Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = targeted alpha particle therapy (TAT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2598 KiB  
Review
Towards Effective Targeted Alpha Therapy for Neuroendocrine Tumours: A Review
by Paul M. D. Gape, Michael K. Schultz, Graeme J. Stasiuk and Samantha Y. A. Terry
Pharmaceuticals 2024, 17(3), 334; https://doi.org/10.3390/ph17030334 - 4 Mar 2024
Cited by 7 | Viewed by 4925
Abstract
This review article explores the evolving landscape of Molecular Radiotherapy (MRT), emphasizing Peptide Receptor Radionuclide Therapy (PRRT) for neuroendocrine tumours (NETs). The primary focus is on the transition from β-emitting radiopharmaceuticals to α-emitting agents in PRRT, offering a critical analysis of the radiobiological [...] Read more.
This review article explores the evolving landscape of Molecular Radiotherapy (MRT), emphasizing Peptide Receptor Radionuclide Therapy (PRRT) for neuroendocrine tumours (NETs). The primary focus is on the transition from β-emitting radiopharmaceuticals to α-emitting agents in PRRT, offering a critical analysis of the radiobiological basis, clinical applications, and ongoing developments in Targeted Alpha Therapy (TAT). Through an extensive literature review, the article delves into the mechanisms and effectiveness of PRRT in targeting somatostatin subtype 2 receptors, highlighting both its successes and limitations. The discussion extends to the emerging paradigm of TAT, underlining its higher potency and specificity with α-particle emissions, which promise enhanced therapeutic efficacy and reduced toxicity. The review critically evaluates preclinical and clinical data, emphasizing the need for standardised dosimetry and a deeper understanding of the dose-response relationship in TAT. The review concludes by underscoring the significant potential of TAT in treating SSTR2-overexpressing cancers, especially in patients refractory to β-PRRT, while also acknowledging the current challenges and the necessity for further research to optimize treatment protocols. Full article
(This article belongs to the Special Issue Therapeutic Radionuclides in Nuclear Medicine)
Show Figures

Figure 1

20 pages, 1300 KiB  
Review
Targeted Alpha Therapy: All We Need to Know about 225Ac’s Physical Characteristics and Production as a Potential Theranostic Radionuclide
by Wael Jalloul, Vlad Ghizdovat, Cati Raluca Stolniceanu, Teodor Ionescu, Irena Cristina Grierosu, Ioana Pavaleanu, Mihaela Moscalu and Cipriana Stefanescu
Pharmaceuticals 2023, 16(12), 1679; https://doi.org/10.3390/ph16121679 - 2 Dec 2023
Cited by 15 | Viewed by 8225
Abstract
The high energy of α emitters, and the strong linear energy transfer that goes along with it, lead to very efficient cell killing through DNA damage. Moreover, the degree of oxygenation and the cell cycle state have no impact on these effects. Therefore, [...] Read more.
The high energy of α emitters, and the strong linear energy transfer that goes along with it, lead to very efficient cell killing through DNA damage. Moreover, the degree of oxygenation and the cell cycle state have no impact on these effects. Therefore, α radioisotopes can offer a treatment choice to individuals who are not responding to β− or gamma-radiation therapy or chemotherapy drugs. Only a few α-particle emitters are suitable for targeted alpha therapy (TAT) and clinical applications. The majority of available clinical research involves 225Ac and its daughter nuclide 213Bi. Additionally, the 225Ac disintegration cascade generates γ decays that can be used in single-photon emission computed tomography (SPECT) imaging, expanding the potential theranostic applications in nuclear medicine. Despite the growing interest in applying 225Ac, the restricted global accessibility of this radioisotope makes it difficult to conduct extensive clinical trials for many radiopharmaceutical candidates. To boost the availability of 225Ac, along with its clinical and potential theranostic applications, this review attempts to highlight the fundamental physical properties of this α-particle-emitting isotope, as well as its existing and possible production methods. Full article
(This article belongs to the Special Issue Therapeutic Radionuclides in Nuclear Medicine)
Show Figures

