Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,682)

Search Parameters:
Keywords = temperature regime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 22584 KB  
Article
Early-Age Performance Evolution and Multi-Field Coupling Numerical Simulation of Large-Area Concrete Slabs Under Curing Regime Control
by Xiji Hu, Ruizhen Yan, Xin Cheng, Fanqi Meng, Xiaokang Yang and Menglong Zhou
Buildings 2026, 16(2), 394; https://doi.org/10.3390/buildings16020394 (registering DOI) - 17 Jan 2026
Abstract
This study investigates the early-age performance of large-area C30 concrete slabs under different curing regimes using a multi-scale approach combining laboratory experiments, field monitoring, and numerical simulation. The experimental results indicated that standard curing (SC7) maximized the mechanical properties. In contrast, the thermal [...] Read more.
This study investigates the early-age performance of large-area C30 concrete slabs under different curing regimes using a multi-scale approach combining laboratory experiments, field monitoring, and numerical simulation. The experimental results indicated that standard curing (SC7) maximized the mechanical properties. In contrast, the thermal insulation and moisture retention curing (TC) regime significantly reduced temperature gradients and stress mutation amplitudes by 42% compared to wet curing (WC) by leveraging the synergistic effect of aluminum foil and insulating cotton. This makes TC a preferred solution in situations where engineering constraints apply. Field monitoring demonstrated that WC is suitable for humidity-sensitive scenarios with low-temperature control requirements, while TC is more suitable for large-area concrete or low-temperature environments, balancing early strength development and long-term durability. This multi-field coupled model exhibits significant deviations during the early stage (0–7 days) due to complex boundary interactions, but achieves high quantitative accuracy in the long-term steady state (after 14 days), with a maximum error below 8%. The analysis revealed that the key driving factors for stress evolution are early hydration heat–humidity coupling and mid-term boundary transient switching. The study provides a novel, multi-scale validated curing optimization path for crack control in large-area concrete slabs. Full article
Show Figures

Figure 1

30 pages, 13681 KB  
Article
Atmospheric and Hydrospheric Characteristics in Contrasting Arctic and Intracontinental Regions of Northern Eurasia and Possible Mutual Influences
by Terry V. Callaghan, Andrey N. Romanov, Ilya V. Khvostov, Ivan V. Ryabinin, Vasiliy V. Tikhonov and Olga M. Shaduyko
Water 2026, 18(2), 251; https://doi.org/10.3390/w18020251 (registering DOI) - 17 Jan 2026
Abstract
Floods and droughts have increased in Northern Eurasia, probably caused by hydrological changes in other regions. We explore such hypothetical teleconnections by investigating environmental changes in two contrasting harsh environments: the Arctic Kara Sea and the arid Aral–Caspian region. Using long-term data from [...] Read more.
Floods and droughts have increased in Northern Eurasia, probably caused by hydrological changes in other regions. We explore such hypothetical teleconnections by investigating environmental changes in two contrasting harsh environments: the Arctic Kara Sea and the arid Aral–Caspian region. Using long-term data from daily remote microwave sensing, we describe seasonal dynamics of temperature and moisture regimes in the two regions and hypothesize their inter-relationships from new analyses of wind data. For the first time, daily L-band satellite data were used to determine open water in the Kara Sea and long-term seasonal dynamics of brightness temperatures were used to relate variations in the ongoing aridization of the Aral Sea area and abnormal spring floods in the south of Western Siberia. Using soil moisture and Ocean Salinity satellite data, we discovered a previously unrecorded 4-year cyclicity of open-water periods for the Arctic seas and northern parts of the Caspian and Aral Seas. This cyclicity could impact climate forecasting in Northern Eurasia with significant societal implications. The main aim of this paper is to present new analyses that suggest possible mechanisms for teleconnections between the two contrasting harsh environments of Northern Eurasia. The hypothetical teleconnections now need to be tested. Full article
19 pages, 4080 KB  
Article
Marine Heatwaves Enable High-Latitude Maintenance of Super Typhoons: The Role of Deep Ocean Stratification and Cold-Wake Mitigation
by Chengjie Tian, Yang Yu, Jinlin Ji, Chenhui Zhang, Jiajun Feng and Guang Li
J. Mar. Sci. Eng. 2026, 14(2), 191; https://doi.org/10.3390/jmse14020191 - 16 Jan 2026
Abstract
Tropical cyclones typically weaken rapidly during poleward propagation due to decreasing sea surface temperatures and increasing vertical wind shear. Super Typhoon Oscar (1995) deviated from this pattern by maintaining Category-5 intensity at an anomalously high latitude. This study investigates the oceanic mechanisms driving [...] Read more.
Tropical cyclones typically weaken rapidly during poleward propagation due to decreasing sea surface temperatures and increasing vertical wind shear. Super Typhoon Oscar (1995) deviated from this pattern by maintaining Category-5 intensity at an anomalously high latitude. This study investigates the oceanic mechanisms driving this resilience by integrating satellite SST data with atmospheric (ERA5) and oceanic (HYCOM) reanalysis products. Our analysis shows that the storm track intersected a persistent marine heatwave (MHW) characterized by a deep thermal anomaly extending to approximately 150 m. This elevated heat content formed a strong stratification barrier at the base of the mixed layer (~32 m) that prevented the typical entrainment of cold thermocline water. Instead, storm-induced turbulence mixed warm subsurface water upward to effectively mitigate the negative cold-wake feedback. This process sustained extreme upward enthalpy fluxes exceeding 210 W m−2 and generated a regime of thermodynamic compensation that enabled the storm to maintain its structure despite an unfavorable atmospheric environment with moderate-to-strong vertical wind shear (15–20 m s−1). These results indicate that the three-dimensional ocean structure acts as a more reliable predictor of typhoon intensity than SST alone in regions affected by MHWs. As MHWs deepen under climate warming, this cold-wake mitigation mechanism is likely to become a significant factor influencing future high-latitude cyclone hazards. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

