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Abstract: Targeted alpha therapy (TAT) has garnered significant interest as an innovative cancer
therapy. Owing to their high energy and short range, achieving selective α-particle accumulation
in target tumor cells is crucial for obtaining high potency without adverse effects. To meet this
demand, we fabricated an innovative radiolabeled antibody, specifically designed to selectively
deliver 211At (α-particle emitter) to the nuclei of cancer cells. The developed 211At-labeled antibody
exhibited a superior effect compared to its conventional counterparts. This study paves the way for
organelle-selective drug delivery.

Keywords: targeted alpha therapy (TAT); drug delivery system (DDS); radiolabeled antibody; α-ray;
imaging; nuclear localization signal (NLS)

1. Introduction

Drug delivery systems (DDSs) are a pivotal technology for achieving optimal drug
efficacy and selectivity [1,2]. Alongside passive targeting using nanocarriers, including
liposomes and polymers, active targeting, which involves the utilization of specific molec-
ular interactions to achieve high specificity, has been widely used. Notably, antibodies
are effective for achieving excellent specificity, as demonstrated by the numerous practical
applications of antibody–drug conjugates (ADCs) [3,4]. Recently, higher-resolution drug
delivery, that is, organelle-selective drug delivery, has garnered attention as a strategy for
augmenting drug efficacy, based on its intensive accumulation at the target site [5]. In this
study, we investigated a DDS designed to selectively target a specific organelle, specifically,
the nuclei in target cells, and applied it in order to develop an efficient nuclear medicine.

Radiation therapy is a common cancer treatment modality, and in this regard, targeted
radioisotope (RI) therapy has the advantage of being less burdensome than external beam
radiation and can be applied to tumors that are difficult to irradiate externally, such as
metastatic malignancies and brain tumors [6,7]. Several monoclonal antibodies armed
with β-emitting radionuclides, including Zevalin (90Y-labeled rituximab) [8] and Bexxar
(131I-labeled tositumomab) [9], have been developed as targeted RI medicines and have
already been translated to practical use.

Additionally, targeted alpha therapy (TAT) has garnered considerable interest in
recent years [10,11]. Owing to the high energy and short range of α-rays, the selective
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accumulation of α-particles in target tumor cells can lead to remarkable therapeutic ef-
fects, with reduced adverse effects (Figure 1a). Additionally, α-rays primarily induce
double-strand breaks (DSB), resulting in highly potent cytotoxicity. Therefore, TATs are
being extensively investigated worldwide. For example, Xofigo, 223RaCl2 has been
approved for practical use in the treatment of bone metastatic prostate cancer [12]. We
are also actively engaged in TAT development with a focus on 211At as an α-particle
source [13–17]. Particularly, Na211At, which leverages the halogen accumulation nature
of the thyroid, is currently undergoing clinical trials for thyroid cancer therapy [13]. Fur-
thermore, 211At-labeled α-methyl-L-tyrosine, which targets the cancer-associated amino
acid transporter LAT1, exhibits remarkable antitumor activity [14]. Antibodies armed with
α-particles also present a promising avenue for TAT. Since the pioneering study by Wilbur
et al., several 211At-labeled antibodies have been reported [18,19], each demonstrating
significant antitumor activity [20,21].
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Figure 1. (a) Radiolabeled antibody and comparison between β- and α-rays. (b) Structure of
radiolabeled antibody for delivering RI to the nuclei of target cells. (c) Plausible mechanism of
nucleus-selective RI delivery.