Figure 1

20 pages, 4305 KiB  
Review
Theranostic Imaging Surrogates for Targeted Alpha Therapy: Progress in Production, Purification, and Applications
by Bryce J. B. Nelson, John Wilson, Jan D. Andersson and Frank Wuest
Pharmaceuticals 2023, 16(11), 1622; https://doi.org/10.3390/ph16111622 - 17 Nov 2023
Cited by 18 | Viewed by 3382
Abstract
This article highlights recent developments of SPECT and PET diagnostic imaging surrogates for targeted alpha particle therapy (TAT) radiopharmaceuticals. It outlines the rationale for using imaging surrogates to improve diagnostic-scan accuracy and facilitate research, and the properties an imaging-surrogate candidate should possess. It [...] Read more.
This article highlights recent developments of SPECT and PET diagnostic imaging surrogates for targeted alpha particle therapy (TAT) radiopharmaceuticals. It outlines the rationale for using imaging surrogates to improve diagnostic-scan accuracy and facilitate research, and the properties an imaging-surrogate candidate should possess. It evaluates the strengths and limitations of each potential imaging surrogate. Thirteen surrogates for TAT are explored: 133La, 132La, 134Ce/134La, and 226Ac for 225Ac TAT; 203Pb for 212Pb TAT; 131Ba for 223Ra and 224Ra TAT; 123I, 124I, 131I and 209At for 211At TAT; 134Ce/134La for 227Th TAT; and 155Tb and 152Tb for 149Tb TAT. Full article
(This article belongs to the Special Issue Therapeutic Radionuclides in Nuclear Medicine)
Show Figures

Graphical abstract

14 pages, 1626 KiB  
Review
Recent Innovations and Nano-Delivery of Actinium-225: A Narrative Review
by Sipho Mdanda, Lindokuhle M. Ngema, Amanda Mdlophane, Mike M. Sathekge and Jan Rijn Zeevaart
Pharmaceutics 2023, 15(6), 1719; https://doi.org/10.3390/pharmaceutics15061719 - 13 Jun 2023
Cited by 7 | Viewed by 4360
Abstract
The actinium-225 (225Ac) radioisotope exhibits highly attractive nuclear properties for application in radionuclide therapy. However, the 225Ac radionuclide presents multiple daughter nuclides in its decay chain, which can escape the targeted site, circulate in plasma, and cause toxicity in areas [...] Read more.
The actinium-225 (225Ac) radioisotope exhibits highly attractive nuclear properties for application in radionuclide therapy. However, the 225Ac radionuclide presents multiple daughter nuclides in its decay chain, which can escape the targeted site, circulate in plasma, and cause toxicity in areas such as kidneys and renal tissues. Several ameliorative strategies have been devised to circumvent this issue, including nano-delivery. Alpha-emitting radionuclides and nanotechnology applications in nuclear medicine have culminated in major advancements that offer promising therapeutic possibilities for treating several cancers. Accordingly, the importance of nanomaterials in retaining the 225Ac daughters from recoiling into unintended organs has been established. This review expounds on the advancements of targeted radionuclide therapy (TRT) as an alternative anticancer treatment. It discusses the recent developments in the preclinical and clinical investigations on 225Ac as a prospective anticancer agent. Moreover, the rationale for using nanomaterials in improving the therapeutic efficacy of α-particles in targeted alpha therapy (TAT) with an emphasis on 225Ac is discussed. Quality control measures in the preparation of 225Ac-conjugates are also highlighted. Full article
(This article belongs to the Special Issue Radiopharmaceuticals for Cancer Imaging and Therapy)
Show Figures