27 pages, 2348 KB  
Article
Assessment and Numerical Modeling of the Thermophysical Efficiency of Newly Developed Adaptive Building Envelopes Under Variable Climatic Impacts
by Nurlan Zhangabay, Arukhan Oner, Ulzhan Ibraimova, Mohamad Nasir Mohamad Ibrahim, Timur Tursunkululy and Akmaral Utelbayeva
Buildings 2026, 16(2), 366; https://doi.org/10.3390/buildings16020366 - 15 Jan 2026
Viewed by 23
Abstract
The relevance of this study is driven by the increasing requirements for the energy efficiency and indoor comfort of residential and public buildings, particularly in regions with extreme climatic conditions characterized by substantial daily and seasonal temperature fluctuations. Effective management of heat transfer [...] Read more.
The relevance of this study is driven by the increasing requirements for the energy efficiency and indoor comfort of residential and public buildings, particularly in regions with extreme climatic conditions characterized by substantial daily and seasonal temperature fluctuations. Effective management of heat transfer through building envelopes has become a key factor in reducing energy consumption and improving indoor comfort. This paper presents the results of an experimental–numerical investigation of the thermal behavior of an adaptive exterior wall system with a controllable air cavity. Steady-state and transient simulations were performed for three envelope configurations: a baseline design, a design with vertical air channels, and an adaptive configuration equipped with adjustable openings. Quantitative analysis showed that during the winter period, the adaptive configuration increases the interior surface temperature by 1.5–2.3 °C compared to the baseline design, resulting in a 12–18% reduction in the specific heat flux through the wall. In the summer period, the temperature of the exterior cladding decreases by 3–5 °C relative to the baseline, which reduces heat gains by 8–14% and lowers the cooling load. Additional analysis of temperature fields demonstrated that the presence of vertical air channels has a limited effect during winter: temperature differences at the surfaces do not exceed 1 °C. A similar pattern is observed in warm periods; however, due to controlled air circulation, the adaptive configuration provides an improved thermal regime. The results confirm the effectiveness of the adaptive wall system under the climatic conditions of southern Kazakhstan, characterized by high solar radiation and large diurnal temperature variations. The practical significance of the study lies in the potential application of adaptive façades to enhance the energy efficiency of buildings during both winter and summer seasons. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
20 pages, 6196 KB  
Article
Subsurface Temperature Distributions Constrain Groundwater Flow in Salar Marginal Environments
by David F. Boutt, Julianna C. Huba, Lee Ann Munk and Kristina L. Butler
Hydrology 2026, 13(1), 32; https://doi.org/10.3390/hydrology13010032 - 15 Jan 2026
Viewed by 33
Abstract
Interactions between surface water and groundwater in arid regions regulate their response to climate and human impacts. In the salar systems of the Altiplano-Puna plateau (Bolivia, Chile, Argentina), understanding how surface waters connect to groundwater is crucial for accurate modeling and assessment. This [...] Read more.
Interactions between surface water and groundwater in arid regions regulate their response to climate and human impacts. In the salar systems of the Altiplano-Puna plateau (Bolivia, Chile, Argentina), understanding how surface waters connect to groundwater is crucial for accurate modeling and assessment. This study introduces new data and analysis using subsurface thermal profiles and modeling to identify flow patterns and possible surface water links. We document, to our knowledge, for the first time in the literature, deep-seated cooling of the subsurface caused by extreme evaporation rates. The subsurface is cooled by 4–5 degrees Celsius below the mean annual air temperature to depths greater than 50 m, even though groundwater inflow waters are elevated by 10 degrees °C due to geothermal heating. Three thermal zones are observed along the southern edge of Salar de Atacama, with temperature dropping from 28 °C to about 12 °C over 2.5 km. A 2D numerical model of groundwater and heat flow was developed to test various hydrological scenarios and understand the factors controlling the thermal regime. Two flow scenarios at the southern margin were examined: a diffuse flow model with uniform flow and flux to the surface and a focused flow model with preferential discharge at a topographic slope break. Results indicate that the focused flow scenario matches thermal data, with warm inflow water discharging into a transition zone between freshwater and brine, cooling through evaporation, re-infiltration, and surface flow, then re-emerging near lagoons at the halite nucleus margin. This research offers valuable insights into the groundwater hydraulics in the Salar de Atacama and can aid in monitoring environmental changes causally linked to lithium mining and upgradient freshwater extraction. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