In this study, we developed a novel radiolabeled antibody that was designed to
selectively deliver 211At to the nuclei of target cells for efficient TAT (Figure 1b). To accom-
plish this, we employed a nuclear localization signal (NLS) that acted as a tag for protein
transport to the nucleus [22]. Specifically, the anti-cancer antibody was conjugated with
NLS-functionalized 211At via a cleavable linker. This antibody conjugate was envisioned
to behave as follows: (i) target cell recognition, followed by internalization via endocyto-
sis; (ii) lysosomal cleavage of the linker to release an 211At-functionalized fragment; and
(iii) accumulation of the released NLS-functionalized 211At in the nucleus of the target cell,
and the subsequent induction of DNA damage (Figure 1c). Such high-resolution targeting
of RIs was expected to result in improved selectivity and high efficacy, particularly in α-ray
therapy, based on the high energy and short range of α-rays. The molecular design was
validated using fluorescence imaging. Specifically, this imaging analysis underscored the
importance of the membrane permeability of the payload with respect to lysosomal escape,
which served as intermediates between steps (i) and (iii) stated above. Based on this discov-
ery, we devised a design to facilitate this step by harnessing the dual function of decaborane
([B]10): as a carrier of 211At and a membrane permeabilizer. This is because [B]10 forms a
stable complex with 211At [18,19], and is also a potent membrane permeabilizer owing to
its chaotropic effect [23,24]. As expected, the developed nucleus-targeting 211At-labeled
antibody showed superior efficacy. Therefore, in this study, we propose a high-resolution
DDS with remarkable potency and selectivity as a novel drug development trend.

2. Results and Discussion

The molecules used in this study are shown in Figure 2. We used an anti-EpCAM
antibody known for its selective binding to pancreatic cancer cells and cancer stem
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cells [25,26]. NLS(PKKKRKV)-functionalized TMR/211At was conjugated to the antibody
via a valine–citrulline (Val-Cit) linker [27], which can be readily cleaved by lysosomal
cathepsin. For the fluorescent probe, we designed and synthesized a doubly fluorescent-
labeled antibody, NLS(TMR)-Ab(AF488), in which an Alexa Fluor 488 (AF488)-labeled
antibody was loaded with NLS-functionalized TMR (Scheme S1, Figure S1); the AF488
was used to track antibody dynamics, while the TMR served as an indicator of the in-
tracellular dynamics of the payload. We also synthesized NLS(211At)-Ab as a radio-
labeled antibody to deliver 211At into the nuclei of cancer cells (Scheme S2, Figure S2).
These antibody conjugates were readily obtained via Fmoc solid-phase peptide synthesis
(Fmoc SPPS) and maleimide-thiol ligation; after preparing the Val-Cit linker-conjugated
NLS doubly functionalized with Cys by SPPS, the introduction of TMR or [B]10 at
C-terminal Cys was followed by coupling with the antibody at the N-terminal Cys,
yielding NLS(TMR)-Ab(AF488) or NLS(211At)-Ab, respectively. The TMR-labeled NLS
(NLS(TMR)) was also prepared to trace the dynamics of the NLS-functionalized payload
(Scheme S3), while 211At-Ab, a conventional 211At-labeled antibody, was prepared as the
control (Scheme S4, Figure S5). Notably, 211At was successfully introduced into [B]10, as re-
ported by Wilbur et al. [18,19] during the preparation of both NLS(211At)-Ab and 211At-Ab
(Figures S3, S4, S6 and S7).
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Figure 2. Structures of NLS(TMR)-Ab(AF488), NLS(211At)-Ab, 211At-Ab, and NLS(TMR).

To verify the molecular design of our nucleus-selective DDS, live cell imaging was
performed using PANC-1, the pancreatic cancer cell line. We first analyzed the intracellular
dynamics of NLS(TMR) by introducing it to the cytosol via electroporation. NLS(TMR)
was distributed throughout the cytosol and localized to the nucleus with a relatively
high concentration, confirming the function of NLS in ensuring delivery to the nucleus
(Figure 3a). Next, we analyzed the dynamics of NLS(TMR)-Ab(AF488) (Figures 3b, S8 and S9).
NLS(TMR)-Ab(AF488) was smoothly internalized into PANC-1 cells, and both AF488
and TMR fluorescence were observed in the cells. Importantly, after 1 h of incubation,
the observed AF488 and TMR fluorescence partially unmerged, indicating that the Val-
Cit linker was cleaved in lysosomes, allowing for the successful release of the payload.
However, TMR fluorescence was observed as dots in the cells, suggesting that the NLS-
functionalized TMR remained in the lysosomes and did not escape into the cytosol due to
its low membrane permeability.