Figure 1

8 pages, 1419 KiB  
Communication
Exploring a Nuclear-Selective Radioisotope Delivery System for Efficient Targeted Alpha Therapy
by Yuki Iizuka, Yoshiyuki Manabe, Kazuhiro Ooe, Atsushi Toyoshima, Xiaojie Yin, Hiromitsu Haba, Kazuya Kabayama and Koichi Fukase
Int. J. Mol. Sci. 2023, 24(11), 9593; https://doi.org/10.3390/ijms24119593 - 31 May 2023
Cited by 2 | Viewed by 2435
Abstract
Targeted alpha therapy (TAT) has garnered significant interest as an innovative cancer therapy. Owing to their high energy and short range, achieving selective α-particle accumulation in target tumor cells is crucial for obtaining high potency without adverse effects. To meet this demand, we [...] Read more.
Targeted alpha therapy (TAT) has garnered significant interest as an innovative cancer therapy. Owing to their high energy and short range, achieving selective α-particle accumulation in target tumor cells is crucial for obtaining high potency without adverse effects. To meet this demand, we fabricated an innovative radiolabeled antibody, specifically designed to selectively deliver 211At (α-particle emitter) to the nuclei of cancer cells. The developed 211At-labeled antibody exhibited a superior effect compared to its conventional counterparts. This study paves the way for organelle-selective drug delivery. Full article
(This article belongs to the Special Issue Recent Advances of Targeted Drug Delivery and Nanocarriers)
Show Figures

Figure 1

24 pages, 3160 KiB  
Article
Novel Generation of FAP Inhibitor-Based Homodimers for Improved Application in Radiotheranostics
by Marcel Martin, Sanjana Ballal, Madhav Prasad Yadav, Chandrasekhar Bal, Yentl Van Rymenant, Joni De Loose, Emile Verhulst, Ingrid De Meester, Pieter Van Der Veken and Frank Roesch
Cancers 2023, 15(6), 1889; https://doi.org/10.3390/cancers15061889 - 21 Mar 2023
Cited by 32 | Viewed by 5471
Abstract
Radiopharmaceuticals based on the highly potent FAP inhibitor (FAPi) UAMC-1110 have shown great potential in molecular imaging, but the short tumor retention time of the monomers do not match the physical half-lives of the important therapeutic radionuclides 177Lu and 225Ac. This [...] Read more.
Radiopharmaceuticals based on the highly potent FAP inhibitor (FAPi) UAMC-1110 have shown great potential in molecular imaging, but the short tumor retention time of the monomers do not match the physical half-lives of the important therapeutic radionuclides 177Lu and 225Ac. This was improved with the dimer DOTAGA.(SA.FAPi)2, but pharmacological and radiolabeling properties still need optimization. Therefore, the novel FAPi homodimers DO3A.Glu.(FAPi)2 and DOTAGA.Glu.(FAPi)2. were synthesized and quantitatively radiolabeled with 68Ga, 90Y, 177Lu and 225Ac. The radiolabeled complexes showed high hydrophilicity and were generally stable in human serum (HS) and phosphate-buffered saline (PBS) at 37 °C over two half-lives, except for [225Ac]Ac-DOTAGA.Glu.(FAPi)2 in PBS. In vitro affinity studies resulted in subnanomolar IC50 values for FAP and high selectivity for FAP over the related proteases PREP and DPP4 for both compounds as well as for [natLu]Lu-DOTAGA.Glu.(FAPi)2. In a first proof-of-principle patient study (medullary thyroid cancer), [177Lu]Lu-DOTAGA.Glu.(FAPi)2 was compared to [177Lu]Lu-DOTAGA.(SA.FAPi)2. High uptake and long tumor retention was observed in both cases, but [177Lu]Lu-DOTAGA.Glu.(FAPi)2 significantly reduces uptake in non-target and critical organs (liver, colon). Overall, the novel FAPi homodimer DOTAGA.Glu.(FAPi)2 showed improved radiolabeling in vitro and pharmacological properties in vivo compared to DOTAGA.(SA.FAPi)2. [177Lu]Lu-DOTAGA.Glu.(FAPi)2 and [225Ac]Ac-DOTAGA.Glu.(FAPi)2 appear promising for translational application in patients. Full article
Show Figures