16 pages, 11917 KB  
Article
Study on the Synergistic Mechanisms of Daytime and Nighttime Heatwaves in China Based on Complex Networks
by Xiangrong Qin, Aixia Feng, Changgui Gu and Qiguang Wang
Appl. Sci. 2026, 16(2), 829; https://doi.org/10.3390/app16020829 - 13 Jan 2026
Viewed by 112
Abstract
Heatwaves pose increasing risks to human health and socio-economic systems, yet their spatiotemporal organization and underlying synergistic mechanisms remain insufficiently understood, particularly with respect to daytime and nighttime processes. Using a dual identification framework combining absolute and relative temperature thresholds, this study systematically [...] Read more.
Heatwaves pose increasing risks to human health and socio-economic systems, yet their spatiotemporal organization and underlying synergistic mechanisms remain insufficiently understood, particularly with respect to daytime and nighttime processes. Using a dual identification framework combining absolute and relative temperature thresholds, this study systematically investigates the spatiotemporal evolution of daytime and nighttime heatwaves across China during 1961–2022. A complex network approach is further introduced to characterize the interannual co-variability and interdecadal structural evolution of heatwave activity from a system-level perspective. Results reveal a pronounced interdecadal transition in the early 1990s, accompanied by a fundamental reorganization of heatwave co-occurrence networks. Heatwave frequency exhibits a clear post-transition desynchronization, characterized by a sharp decline in network connectivity and fragmented local clustering, indicating a shift from large-scale, circulation-dominated coherence toward increasingly localized and heterogeneous heatwave occurrences. In contrast, heatwave duration shows an opposite evolution, with significantly enhanced spatial synchronization after the transition. Degree centrality and clustering coefficients increase markedly, and high-connectivity cores expand from coastal regions into inland areas, including North, Central, and Northwest China. This coexistence of desynchronized heatwave occurrence and strongly synchronized persistence suggests an emerging high-risk regime in which heatwaves occur more randomly but, once initiated, tend to persist coherently across large regions. Furthermore, a dual-layer network analysis reveals previously undocumented cross-temporal coupling between daytime and nighttime heatwaves, with pronounced regional differences. The middle and lower reaches of the Yangtze River are more strongly influenced by local processes, whereas northern China is increasingly governed by large-scale circulation control and enhanced regional clustering after the transition. These findings demonstrate that complex network analysis provides a powerful framework for uncovering hidden structural changes in extreme heat events and offer new insights into the evolving risks of compound and persistent heatwaves under climate change. Full article
Show Figures

