series of buoys (Serbuoys-TLP) is proposed. With the consideration of coupling effect, derivations on the stiffness of the Serbuoys-TLP mooring lines are given. The complicated coupling motion characteristics of the [...] Read more.
A new type of offshore wind tension leg platform (TLP) connected with a series of buoys (Serbuoys-TLP) is proposed. With the consideration of coupling effect, derivations on the stiffness of the Serbuoys-TLP mooring lines are given. The complicated coupling motion characteristics of the TLP with buoys system are investigated by means of experiments and numerical analysis. The suppressive efficiency on the surge under some condition is nearly 68%, when the wave period is the common wave period of the East China Sea (6 s). Namely, the suppressive effect of series buoys on surge motion response of TLP is analyzed. Through several aspects of suppressive effect on the surge including wave properties, submerge volume and position of buoys are investigated. The modal analysis method is also adopted to interpret the coupled motion response. In the end, the responses of TLP and Serbuoys-TLP are simulated under actual sea conditions with the consideration of wind, wave and current. Based on the parametric study using the modal analysis combined with hydrodynamic analysis, the conclusion can be drawn that the surge of TLP can be effectively suppressed by the addition of a series of buoys in the Serbuoys-TLP. Full article
Show Figures

Figure 1

18 pages, 2857 KiB  
Article
Study of Floating Wind Turbine with Modified Tension Leg Platform Placed in Regular Waves
by Juhun Song and Hee-Chang Lim
Energies 2019, 12(4), 703; https://doi.org/10.3390/en12040703 - 21 Feb 2019
Cited by 12 | Viewed by 4642
Abstract
In this study, the typical ocean environment was simulated with the aim to investigate the dynamic response under various environmental conditions of a Tension Leg Platform (TLP) type floating offshore wind turbine system. By applying Froude scaling, a scale model with a scale [...] Read more.
In this study, the typical ocean environment was simulated with the aim to investigate the dynamic response under various environmental conditions of a Tension Leg Platform (TLP) type floating offshore wind turbine system. By applying Froude scaling, a scale model with a scale of 1:200 was designed and model experiments were carried out in a lab-scale wave flume that generated regular periodic waves by means of a piston-type wave generator while a wave absorber dissipated wave energy on the other side of the channel. The model was designed and manufactured based on the standard prototype of the National Renewable Energy Laboratory (NREL) 5 MW offshore wind turbine. In the first half of the study, the motion and structural responses for operational wave conditions of the North Sea near Scotland were considered to investigate the performance of a traditional TLP floating wind turbine compared with that of a newly designed TLP with added mooring lines. The new mooring lines were attached with the objective of increasing the horizontal stiffness of the system and thereby reducing the dominant motion of the TLP platform (i.e., the surge motion). The results of surge translational motions were obtained both in the frequency domain, using the response amplitude operator (RAO), and in the time domain, using the omega arithmetic method for the relative velocity. The results obtained show that our suggested concept improves the stability of the platform and reduces the overall motion of the system in all degrees-of-freedom. Moreover, the modified design was verified to enable operation in extreme wave conditions based on real data for a 100-year return period of the Northern Sea of California. The loads applied by the waves on the structure were also measured experimentally using modified Morison equation—the formula most frequently used to estimate wave-induced forces on offshore floating structures. The corresponding results obtained show that the wave loads applied on the new design TLP had less amplitude than the initial model and confirmed the significant contribution of the mooring lines in improving the performance of the system. Full article
(This article belongs to the Special Issue Wind Turbine Power Optimization Technology)
Show Figures

Figure 1

Back to TopTop