Figure 1

14 pages, 1079 KiB  
Article
Astatine-211-Labeled Gold Nanoparticles for Targeted Alpha-Particle Therapy via Intravenous Injection
by Xuhao Huang, Kazuko Kaneda-Nakashima, Yuichiro Kadonaga, Kazuya Kabayama, Atsushi Shimoyama, Kazuhiro Ooe, Hiroki Kato, Atsushi Toyoshima, Atsushi Shinohara, Hiromitsu Haba, Yang Wang and Koichi Fukase
Pharmaceutics 2022, 14(12), 2705; https://doi.org/10.3390/pharmaceutics14122705 - 2 Dec 2022
Cited by 21 | Viewed by 3698
Abstract
Alpha-particle radiotherapy has gained considerable attention owing to its potent anti-cancer effect. 211At, with a relatively short half-life of 7.2 h, emits an alpha particle within a few cell diameters with high kinetic energy, which damages cancer cells with high biological effectiveness. [...] Read more.
Alpha-particle radiotherapy has gained considerable attention owing to its potent anti-cancer effect. 211At, with a relatively short half-life of 7.2 h, emits an alpha particle within a few cell diameters with high kinetic energy, which damages cancer cells with high biological effectiveness. In this study, we investigated the intravenous injection of 211At-labeled gold nanoparticles (AuNPs) for targeted alpha-particle therapy (TAT). Different kinds of surface-modified gold nanoparticles can be labeled with 211At in high radiochemical yield in 5 min, and no purification is necessary. The in vivo biodistribution results showed the accumulation of 5 nm 211At-AuNPs@mPEG at 2.25% injection dose per gram (% ID/g) in tumors within 3 h via the enhanced permeability and retention (EPR) effect. Additionally, we observed a long retention time in tumor tissues within 24 h. This is the first study to demonstrate the anti-tumor efficacy of 5 nm 211At-AuNPs@mPEG that can significantly suppress tumor growth in a pancreatic cancer model via intravenous administration. AuNPs are satisfactory carriers for 211At delivery, due to simple and efficient synthesis processes and high stability. The intravenous administration of 5 nm 211At-AuNPs@mPEG has a significant anti-tumor effect. This study provides a new framework for designing nanoparticles suitable for targeted alpha-particle therapy via intravenous injection. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles)
Show Figures

Graphical abstract

17 pages, 1383 KiB  
Review
Radiotheranostic Agents Targeting Neuroblastoma: State-of-the-Art and Emerging Perspectives
by Luca Filippi, Viviana Frantellizzi, Marko Magdi Abdou Sidrak, Joana Gorica, Stefano Scippa, Agostino Chiaravalloti, Orazio Schillaci, Oreste Bagni and Giuseppe De Vincentis
Onco 2021, 1(2), 123-139; https://doi.org/10.3390/onco1020011 - 10 Nov 2021
Cited by 1 | Viewed by 4665
Abstract
Neuroblastoma (NB) represents the most common extracranial tumor of childhood. Prognosis is quite variable, ranging from spontaneous regression to aggressive behavior with wide metastatization, high mortality, and limited therapeutic options. Radiotheranostics combines a radiopharmaceutical pair in a unique approach, suitable both for diagnosis [...] Read more.
Neuroblastoma (NB) represents the most common extracranial tumor of childhood. Prognosis is quite variable, ranging from spontaneous regression to aggressive behavior with wide metastatization, high mortality, and limited therapeutic options. Radiotheranostics combines a radiopharmaceutical pair in a unique approach, suitable both for diagnosis and therapy. For many years, metaiodobenzylguanidine (MIBG), labeled with 123I for imaging or 131I for therapy, has represented the main theranostic agent in NB, since up to 90% of NB incorporates the aforementioned radiopharmaceutical. In recent years, novel theranostic agents hold promise in moving the field of NB radiotheranostics forward. In particular, SarTATE, consisting of octreotate targeting somatostatin receptors, has been applied with encouraging results, with 64Cu-SARTATE being used for disease detection and with 67Cu-SARTATE being used for therapy. Furthermore, recent evidence has highlighted the potential of targeted alpha therapy (TAT) for treating cancer by virtue of alpha particles’ high ionizing density and high probability of killing cells along their track. On this path, 211At-astatobenzylguanidine (MABG) has been developed as a potential agent for TAT and is actually under evaluation in preclinical NB models. In this review, we performed a web-based and desktop literature research concerning radiotheranostic approaches in NB, covering both the radiopharmaceuticals already implemented in clinical practice (i.e.,123/1311-MIBG) and those still in a preliminary or preclinical phase. Full article
Show Figures