Figure 1

25 pages, 4355 KB  
Article
Integrating Regressive and Probabilistic Streamflow Forecasting via a Hybrid Hydrological Forecasting System: Application to the Paraíba do Sul River Basin
by Gutemberg Borges França, Vinicius Albuquerque de Almeida, Mônica Carneiro Alves Senna, Enio Pereira de Souza, Madson Tavares Silva, Thaís Regina Benevides Trigueiro Aranha, Maurício Soares da Silva, Afonso Augusto Magalhães de Araujo, Manoel Valdonel de Almeida, Haroldo Fraga de Campos Velho, Mauricio Nogueira Frota, Juliana Aparecida Anochi, Emanuel Alexander Moreno Aldana and Lude Quieto Viana
Water 2026, 18(2), 210; https://doi.org/10.3390/w18020210 - 13 Jan 2026
Viewed by 145
Abstract
This study introduces the Hybrid Hydrological Forecast System (HHFS), a dual-stage, data-driven framework for monthly streamflow forecasting at the Santa Branca outlet in the upper Paraíba do Sul River Basin, Brazil. The system combines two nonlinear regressors, Multi-Layer Perceptron (MLP) and extreme Gradient [...] Read more.
This study introduces the Hybrid Hydrological Forecast System (HHFS), a dual-stage, data-driven framework for monthly streamflow forecasting at the Santa Branca outlet in the upper Paraíba do Sul River Basin, Brazil. The system combines two nonlinear regressors, Multi-Layer Perceptron (MLP) and extreme Gradient Boosting (XGB), calibrated through a structured four-step evolutionary procedure in GA1 (hydrological weighting, dual-regime Ridge fusion, rolling bias correction, and monthly mean–variance adjustment) and a hydro-adaptive probabilistic optimization in GA2. SHAP-based analysis provides physical interpretability of the learned relations. The regressive stage (GA1) generates a bias-corrected and climatologically consistent central forecast. After the full four-step optimization, GA1 achieves robust generalization skill during the independent test period (2020–2023), yielding NSE = 0.77 ± 0.05, KGE = 0.85 ± 0.05, R2 = 0.77 ± 0.05, and RMSE = 20.2 ± 3.1 m3 s−1, representing a major improvement over raw MLP/XGB outputs (NSE ≈ 0.5). Time-series, scatter, and seasonal diagnostics confirm accurate reproduction of wet- and dry-season dynamics, absence of low-frequency drift, and preservation of seasonal variance. The probabilistic stage (GA2) constructs a hydro-adaptive prediction interval whose width (max-min streamflow) and asymmetry evolve with seasonal hydrological regimes. The optimized configuration achieves comparative coverage COV = 0.86 ± 0.00, hit rate p = 0.96 ± 0.04, and relative width r = 2.40 ± 0.15, correctly expanding uncertainty during wet-season peaks and contracting during dry-season recessions. SHAP analysis reveals a coherent predictor hierarchy dominated by streamflow persistence, precipitation structure, temperature extremes, and evapotranspiration, jointly explaining most of the predictive variance. By combining regressive precision, probabilistic realism, and interpretability within a unified evolutionary architecture, the HHFS provides a transparent, physically grounded, and operationally robust tool for reservoir management, drought monitoring, and hydro-climatic early-warning systems in data-limited regions. Full article
(This article belongs to the Special Issue Climate Modeling and Impacts of Climate Change on Hydrological Cycle)
Show Figures

Figure 1

24 pages, 1882 KB  
Systematic Review
Global Shifts in Fire Regimes Under Climate Change: Patterns, Drivers, and Ecological Implications Across Biomes
by Ana Paula Oliveira and Paulo Gil Martins
Forests 2026, 17(1), 104; https://doi.org/10.3390/f17010104 - 13 Jan 2026
Viewed by 118
Abstract
Wildfire regimes are undergoing rapid transformation under anthropogenic climate change, with major implications for biodiversity, carbon cycling, and ecosystem resilience. This systematic review synthesizes findings from 42 studies across global, continental, and regional scales to assess emerging patterns in fire frequency, intensity, and [...] Read more.
Wildfire regimes are undergoing rapid transformation under anthropogenic climate change, with major implications for biodiversity, carbon cycling, and ecosystem resilience. This systematic review synthesizes findings from 42 studies across global, continental, and regional scales to assess emerging patterns in fire frequency, intensity, and seasonality, and to identify climatic, ecological, and anthropogenic drivers shaping these changes. Across biomes, evidence shows increasingly fire-conducive conditions driven by rising temperatures, vapor-pressure deficit, and intensifying drought, with climate model projections indicating amplification of extreme fire weather this century. Boreal ecosystems show heightened fire danger and carbon-cycle vulnerability; Mediterranean and Iberian regions face extended fire seasons and faster spread rates; tropical forests, particularly the Amazon, are shifting toward more flammable states due to drought–fragmentation interactions; and savannas display divergent moisture- and fuel-limited dynamics influenced by climate and land use. These results highlight the emergence of biome-specific fire–climate–fuel feedback that may push certain ecosystems toward alternative stable states. The review underscores the need for improved attribution frameworks, integration of fire–vegetation–carbon feedback into Earth system models, and development of adaptive, regionally tailored fire-management strategies. Full article
(This article belongs to the Special Issue Forest Fire: Landscape Patterns, Risk Prediction and Fuels Management)
Show Figures