Overall, fluorescence imaging demonstrated the validity of the nucleus-selective DDS
proposed in this study and its limitations (Figure 3c). The above imaging analysis confirmed
the following three steps: (i) endocytosis into the target cells; (ii) lysosomal cleavage of the
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linker; and (iii) transport to the nucleus. However, TMR fluorescence was not observed
when NLS(TMR)-Ab(AF488) was used, indicating that another critical step in the present
method is lysosomal escape into the cytosol. Namely, the efficacy of the present nucleus-
specific DDS depends on the physical properties (mainly the membrane permeability)
of the payload. Based on these observations, we employed [B]10 as an 211At carrier, in
consideration of its high membrane permeability due to its chaotropic effect [23,24].
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Figure 3. (a) Fluorescent imaging of NLS(TMR). Cells were treated with NLS(TMR) via elec-
troporation and images were obtained after incubation for 8 h. (b) Fluorescent imaging of
NLS(TMR)-Ab(AF488). The cells were treated with NLS(TMR)-Ab(AF488) (50 µg/mL) for
1 h and their nuclei were stained using Hoechst33342. (c) Dynamics of NLS(TMR)-Ab(AF488)
and NLS(TMR).

The cytotoxicities of NLS(211At)-Ab and 211At-Ab against PANC-1 cells were evalu-
ated. After incubation for 4 h, NLS(211At)-Ab showed a greater capacity for inducing DSB
than 211At-Ab (Figures 4a and S10–S13). Furthermore, the cell viability observed after the
4 day incubation period indicated that NLS(211At)-Ab exhibited a stronger cytotoxic-
ity than 211At-Ab (Figure 4b). These findings suggested that the accumulation of 211At
resulted in potent cytotoxicity, thereby indicating the efficacy of the present nucleus-
targeting strategy.
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experiments (n = 3). The standard deviation (SD) is shown as the error bars. One-way ANOVA
followed by Tukey’s test using GraphPad Prism 9: * p < 0.05.

3. Materials and Methods
3.1. Synthesis of Compounds

The details of the synthetic procedure and the characterization data are shown in
Supplementary Materials.

3.2. Fluorescent Imaging of NLS(TMR) Using Electroporation

PANC-1 cells were cultured using RPMI containing 10% FBS and 1% penicillin-
streptomycin. PANC-1 cells were harvested by treating them with trypsin-EDTA solution,
and cells in RPMI (1.5 × 106 cells/mL, 390 mL) were transferred to 0.4 cm cuvettes. To the
cuvette was added NLS(TMR) (6.03 mg) in RPMI (10 mL, final concentration: 10 mM), and
the cells were exposed to the electric field (voltage: 200 V, capacitor: 900 mF). The cells
were transferred to a 35 mm dish and incubated for 8 h at 37 ◦C. After washing with RPMI
three times, the cells were treated with Hoechst33342 (10 µg/mL) in RPMI (100 mL) for
10 min at room temperature. After washing with RPMI three times, the cells were observed
using confocal laser scanning microscopy (A1R, Nikon, Tokyo).

3.3. Fluorescent Imaging of NLS(TMR)-Ab(AF488)

PANC-1 cells were cultured using RPMI containing 10% FBS and 1% penicillin-
streptomycin. PANC-1 cells were incubated for 2 days on a 35 mm glass-bottom dish.
After suction of the medium, to this dish was added Hoechst33342 (10 µg/mL) in RPMI
(100 mL), and the cells were incubated for 10 min at 37 ◦C. After washing with RPMI three
times, to this dish was added NLS(TMR)-Ab(AF488) (PBS solution, 50 µg/mL) in RPMI
(100 mL). After the cells were incubated for 1 h at 37 ◦C, the cells were observed using
confocal laser scanning microscopy (A1R, Nikon, Tokyo, Japan).