Figure 1

17 pages, 24450 KiB  
Review
Obstacles and Recommendations for Clinical Translation of Nanoparticle System-Based Targeted Alpha-Particle Therapy
by Janke Kleynhans, Mike Sathekge and Thomas Ebenhan
Materials 2021, 14(17), 4784; https://doi.org/10.3390/ma14174784 - 24 Aug 2021
Cited by 22 | Viewed by 4137
Abstract
The rationale for application of nanotechnology in targeted alpha therapy (TAT) is sound. However, the translational strategy requires attention. Formulation of TAT in nanoparticulate drug delivery systems has the potential to resolve many of the issues currently experienced. As α-particle emitters are more [...] Read more.
The rationale for application of nanotechnology in targeted alpha therapy (TAT) is sound. However, the translational strategy requires attention. Formulation of TAT in nanoparticulate drug delivery systems has the potential to resolve many of the issues currently experienced. As α-particle emitters are more cytotoxic compared to beta-minus-emitting agents, the results of poor biodistribution are more dangerous. Formulation in nanotechnology is also suggested to be the ideal solution for containing the recoil daughters emitted by actinium-225, radium-223, and thorium-227. Nanoparticle-based TAT is likely to increase stability, enhance radiation dosimetry profiles, and increase therapeutic efficacy. Unfortunately, nanoparticles have their own unique barriers towards clinical translation. A major obstacle is accumulation in critical organs such as the spleen, liver, and lungs. Furthermore, inflammation, necrosis, reactive oxidative species, and apoptosis are key mechanisms through which nanoparticle-mediated toxicity takes place. It is important at this stage of the technology’s readiness level that focus is shifted to clinical translation. The relative scarcity of α-particle emitters also contributes to slow-moving research in the field of TAT nanotechnology. This review describes approaches and solutions which may overcome obstacles impeding nanoparticle-based TAT and enhance clinical translation. In addition, an in-depth discussion of relevant issues and a view on technical and regulatory barriers are presented. Full article
(This article belongs to the Special Issue Advanced Systems in Targeted Alpha Particle Therapy)
Show Figures

Graphical abstract

34 pages, 6105 KiB  
Review
Nanoradiopharmaceuticals Based on Alpha Emitters: Recent Developments for Medical Applications
by Maydelid Trujillo-Nolasco, Enrique Morales-Avila, Pedro Cruz-Nova, Kattesh V. Katti and Blanca Ocampo-García
Pharmaceutics 2021, 13(8), 1123; https://doi.org/10.3390/pharmaceutics13081123 - 23 Jul 2021
Cited by 22 | Viewed by 4842
Abstract
The application of nanotechnology in nuclear medicine offers attractive therapeutic opportunities for the treatment of various diseases, including cancer. Indeed, nanoparticles-conjugated targeted alpha-particle therapy (TAT) would be ideal for localized cell killing due to high linear energy transfer and short ranges of alpha [...] Read more.
The application of nanotechnology in nuclear medicine offers attractive therapeutic opportunities for the treatment of various diseases, including cancer. Indeed, nanoparticles-conjugated targeted alpha-particle therapy (TAT) would be ideal for localized cell killing due to high linear energy transfer and short ranges of alpha emitters. New approaches in radiolabeling are necessary because chemical radiolabeling techniques are rendered sub-optimal due to the presence of recoil energy generated by alpha decay, which causes chemical bonds to break. This review attempts to cover, in a concise fashion, various aspects of physics, radiobiology, and production of alpha emitters, as well as highlight the main problems they present, with possible new approaches to mitigate those problems. Special emphasis is placed on the strategies proposed for managing recoil energy. We will also provide an account of the recent studies in vitro and in vivo preclinical investigations of α-particle therapy delivered by various nanosystems from different materials, including inorganic nanoparticles, liposomes, and polymersomes, and some carbon-based systems are also summarized. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