Graphical abstract

21 pages, 5472 KB  
Article
Multifidelity Topology Design for Thermal–Fluid Devices via SEMDOT Algorithm
by Yiding Sun, Yun-Fei Fu, Shuzhi Xu and Yifan Guo
Computation 2026, 14(1), 19; https://doi.org/10.3390/computation14010019 - 12 Jan 2026
Viewed by 124
Abstract
Designing thermal–fluid devices that reduce peak temperature while limiting pressure loss is challenging because high-fidelity (HF) Navier–Stokes–convection simulations make direct HF-driven topology optimization computationally expensive. This study presents a two-dimensional, steady, laminar multifidelity topology design framework for thermal–fluid devices operating in a low-to-moderate [...] Read more.
Designing thermal–fluid devices that reduce peak temperature while limiting pressure loss is challenging because high-fidelity (HF) Navier–Stokes–convection simulations make direct HF-driven topology optimization computationally expensive. This study presents a two-dimensional, steady, laminar multifidelity topology design framework for thermal–fluid devices operating in a low-to-moderate Reynolds number regime. A computationally efficient low-fidelity (LF) Darcy–convection model is used for topology optimization, where SEMDOT decouples geometric smoothness from the analysis field to produce CAD-ready boundaries. The LF optimization minimizes a P-norm aggregated temperature subject to a prescribed volume fraction constraint; the inlet–outlet pressure difference and the P-norm parameter are varied to generate a diverse candidate set. All candidates are then evaluated using a steady incompressible HF Navier–Stokes–convection model in COMSOL 6.3 under a consistent operating condition (fixed flow; pressure drop reported as an output). In representative single- and multi-channel case studies, SEMDOT designs reduce the HF peak temperature (e.g., ~337 K to ~323 K) while also reducing the pressure drop (e.g., ~18.7 Pa to ~12.6 Pa) relative to conventional straight-channel layouts under the same operating point. Compared with a conventional RAMP-based pipeline under the tested settings, the proposed approach yields a more favorable Pareto distribution (normalized hypervolume 1.000 vs. 0.923). Full article
(This article belongs to the Special Issue Advanced Topology Optimization: Methods and Applications)
Show Figures

Graphical abstract

35 pages, 7433 KB  
Article
Post-Fire Forest Pulse Recovery: Superiority of Generalized Additive Models (GAM) in Long-Term Landsat Time-Series Analysis
by Nima Arij, Shirin Malihi and Abbas Kiani
Sensors 2026, 26(2), 493; https://doi.org/10.3390/s26020493 - 12 Jan 2026
Viewed by 107
Abstract
Wildfires are increasing globally and pose major challenges for assessing post-fire vegetation recovery and ecosystem resilience. We analyzed long-term Landsat time series in two contrasting fire-prone ecosystems in the United States and Australia. Vegetation area was extracted using the Enhanced Vegetation Index (EVI) [...] Read more.
Wildfires are increasing globally and pose major challenges for assessing post-fire vegetation recovery and ecosystem resilience. We analyzed long-term Landsat time series in two contrasting fire-prone ecosystems in the United States and Australia. Vegetation area was extracted using the Enhanced Vegetation Index (EVI) with Otsu thresholding. Recovery to pre-fire baseline levels was modeled using linear, logistic, locally estimated scatterplot smoothing (LOESS), and generalized additive models (GAM), and their performance was compared using multiple metrics. The results indicated rapid recovery of Australian forests to baseline levels, whereas this was not the case for forests in the United States. Among climatic factors, temperature was the dominant parameter in Australia (Spearman ρ = 0.513, p < 10−8), while no climatic variable significantly influenced recovery in California. Methodologically, GAM consistently performed best in both regions due to its success in capturing multiphase and heterogeneous recovery patterns, yielding the lowest values of AIC (United States: 142.89; Australia: 46.70) and RMSE_cv (United States: 112.86; Australia: 2.26). Linear and logistic models failed to capture complex recovery dynamics, whereas LOESS was highly sensitive to noise and unstable for long-term prediction. These findings indicate that post-fire recovery is inherently nonlinear and ecosystem-specific and that simple models are insufficient for accurate estimation, with GAM emerging as an appropriate method for assessing vegetation recovery using remote sensing data. This study provides a transferable approach using remote sensing and GAM to monitor forest resilience under accelerating global fire regimes. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