3.4. Protocol for Evaluation of DSB Induction

PANC-1 cells (2 × 104 cells/well, 96 well microplate) in RPMI (200 µL) were incubated
for 1 day at 37 ◦C. After suctioning the medium, to the plate was added PBS or 211At-Ab
or NLS(211At)-Ab in PBS (100 mL, final concentration: 1 MBq/mL), and the cells were
incubated for 4 h at 37 ◦C. After suctioning the medium, the cells were fixed with 4% PFA
at room temperature for 30 min. After washing with PBS three times, the cells were treated
with 0.1% Triton X-100 in PBS (100 mL) for 5 min. After washing with PBS three times, an
AF488-labeled anti-gH2A.X antibody in PBS (100 mL, 2 mg/mL) was added, and the cells
were incubated overnight at 4 ◦C. After washing with PBS three times, the cells were treated
with Hoechst33342 in PBS (100 mL, 10 µg/mL) for 10 min at room temperature. After
washing with PBS three times, the cells were observed using an All-in-One Fluorescence
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Microscope (KEYENCE CORPORATION, Osaka, Japan). The obtained images are shown
in the Supplementary Materials (Figure S8).

The images were analyzed by Fiji (NIH). DSB induction was quantified as follows:
the value of the total area stained with AF488-labeled anti-gH2A.X antibody over the
value of the total area stained with Hoechst33342. Each parameter was set as follows:
Brightness: 90–255 (Hoechst), 25–255 (AF488) for color threshold; size (micronˆ2): 0-infinity;
and circularity: 0.00 for analyze particles. Three images were analyzed for all entries, and
the mean and standard deviation were calculated.

3.5. Protocol for Evaluation of Cell Viability

PANC-1 cells (1 × 103 cells/well, 96 well microplate) in RPMI (200 µL) were incubated
for 1 day at 37 ◦C. After suctioning the medium, PBS, or 211At-Ab or NLS(211At)-Ab in PBS
(100 mL, final concentration: 1 MBq/mL) was added, and the cells were incubated for 3.5 h
at 37 ◦C. After washing with PBS three times, RPMI containing 1% FBS (200 mL) was added,
and the cells were incubated at 37 ◦C for 4 days. After incubation, to the plate was added
Cell Counting Kit-8 solution (Dojindo, 20 mL, final concentration: 10%), and the cells were
incubated for 3 h at 37 ◦C. The absorbance of formazan (450 nm) was measured by Infinite
F50 (TECAN, Männedorf, Switzerland) in order to evaluate cell viability. The survival rate
of each entry was standardized by calculating the survival rate of the untreated cells as
100%. Three trials were carried out for all entries, and the mean and standard deviation
were calculated.

4. Conclusions

In summary, in order to develop an efficient TAT, a novel radiolabeled antibody was
designed and synthesized to enable nucleus-selective RI transport, resulting in increased
potency. This high-resolution drug delivery system was expected to be achieved by in-
corporating a signal peptide (NLS) and a cleavable Val-Cit linker, whose functions were
confirmed via fluorescence imaging. The imaging analysis also highlighted the necessity for
the payload to show membrane permeability in order to enable its escape from lysosomes.
To overcome this challenge, we employed [B]10, which exhibited a dual function, as an 211At
carrier and a membrane permeabilizer. To the best of our knowledge, this is the first report
on the fabrication of an antibody conjugate oriented toward the organelle-selective delivery
property of payloads. Organelle-selective drug delivery is a state-of-the-art drug delivery
technology, and this study demonstrates its feasibility and clarifies design guidelines.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24119593/s1. References [28–30] are cited in the supplementary materials.
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