15 pages, 10239 KiB  
Article
Anti-Tumor Efficacy of PD-L1 Targeted Alpha-Particle Therapy in a Human Melanoma Xenograft Model
by Marisa Capitao, Justine Perrin, Sylvain Simon, Sébastien Gouard, Nicolas Chouin, Frank Bruchertseifer, Alfred Morgenstern, Latifa Rbah-Vidal, Michel Chérel, Emmanuel Scotet, Nathalie Labarrière, Yannick Guilloux and Joëlle Gaschet
Cancers 2021, 13(6), 1256; https://doi.org/10.3390/cancers13061256 - 12 Mar 2021
Cited by 8 | Viewed by 3540
Abstract
PD-L1 (programmed death-ligand 1, B7-H1, CD274), the ligand for PD-1 inhibitory receptor, is expressed on various tumors, and its expression is correlated with a poor prognosis in melanoma. Anti-PD-L1 mAbs have been developed along with anti-CTLA-4 and anti-PD-1 antibodies for immune checkpoint inhibitor [...] Read more.
PD-L1 (programmed death-ligand 1, B7-H1, CD274), the ligand for PD-1 inhibitory receptor, is expressed on various tumors, and its expression is correlated with a poor prognosis in melanoma. Anti-PD-L1 mAbs have been developed along with anti-CTLA-4 and anti-PD-1 antibodies for immune checkpoint inhibitor (ICI) therapy, and anti-PD-1 mAbs are now used as first line treatment in melanoma. However, many patients do not respond to ICI therapies, and therefore new treatment alternatives should be developed. Because of its expression on the tumor cells and on immunosuppressive cells within the tumor microenvironment, PD-L1 represents an interesting target for targeted alpha-particle therapy (TAT). We developed a TAT approach in a human melanoma xenograft model that stably expresses PD-L1 using a 213Bi-anti-human-PD-L1 mAb. Unlike treatment with unlabeled anti-human-PD-L1 mAb, TAT targeting PD-L1 significantly delayed melanoma tumor growth and improved animal survival. A slight decrease in platelets was observed, but no toxicity on red blood cells, bone marrow, liver or kidney was induced. Anti-tumor efficacy was associated with specific tumor targeting since no therapeutic effect was observed in animals bearing PD-L1 negative melanoma tumors. This study demonstrates that anti-PD-L1 antibodies may be used efficiently for TAT treatment in melanoma. Full article
Show Figures

Figure 1

26 pages, 3173 KiB  
Review
Targeted Alpha Therapy: Progress in Radionuclide Production, Radiochemistry, and Applications
by Bryce J. B. Nelson, Jan D. Andersson and Frank Wuest
Pharmaceutics 2021, 13(1), 49; https://doi.org/10.3390/pharmaceutics13010049 - 31 Dec 2020
Cited by 138 | Viewed by 10357
Abstract
This review outlines the accomplishments and potential developments of targeted alpha (α) particle therapy (TAT). It discusses the therapeutic advantages of the short and highly ionizing path of α-particle emissions; the ability of TAT to complement and provide superior efficacy over existing forms [...] Read more.
This review outlines the accomplishments and potential developments of targeted alpha (α) particle therapy (TAT). It discusses the therapeutic advantages of the short and highly ionizing path of α-particle emissions; the ability of TAT to complement and provide superior efficacy over existing forms of radiotherapy; the physical decay properties and radiochemistry of common α-emitters, including 225Ac, 213Bi, 224Ra, 212Pb, 227Th, 223Ra, 211At, and 149Tb; the production techniques and proper handling of α-emitters in a radiopharmacy; recent preclinical developments; ongoing and completed clinical trials; and an outlook on the future of TAT. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