26 pages, 5344 KB  
Article
Research on Water and Fertilizer Use Strategies for Silage Corn Under Different Irrigation Methods to Mitigate Abiotic Stress
by Delong Tian, Yuchao Chen, Bing Xu, Guoshuai Wang and Lingyun Xu
Plants 2026, 15(2), 228; https://doi.org/10.3390/plants15020228 - 11 Jan 2026
Viewed by 197
Abstract
To reconcile the intensifying trade-off between chronic water scarcity and escalating forage demand in the Yellow River Basin, this study optimized integrated irrigation and fertilization regimes for silage maize. Leveraging the AquaCrop model, validated by 2023–2024 field experiments and a 35-year (1990–2024) meteorological [...] Read more.
To reconcile the intensifying trade-off between chronic water scarcity and escalating forage demand in the Yellow River Basin, this study optimized integrated irrigation and fertilization regimes for silage maize. Leveraging the AquaCrop model, validated by 2023–2024 field experiments and a 35-year (1990–2024) meteorological dataset, we systematically quantified the impacts of multi-factorial water–fertilizer–heat stress under drip irrigation with mulch (DIM) and shallow-buried drip irrigation (SBDI). Model performance was robust, yielding high simulation accuracy for soil moisture (RMSE < 3.3%), canopy cover (RMSE < 3.95%), and aboveground biomass (RMSE < 4.5 t·ha−1), with EF > 0.7 and R2 ≥ 0.85. Results revealed distinct stress dynamics across hydrological scenarios: mild temperature stress predominated in wet years, whereas severe water and fertilizer stresses emerged as the primary constraints during dry years. To mitigate these stresses, a medium fertilizer rate (555 kg·ha−1) was identified as the stable optimum, while dynamic irrigation requirements were determined as 90, 135, and 180 mm for wet, normal, and dry years, respectively. Comparative evaluation indicated that DIM achieved maximum productivity in wet years (aboveground biomass yield 70.4 t·ha−1), whereas SBDI exhibited superior “stable yield–water saving” performance in normal and dry years. The established “hydrological year–irrigation method–threshold” framework provides a robust decision-making tool for precision management, offering critical scientific support for the sustainable, high-quality development of livestock farming in arid regions. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

16 pages, 852 KB  
Article
Effect of Post-Harvest Management on Aspergillus flavus Growth and Aflatoxin Contamination of Stored Hazelnuts
by Alessia Casu, Giorgio Chiusa, Eugenio Zagottis, Giuseppe Genova and Paola Battilani
Toxins 2026, 18(1), 38; https://doi.org/10.3390/toxins18010038 - 11 Jan 2026
Viewed by 190
Abstract
Hazelnut (Corylus avellana L.) is a major crop in the Caucasus region, but its safety is often threatened by Aspergillus flavus colonization and aflatoxin (AF) contamination. Although AFs are strictly regulated in the EU, the influence of post-harvest practices on fungal persistence [...] Read more.
Hazelnut (Corylus avellana L.) is a major crop in the Caucasus region, but its safety is often threatened by Aspergillus flavus colonization and aflatoxin (AF) contamination. Although AFs are strictly regulated in the EU, the influence of post-harvest practices on fungal persistence and AF accumulation remains poorly defined. A three-year study was conducted to evaluate the effects of drying protocols, storage temperature, and conservation practices on fungal growth and AF occurrence in hazelnuts from three producing regions of Azerbaijan. Freshly harvested nuts were subjected to two drying regimes: good drying (sun-exposed, mixed, protected from rewetting) and bad drying (shaded, piled, rewetted). After drying, samples were stored at cold (8–10 °C) or room temperature (18–22 °C). Fungal prevalence was determined by CFU counts with morphological and qPCR identification of Aspergillus section Flavi. AFs were quantified by HPLC, and water activity (aw) was monitored during storage. Drying emerged as the decisive factor: bad drying consistently resulted in markedly higher fungal loads for A. section Flavi, with mean counts up to 1.5 × 102 CFU/g, compared with 2.1 × 101 CFU/g under good drying, representing a 7-fold increase. In contrast, storage temperature and shell condition had negligible effects when nuts were properly dried. Aflatoxins were consistently below the 5 µg/kg EU limit for AFB1 in traced and well-dried samples, whereas market samples occasionally exhibited AFB1 concentrations >450 µg/kg. These findings highlight drying efficiency as the key determinant of fungal persistence and AF risk in hazelnut post-harvest management. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