12 pages, 2747 KiB  
Article
Evaluation of Actinium-225 Labeled Minigastrin Analogue [225Ac]Ac-DOTA-PP-F11N for Targeted Alpha Particle Therapy
by Yun Qin, Stefan Imobersteg, Alain Blanc, Stephan Frank, Roger Schibli, Martin P. Béhé and Michal Grzmil
Pharmaceutics 2020, 12(11), 1088; https://doi.org/10.3390/pharmaceutics12111088 - 12 Nov 2020
Cited by 23 | Viewed by 4414
Abstract
The overexpression of cholecystokinin B receptor (CCKBR) in human cancers led to the development of radiolabeled minigastrin analogues for targeted radionuclide therapy, which aims to deliver cytotoxic radiation specifically to cancer cells. Alpha emitters (e.g., actinium-225) possess high potency in cancer cell-killing and [...] Read more.
The overexpression of cholecystokinin B receptor (CCKBR) in human cancers led to the development of radiolabeled minigastrin analogues for targeted radionuclide therapy, which aims to deliver cytotoxic radiation specifically to cancer cells. Alpha emitters (e.g., actinium-225) possess high potency in cancer cell-killing and hold promise for the treatment of malignant tumors. In these preclinical studies, we developed and evaluated CCKBR-targeted alpha particle therapy. The cellular uptake and cytotoxic effect of actinium-225 labeled and HPLC-purified minigastrin analogue [225Ac]Ac-PP-F11N were characterized in the human squamous cancer A431 cells transfected with CCKBR. Nude mice bearing A431/CCKBR tumors were used for biodistribution and therapy studies followed by histological analysis and SPECT/CT imaging. In vitro, [225Ac]Ac-PP-F11N showed CCKBR-specific and efficient internalization rate and potent cytotoxicity. The biodistribution studies of [225Ac]Ac-PP-F11N revealed CCKBR-specific uptake in tumors, whereas the therapeutic studies demonstrated dose-dependent inhibition of tumor growth and extended mean survival time, without apparent toxicity. The histological analysis of kidney and stomach indicated no severe adverse effects after [225Ac]Ac-PP-F11N administration. The post-therapy SPECT-CT images with [111In]In-PP-F11N confirmed no CCKBR-positive tumor left in the mice with complete remission. In conclusion, our study demonstrates therapeutic efficacy of [225Ac]Ac-PP-F11N without acute radiotoxicity in CCKBR-positive cancer model. Full article
(This article belongs to the Special Issue Targeted Radionuclide Therapy)
Show Figures

Figure 1

48 pages, 2017 KiB  
Review
Development of Targeted Alpha Particle Therapy for Solid Tumors
by Narges K. Tafreshi, Michael L. Doligalski, Christopher J. Tichacek, Darpan N. Pandya, Mikalai M. Budzevich, Ghassan El-Haddad, Nikhil I. Khushalani, Eduardo G. Moros, Mark L. McLaughlin, Thaddeus J. Wadas and David L. Morse
Molecules 2019, 24(23), 4314; https://doi.org/10.3390/molecules24234314 - 26 Nov 2019
Cited by 102 | Viewed by 13884
Abstract
Targeted alpha-particle therapy (TAT) aims to selectively deliver radionuclides emitting α-particles (cytotoxic payload) to tumors by chelation to monoclonal antibodies, peptides or small molecules that recognize tumor-associated antigens or cell-surface receptors. Because of the high linear energy transfer (LET) and short range of [...] Read more.
Targeted alpha-particle therapy (TAT) aims to selectively deliver radionuclides emitting α-particles (cytotoxic payload) to tumors by chelation to monoclonal antibodies, peptides or small molecules that recognize tumor-associated antigens or cell-surface receptors. Because of the high linear energy transfer (LET) and short range of alpha (α) particles in tissue, cancer cells can be significantly damaged while causing minimal toxicity to surrounding healthy cells. Recent clinical studies have demonstrated the remarkable efficacy of TAT in the treatment of metastatic, castration-resistant prostate cancer. In this comprehensive review, we discuss the current consensus regarding the properties of the α-particle-emitting radionuclides that are potentially relevant for use in the clinic; the TAT-mediated mechanisms responsible for cell death; the different classes of targeting moieties and radiometal chelators available for TAT development; current approaches to calculating radiation dosimetry for TATs; and lead optimization via medicinal chemistry to improve the TAT radiopharmaceutical properties. We have also summarized the use of TATs in pre-clinical and clinical studies to date. Full article
(This article belongs to the Special Issue Radiopharmaceutical Chemistry and Radiotherapy)
Show Figures

Figure 1

Back to TopTop