16 pages, 1360 KB  
Article
Enhancement of Building Heating Systems Connected to Third-Generation Centralized Heating Systems
by Ekaterina Boyko, Felix Byk, Lyudmila Myshkina, Elizaveta Nasibova and Pavel Ilyushin
Technologies 2026, 14(1), 56; https://doi.org/10.3390/technologies14010056 - 11 Jan 2026
Viewed by 95
Abstract
In third-generation centralized heating systems, qualitative regulation of the heat transfer medium parameters is mainly performed at heat sources, while quantitative regulation is implemented at central and individual heating points, with buildings remaining passive heat consumers. Unlike fourth-generation systems, such systems generally do [...] Read more.
In third-generation centralized heating systems, qualitative regulation of the heat transfer medium parameters is mainly performed at heat sources, while quantitative regulation is implemented at central and individual heating points, with buildings remaining passive heat consumers. Unlike fourth-generation systems, such systems generally do not employ renewable energy sources, thermal energy storage, or low-temperature operating regimes. Third-generation centralized heating systems operate based on design high-temperature schedules and centralized control, without considering the actual thermal loads of consumers. Under conditions of physical deterioration of heating networks, hydraulic imbalance, and operational constraints, the actual parameters of the heat transfer medium supplied to buildings often deviate from design values, resulting in deviations of thermal conditions at the level of end consumers and disruptions of thermal comfort. This study proposes the concept of an intelligent active individual heating point (IAIHP), designed to provide adaptive qualitative–quantitative regulation of heat transfer medium parameters at the level of individual buildings. Unlike approaches focused on demand-side management, the use of thermal energy storage, or the integration of renewable energy sources, the proposed solution is based on the application of a local thermal energy source. The IAIHP compensates for deviations in heat transfer medium parameters and acts as a local thermal energy source within the building heat supply system (BHSS). Control of the IAIHP operation is performed by a developed automation system that provides combined qualitative and quantitative regulation of the heat transfer medium supplied to the BHSS. The study assesses the potential scale of IAIHP implementation in third-generation centralized heating systems, develops a methodology for selecting the capacity of a local heat source, and presents the operating algorithm of the automatic control system of the IAIHP. At present, the reconstruction of an individual heating point of a kindergarten connected via a dependent scheme is being carried out based on the developed project documentation. Modeling and calculations show that the application of the IAIHP makes it possible to ensure indoor thermal comfort by reducing the risk of temperature deviations, which are otherwise typically compensated for by electric heaters. The proposed concept provides a methodological basis for a gradual transition from third-generation to fourth-generation centralized heating systems, while equipping the IAIHP with an intelligent control system opens opportunities for improving the energy efficiency of urban heating networks. The proposed integrated solution and the developed automatic control algorithms exhibit scientific novelty and practical relevance for Russia and other countries operating third-generation centralized heating systems, including Northern and Eastern European states, where large-scale infrastructure modernization and the implementation of fourth-generation technologies are technically or economically constrained. Full article
(This article belongs to the Section Construction Technologies)
Show Figures

Figure 1

17 pages, 4787 KB  
Article
Lagged Vegetation Responses to Diurnal Asymmetric Warming and Precipitation During the Growing Season in the Yellow River Basin: Patterns and Driving Mechanisms
by Zeyu Zhang, Fengman Fang and Zhiming Zhang
Land 2026, 15(1), 146; https://doi.org/10.3390/land15010146 - 10 Jan 2026
Viewed by 148
Abstract
Diurnally asymmetric warming under global climate change is reshaping terrestrial ecosystems, with important implications for vegetation productivity, biodiversity, and carbon sequestration. However, the mechanisms underlying the delayed and differentiated vegetation responses to daytime and nighttime warming, particularly under interacting precipitation regimes, remain insufficiently [...] Read more.
Diurnally asymmetric warming under global climate change is reshaping terrestrial ecosystems, with important implications for vegetation productivity, biodiversity, and carbon sequestration. However, the mechanisms underlying the delayed and differentiated vegetation responses to daytime and nighttime warming, particularly under interacting precipitation regimes, remain insufficiently understood, limiting accurate assessments of ecosystem resilience under future climate scenarios. Clarifying how vegetation responds dynamically to asymmetric temperature changes and precipitation, including their lagged effects, is therefore essential. Here, we analyzed the spatiotemporal evolution of growing-season Normalized Difference Vegetation Index (NDVI) across the Yellow River Basin from 2001 to 2022 using Theil–Sen median trend estimation and the Mann–Kendall test. We further quantified the lagged responses of NDVI to daytime maximum temperature (Tmax), nighttime minimum temperature (Tmin), and precipitation, and identified their dominant controls using partial correlation analysis and an XGBoost–SHAP framework. Results show that (1) growing-season climate in the YRB experienced pronounced diurnal warming asymmetry: Tmax, Tmin, and precipitation all increased, but Tmin rose substantially faster than Tmax. (2) NDVI exhibited an overall increasing trend, with declines confined to only 2.72% of the basin, mainly in Inner Mongolia, Ningxia, and Qinghai. (3) NDVI responded to Tmax, Tmin, and precipitation with distinct lag times, averaging 43, 16, and 42 days, respectively. (4) Lag times were strongly modulated by topography, soil properties, and hydro-climatic background. Specifically, Tmax lag time shortened with increasing elevation, soil silt content, and slope, while showing a decrease-then-increase pattern with potential evapotranspiration. Tmin lag time lengthened with elevation, soil sand content, and soil pH, but shortened with higher potential evapotranspiration. Precipitation lag time increased with soil silt content and net primary productivity, decreased with soil pH, and varied nonlinearly with elevation (decrease then increase). By explicitly linking diurnal warming asymmetry to vegetation response lags and their environmental controls, this study advances process-based understanding of climate–vegetation interactions in arid and semi-arid regions. The findings provide a transferable framework for improving ecosystem vulnerability assessments and informing adaptive vegetation management and conservation strategies under ongoing asymmetric warming. Full article
Show Figures

Figure 1

20 pages, 3677 KB  
Article
In Vitro Hatching of Scylla paramamosain Embryos: Insights from Developmental and Transcriptomic Analyses
by Zhiqiang Liu, Qi Gou, Xueyang Wang, Wei Wang, Lingbo Ma and Keyi Ma
Int. J. Mol. Sci. 2026, 27(2), 714; https://doi.org/10.3390/ijms27020714 - 10 Jan 2026
Viewed by 93
Abstract
Scylla paramamosain is a commercially important crab species widely cultured in China. However, artificial breeding remains limited by the high mortality of ovigerous females and asynchronous embryo hatching. In vitro embryo hatching has emerged as a promising alternative, yet its practical feasibility and [...] Read more.
Scylla paramamosain is a commercially important crab species widely cultured in China. However, artificial breeding remains limited by the high mortality of ovigerous females and asynchronous embryo hatching. In vitro embryo hatching has emerged as a promising alternative, yet its practical feasibility and underlying molecular mechanisms have not been systematically investigated. In this study, we examined the developmental characteristics of S. paramamosain embryos under different temperature regimes and hatching modes, evaluated embryo viability following maternal death, and compared transcriptomic profiles of Zoea I larvae between in vitro and maternal hatching. Our results demonstrated that temperature had a pronounced effect on embryogenesis and survival, with 27–30 °C identified as the optimal range for development and hatching. Both low and high temperature extremes markedly reduced embryo survival. Developmental trajectories were largely comparable between in vitro and maternal hatching, confirming the reliability and feasibility of the in vitro approach. Embryos collected within 4 h after maternal death exhibited high hatching success, whereas those obtained after 8 h failed to hatch. Transcriptomic analysis revealed 3505 differentially expressed genes, including 1933 upregulated and 1572 downregulated, which were significantly enriched in pathways related to cell cycle regulation, energy metabolism, immune defense, and ion transport. These findings implied that in vitro embryos could maintain developmental competence by stabilizing genomic integrity, reallocating energy resources, and activating stress responsive mechanisms. This study provides the first comprehensive evidence supporting the feasibility of in vitro embryo hatching in S. paramamosain and offers practical insights for optimizing temperature regimes, improving the utilization of maternal resources, and advancing large scale seedstock production in crab aquaculture. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop