Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,549)

Search Parameters:
Keywords = target disorder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 479 KB  
Review
Chronic Kidney Disease-Associated Pruritus in Hemodialysis: Unraveling Mechanisms and Emerging Therapeutic Targets—A Systematic Review
by Fasie Dragos, Suliman Ioana Livia, Panculescu Florin Gabriel, Cimpineanu Bogdan, Alexandru Andreea, Alexandrescu Luana, Alexandrescu Maria Daria, Popescu Stere, Enache Florin-Daniel, Manac Iulian, Mihai Lavinia Mihaela, Popa Marius Florentin, Tudor Iuliana-Cezara, Nitu Radu Adrian, Chisnoiu Tatiana, Cozaru Georgeta Camelia, Hangan Tony and Tuta Liliana-Ana
Int. J. Mol. Sci. 2026, 27(2), 851; https://doi.org/10.3390/ijms27020851 (registering DOI) - 15 Jan 2026
Abstract
This systematic review examines chronic kidney disease-associated pruritus (CKD-aP) as a complex clinical manifestation in patients undergoing hemodialysis. Traditionally considered a secondary symptom of end-stage renal disease, emerging evidence now positions CKD-aP as a multidimensional disorder with substantial pathogenic influence on patient outcomes. [...] Read more.
This systematic review examines chronic kidney disease-associated pruritus (CKD-aP) as a complex clinical manifestation in patients undergoing hemodialysis. Traditionally considered a secondary symptom of end-stage renal disease, emerging evidence now positions CKD-aP as a multidimensional disorder with substantial pathogenic influence on patient outcomes. Using the PRISMA 2020 methodology, we critically evaluated 54 peer-reviewed studies published between 2020 and 2025. Our synthesis highlights a convergence of five mechanistic frameworks underpinning CKD-aP: elevated levels of uremic toxins originating from gut microbial dysbiosis, immune activation driven by IL-31 and other pro-inflammatory cytokines, heightened peripheral and central neural sensitization, dysregulation of endogenous opioid receptor pathways favoring μ-receptor activation, and xerosis-related epidermal barrier dysfunction. These mechanisms contribute to a systemic cycle of microinflammation, pruritogenic signaling, and neural hyperexcitability. We also identified and compared validated assessment tools—including the NRS, VAS, Skindex-10, and the UP-Dial scale—that facilitate standardized quantification of disease burden. While available treatments such as gabapentinoids and phototherapy offer partial relief, targeted therapies—including κ-opioid receptor agonists—represent a major advancement, although long-term effectiveness and accessibility remain under investigation. Growing scientific consensus establishes CKD-aP as a priority therapeutic target in hemodialysis care, underscoring the need for integrated, mechanism-based management strategies to improve quality of life and clinical outcomes. This work represents a narrative systematic review, integrating evidence from mechanistic, translational, and clinical studies to critically examine the biological pathways underlying CKD-associated pruritus. Full article
Show Figures

Figure 1

43 pages, 3140 KB  
Review
Advances and Perspectives in Curcumin Regulation of Systemic Metabolism: A Focus on Multi-Organ Mechanisms
by Dingya Sun, Jialu Wang, Xin Li, Jun Peng and Shan Wang
Antioxidants 2026, 15(1), 109; https://doi.org/10.3390/antiox15010109 - 14 Jan 2026
Abstract
Curcumin, a natural polyphenol derived from turmeric, functions as a potent exogenous antioxidant and exhibits a range of benefits in the prevention and management of metabolic diseases. Despite its extremely low systemic bioavailability, curcumin demonstrates significant bioactivity in vivo, a phenomenon likely attributable [...] Read more.
Curcumin, a natural polyphenol derived from turmeric, functions as a potent exogenous antioxidant and exhibits a range of benefits in the prevention and management of metabolic diseases. Despite its extremely low systemic bioavailability, curcumin demonstrates significant bioactivity in vivo, a phenomenon likely attributable to its accumulation in the intestines and subsequent modulation of systemic oxidative stress and inflammation. This article systematically reviews the comprehensive regulatory effects of curcumin on systemic metabolic networks—including glucose metabolism, amino acid metabolism, lipid metabolism, and mitochondrial metabolism—and explores their molecular basis, particularly how curcumin facilitates systemic metabolic improvements by alleviating oxidative stress and interacting with inflammation. Preclinical studies indicate that curcumin accumulates in the intestines, where it remodels the microbiota through prebiotic effects, enhances barrier integrity, and reduces endotoxin influx—all of which are critical drivers of systemic oxidative stress and inflammation. Consequently, curcumin improves insulin resistance, hyperglycemia, and dyslipidemia across multiple organs (liver, muscle, adipose) by activating antioxidant defense systems (e.g., Nrf2), enhancing mitochondrial respiratory function (via PGC-1α/AMPK), and suppressing pro-inflammatory pathways (e.g., NF-κB). Clinical trials have corroborated these effects, demonstrating that curcumin supplementation significantly enhances glycemic control, lipid profiles, adipokine levels, and markers of oxidative stress and inflammation in patients with obesity, type 2 diabetes, and non-alcoholic fatty liver disease. Therefore, curcumin emerges as a promising multi-target therapeutic agent against metabolic diseases through its systemic antioxidant and anti-inflammatory networks. Future research should prioritize addressing its bioavailability limitations and validating its efficacy through large-scale trials to translate this natural antioxidant into a precision medicine strategy for metabolic disorders. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

17 pages, 1011 KB  
Review
Biomolecular Condensates in Disease: Decoding the Material State and Engineering Precision Modulators
by Biwei Han, Boxian Li, Xingyue Wang and Liang Wang
Int. J. Mol. Sci. 2026, 27(2), 837; https://doi.org/10.3390/ijms27020837 - 14 Jan 2026
Abstract
The recognition of liquid–liquid phase separation (LLPS) as a widespread organizing principle has revolutionized our view of cellular biochemistry. By forming biomolecular condensates, cells spatially orchestrate reactions without membranes. However, the dysregulation of this precise physical organization is emerging as a driver of [...] Read more.
The recognition of liquid–liquid phase separation (LLPS) as a widespread organizing principle has revolutionized our view of cellular biochemistry. By forming biomolecular condensates, cells spatially orchestrate reactions without membranes. However, the dysregulation of this precise physical organization is emerging as a driver of diverse pathologies, collectively termed “Condensatopathies.” Unlike traditional proteinopathies defined by static aggregates, these disorders span a dynamic spectrum of material state dysfunctions, from the failure to assemble essential compartments to the formation of aberrant, toxic phases. While research has largely focused on neurodegeneration and cancer, the impact of condensate dysfunction likely extends across broad physiological landscapes. A central unresolved challenge lies in deciphering the “molecular grammar” that governs the transition from functional fluids to pathological solids and, critically, visualizing these transitions in situ. This “material science” perspective presents a profound conundrum for drug discovery: how to target the collective physical state of a protein ensemble rather than a fixed active site. This review navigates the evolving therapeutic horizon, examining the limitations of current pharmacological approaches in addressing the complex “condensatome.” Moving beyond inhibition, we propose that the future of intervention lies in “reverse-engineering” the biophysical codes of phase separation. We discuss how deciphering these principles enables the creation of programmable molecular tools—such as synthetic peptides and state-specific degraders—designed to precisely modulate or dismantle pathological condensates, paving the way for a new era of precision medicine governed by soft matter physics. Full article
Show Figures

Figure 1

55 pages, 9068 KB  
Article
Rationally Designed Dual Kinase Inhibitors for Management of Obstructive Sleep Apnea—A Computational Study
by Kosi Gramatikoff, Miroslav Stoykov and Mario Milkov
Biomedicines 2026, 14(1), 181; https://doi.org/10.3390/biomedicines14010181 - 14 Jan 2026
Abstract
Background/Objectives: Obstructive sleep apnea (OSA) affects approximately 1 billion adults worldwide with extensive comorbidities, including cardiovascular disease, metabolic disorders, and cognitive decline, yet pharmacological therapies remain limited. Conventional bottom-up omics approaches identify numerous genes overlapping with other diseases, hindering therapeutic translation. This study [...] Read more.
Background/Objectives: Obstructive sleep apnea (OSA) affects approximately 1 billion adults worldwide with extensive comorbidities, including cardiovascular disease, metabolic disorders, and cognitive decline, yet pharmacological therapies remain limited. Conventional bottom-up omics approaches identify numerous genes overlapping with other diseases, hindering therapeutic translation. This study introduces a top-down, comorbidity-driven approach to identify actionable molecular targets and develop rational dual kinase inhibitors for OSA management. Methods: We implemented a five-tier modeling workflow: (1) comorbidity network analysis, (2) disease module identification through NetworkAnalyst, (3) mechanistic pathway reconstruction of the CK1δ-(HIF1A)-PINK1 signaling cascade, (4) molecular docking analysis of Nigella sativa alkaloids and reference inhibitors (IC261, PF-670462) against CK1δ (PDB: 3UYS) and PINK1 (PDB: 5OAT) using AutoDock Vina, and (5) rational design and computational validation of novel dual inhibitors (ICL, PFL) integrating pharmacophoric features from natural alkaloids and established kinase inhibitors. Results: Extensive network analysis revealed a discrete OSA disease module centered on two interconnected protein kinases—CK1δ and PINK1—that mechanistically bridge circadian disruption and neurodegeneration. Among natural alkaloids, Nigellidine showed strongest CK1δ binding (−8.0 kcal/mol) and Nigellicine strongest PINK1 binding (−8.6 kcal/mol). Rationally designed dual inhibitors demonstrated superior binding: ICL (−7.2 kcal/mol PINK1, −8.9 kcal/mol CK1δ) and PFL (−10.8 kcal/mol CK1δ, −11.2 kcal/mol PINK1), representing −2.6–2.8 kcal/mol improvements over reference compounds. Conclusions: This study establishes a comorbidity-driven translational framework identifying the CK1δ-PINK1 axis as a therapeutic target in OSA. The rationally designed dual inhibitors represent third-generation precision therapeutics addressing OSA’s multi-dimensional pathophysiology, while the five-tier workflow provides a generalizable template for drug discovery in complex multimorbid diseases. Full article
Show Figures

Figure 1

23 pages, 2955 KB  
Review
Molecular Mechanisms and Therapeutic Potential of Baicalein in Acute Pancreatitis: A Comprehensive Review
by Linbo Yao, Shiyu Liu, Wei Huang and Xinmin Yang
Biomolecules 2026, 16(1), 151; https://doi.org/10.3390/biom16010151 - 14 Jan 2026
Abstract
Acute pancreatitis (AP) is a severe inflammatory disorder characterized by a complex molecular pathophysiology involving premature zymogen activation, organelle dysfunction, and systemic immune dysregulation. Current therapeutic strategies remain largely supportive, underscoring the critical need for specific molecular-targeted interventions. Baicalein, a bioactive flavonoid derived [...] Read more.
Acute pancreatitis (AP) is a severe inflammatory disorder characterized by a complex molecular pathophysiology involving premature zymogen activation, organelle dysfunction, and systemic immune dysregulation. Current therapeutic strategies remain largely supportive, underscoring the critical need for specific molecular-targeted interventions. Baicalein, a bioactive flavonoid derived from Scutellaria baicalensis Georgi, has emerged as a potent pleiotropic agent. This review comprehensively synthesizes the molecular mechanisms underlying baicalein’s therapeutic efficacy in AP. Its capacity to intercept the pathological cascade at multiple checkpoints is elucidated, from mitigating the initiating cytosolic calcium overload and preserving mitochondrial integrity to suppressing the cytokine storm via the TLR4/NF-κB/MAPK signaling axis. Crucially, baicalein modulates the pancreatic immune microenvironment by driving the phenotypic polarization of macrophages from pro-inflammatory M1 to reparative M2 states and regulating neutrophil dynamics, specifically by inhibiting infiltration and neutrophil extracellular trap formation. Furthermore, its role in orchestrating regulated cell death pathways is highlighted, specifically by blocking pyroptosis and ferroptosis while modulating apoptosis, and its function as a biophysical scavenger of circulating histones and pancreatic lipase to neutralize systemic toxins. Consequently, this review emphasizes the multi-target biological activities of baicalein, providing a mechanistic rationale for its development as a precision therapeutic candidate for AP. Full article
Show Figures

Figure 1

18 pages, 306 KB  
Article
Hypermethylation of OPRM1: Deregulation of the Endogenous Opioid Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia
by Arne Wyns, Jolien Hendrix, Jente Van Campenhout, Yanthe Buntinx, Huan-Yu Xiong, Elke De Bruyne, Lode Godderis, Jo Nijs, David Rice, Daniel Chiang and Andrea Polli
Int. J. Mol. Sci. 2026, 27(2), 826; https://doi.org/10.3390/ijms27020826 - 14 Jan 2026
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are debilitating disorders with overlapping symptoms such as chronic pain and fatigue. Dysregulation of the endogenous opioid system, particularly µ-opioid receptor function, may contribute to their pathophysiology. This study examined whether epigenetic modifications, specifically µ-opioid [...] Read more.
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are debilitating disorders with overlapping symptoms such as chronic pain and fatigue. Dysregulation of the endogenous opioid system, particularly µ-opioid receptor function, may contribute to their pathophysiology. This study examined whether epigenetic modifications, specifically µ-opioid receptor 1 gene (OPRM1) promoter methylation, play a role in this dysfunction. Using a repeated-measures design, 28 ME/CFS/FM patients and 26 matched healthy controls visited the hospital twice within four days. Assessments included blood sampling for epigenetic analysis, a clinical questionnaire battery, and quantitative sensory testing (QST). Global DNA (hydroxy)methylation was quantified via liquid chromatography–tandem mass spectrometry, and targeted pyrosequencing was performed on promoter regions of OPRM1, COMT, and BDNF. ME/CFS/FM patients reported significantly worse symptom outcomes. No differences in global (hydroxy)methylation were found. Patients showed significantly higher OPRM1 promoter methylation, which remained after adjusting for symptom severity and QST findings. Across timepoints, OPRM1 methylation consistently correlated with BDNF Promoter I and Exon III methylation. This is, to the best of our knowledge, the first study examining OPRM1 methylation in ME/CFS/FM. Increased OPRM1 methylation in patients, independent of symptoms or pain sensitivity measures, supports the hypothesis of dysregulated opioidergic signaling in these conditions. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
31 pages, 1515 KB  
Review
Regenerative Strategies for Androgenetic Alopecia: Evidence, Mechanisms, and Translational Pathways
by Rimma Laufer Britva and Amos Gilhar
Cosmetics 2026, 13(1), 19; https://doi.org/10.3390/cosmetics13010019 - 14 Jan 2026
Abstract
Hair loss disorders, particularly androgenetic alopecia (AGA), are common conditions that carry significant psychosocial impact. Current standard therapies, including minoxidil, finasteride, and hair transplantation, primarily slow progression or re-distribute existing follicles and do not regenerate lost follicular structures. In recent years, regenerative medicine [...] Read more.
Hair loss disorders, particularly androgenetic alopecia (AGA), are common conditions that carry significant psychosocial impact. Current standard therapies, including minoxidil, finasteride, and hair transplantation, primarily slow progression or re-distribute existing follicles and do not regenerate lost follicular structures. In recent years, regenerative medicine has been associated with a gradual shift toward approaches that aim to restore follicular function and architecture. Stem cell-derived conditioned media and exosomes have shown the ability to activate Wnt/β-catenin signaling, enhance angiogenesis, modulate inflammation, and promote dermal papilla cell survival, resulting in improved hair density and shaft thickness with favorable safety profiles. Autologous cell-based therapies, including adipose-derived stem cells and dermal sheath cup cells, have demonstrated the potential to rescue miniaturized follicles, although durability and standardization remain challenges. Adjunctive interventions such as microneedling and platelet-rich plasma (PRP) further augment follicular regeneration by inducing controlled micro-injury and releasing growth and neurotrophic factors. In parallel, machine learning-based diagnostic tools and deep hair phenotyping offer improved severity scoring, treatment monitoring, and personalized therapeutic planning, while robotic Follicular Unit Excision (FUE) platforms enhance surgical precision and graft preservation. Advances in tissue engineering and 3D follicle organoid culture suggest progress toward producing transplantable follicle units, though large-scale clinical translation is still in early development. Collectively, these emerging biological and technological strategies indicate movement beyond symptomatic management toward more targeted, multimodal approaches. Future progress will depend on standardized protocols, regulatory clarity, and long-term clinical trials to define which regenerative approaches can reliably achieve sustainable follicle renewal in routine cosmetic dermatology practice. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

22 pages, 9987 KB  
Article
Network Hypoactivity in ALG13-CDG: Disrupted Developmental Pathways and E/I Imbalance as Early Drivers of Neurological Features in CDG
by Rameen Shah, Rohit Budhhraja, Silvia Radenkovic, Graeme Preston, Alexia Tyler King, Sahar Sabry, Charlotte Bleukx, Ibrahim Shammas, Lyndsay Young, Jisha Chandran, Seul Kee Byeon, Ronald Hrstka, Doughlas Y. Smith, Nathan P. Staff, Richard Drake, Steven A. Sloan, Akhilesh Pandey, Eva Morava and Tamas Kozicz
Cells 2026, 15(2), 147; https://doi.org/10.3390/cells15020147 - 14 Jan 2026
Abstract
Background: ALG13-CDG is an X-linked N-linked glycosylation disorder caused by pathogenic variants in the glycosyltransferase ALG13, leading to severe neurological manifestations. Despite the clear CNS involvement, the impact of ALG13 dysfunction on human brain glycosylation and neurodevelopment remains unknown. We hypothesize that ALG13-CDG [...] Read more.
Background: ALG13-CDG is an X-linked N-linked glycosylation disorder caused by pathogenic variants in the glycosyltransferase ALG13, leading to severe neurological manifestations. Despite the clear CNS involvement, the impact of ALG13 dysfunction on human brain glycosylation and neurodevelopment remains unknown. We hypothesize that ALG13-CDG causes brain-specific hypoglycosylation that disrupts neurodevelopmental pathways and contributes directly to cortical network dysfunction. Methods: We generated iPSC-derived human cortical organoids (hCOs) from individuals with ALG13-CDG to define the impact of hypoglycosylation on cortical development and function. Electrophysiological activity was assessed using MEA recordings and integrated with multiomic profiling, including scRNA-seq, proteomics, glycoproteomics, N-glycan imaging, lipidomics, and metabolomics. X-inactivation status was evaluated in both iPSCs and hCOs. Results: ALG13-CDG hCOs showed reduced glycosylation of proteins involved in ECM organization, neuronal migration, lipid metabolism, calcium homeostasis, and neuronal excitability. These pathway disruptions were supported by proteomic and scRNA-seq data and included altered intercellular communication. Trajectory analyses revealed mistimed neuronal maturation with early inhibitory and delayed excitatory development, indicating an E/I imbalance. MEA recordings demonstrated early network hypoactivity with reduced firing rates, immature burst structure, and shortened axonal projections, while transcriptomic and proteomic signatures suggested emerging hyperexcitability. Altered lipid and GlcNAc metabolism, along with skewed X-inactivation, were also observed. Conclusions: Our study reveals that ALG13-CDG is a disorder of brain-specific hypoglycosylation that disrupts key neurodevelopmental pathways and destabilizes cortical network function. Through integrated multiomic and functional analyses, we identify early network hypoactivity, mistimed neuronal maturation, and evolving E/I imbalance that progresses to compensatory hyperexcitability, providing a mechanistic basis for seizure vulnerability. These findings redefine ALG13-CDG as disorders of cortical network instability, offering a new framework for targeted therapeutic intervention. Full article
Show Figures

Figure 1

18 pages, 1845 KB  
Review
Paraneoplastic Neurological Syndromes: Advances and Future Perspectives in Immunopathogenesis and Management
by Stoimen Dimitrov, Mihael Tsalta-Mladenov, Plamena Kabakchieva, Tsvetoslav Georgiev and Silva Andonova
Antibodies 2026, 15(1), 8; https://doi.org/10.3390/antib15010008 - 14 Jan 2026
Abstract
Paraneoplastic neurological syndromes (PNSs) are immune-mediated disorders caused by an antitumor response that cross-reacts with the nervous system, leading to severe and often irreversible neurological disability. Once considered exceedingly rare, PNSs are now increasingly recognized owing to the identification of novel neural autoantibodies, [...] Read more.
Paraneoplastic neurological syndromes (PNSs) are immune-mediated disorders caused by an antitumor response that cross-reacts with the nervous system, leading to severe and often irreversible neurological disability. Once considered exceedingly rare, PNSs are now increasingly recognized owing to the identification of novel neural autoantibodies, wider use of commercial testing, and the emergence of immune checkpoint inhibitor (ICI)-related neurotoxicity that phenotypically overlaps with classic PNS. In this narrative review, we performed a structured search of PubMed/MEDLINE, Scopus, Web of Science, and Google Scholar, without date restrictions, to summarize contemporary advances in the epidemiology, pathogenesis, diagnosis, and management of PNS. Population-based data show rising incidence, largely reflecting improved ascertainment and expanding indications for ICIs. Pathogenetically, we distinguish T-cell-mediated syndromes associated with intracellular antigens from antibody-mediated disorders targeting neuronal surface proteins, integrating emerging concepts of molecular mimicry, tumor genetics, and HLA-linked susceptibility. The 2021 PNS-Care criteria are also reviewed, which replace earlier “classical/non-classical” definitions with risk-stratified phenotypes and antibodies, and demonstrate superior diagnostic performance while underscoring that “probable” and “definite” PNS should be managed with equal urgency. Newly described antibodies and methodological innovations such as PhIP-Seq, neurofilament light chain, and liquid biopsy are highlighted, which refine tumor search strategies and longitudinal monitoring. Management principles emphasize early tumor control, prompt immunotherapy, and a growing repertoire of targeted agents, alongside specific considerations for ICI-associated neurological syndromes. Remaining challenges include diagnostic delays, limited high-level evidence, and the paucity of validated biomarkers of disease activity. Future work should prioritize prospective, biomarker-driven trials and multidisciplinary pathways to shorten time to diagnosis and improve long-term outcomes in patients with PNS. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Graphical abstract

23 pages, 924 KB  
Review
Beyond the Lungs: Cardiovascular Risk in COPD Patients with a History of Tuberculosis—A Narrative Review
by Ramona Cioboata, Mihai Olteanu, Denisa Maria Mitroi, Simona-Maria Roșu, Maria-Loredana Tieranu, Silviu Gabriel Vlasceanu, Simona Daniela Neamtu, Eugen Nicolae Tieranu, Rodica Padureanu and Mara Amalia Balteanu
J. Clin. Med. 2026, 15(2), 661; https://doi.org/10.3390/jcm15020661 - 14 Jan 2026
Abstract
Chronic obstructive pulmonary disease (COPD) and tuberculosis (TB) increasingly co-occur in low- and middle-income countries and aging populations. Prior pulmonary TB is a robust, smoking-independent determinant of COPD and is linked to persistent systemic inflammation, endothelial dysfunction, dyslipidemia, and hypercoagulability axes that also [...] Read more.
Chronic obstructive pulmonary disease (COPD) and tuberculosis (TB) increasingly co-occur in low- and middle-income countries and aging populations. Prior pulmonary TB is a robust, smoking-independent determinant of COPD and is linked to persistent systemic inflammation, endothelial dysfunction, dyslipidemia, and hypercoagulability axes that also amplify cardiovascular disease (CVD) risk. We conducted a targeted narrative non-systematic review (2005–2025) of PubMed/MEDLINE, Embase, Scopus, and Web of Science, selecting studies for clinical relevance across epidemiology, clinical phenotypes, pathobiology, biomarkers, risk scores, sleep-disordered breathing, and management. No quantitative synthesis or formal risk-of-bias assessment was performed. Accordingly, findings should be interpreted as a qualitative synthesis rather than pooled estimates. Prior TB is associated with a distinctive COPD phenotype characterized by mixed obstructive–restrictive defects, reduced diffusing capacity (DLCO), radiographic sequelae, and higher exacerbation/hospitalization burden. Mechanistic insights: Convergent mechanisms chronic immune activation, endothelial injury, prothrombotic remodeling, molecular mimicry, and epigenetic reprogramming provide biologic plausibility for excess CVD, venous thromboembolism, and pulmonary hypertension. Multimarker panels spanning inflammation, endothelial injury, myocardial strain/fibrosis, and coagulation offer incremental prognostic value beyond clinical variables. While QRISK4 now includes COPD, it does not explicitly model prior TB or COPD-TB outcomes, but data specific to post-TB cohorts remain limited. Clinical implications: In resource-constrained settings, pragmatic screening, prioritized PAP access, guideline-concordant pharmacotherapy, and task-shifting are feasible adaptations. A history of TB is a clinically meaningful modifier of cardiopulmonary risk in COPD. An integrated, multimodal assessment history, targeted biomarkers, spirometry/lung volumes, DLCO, 6 min walk test, and focused imaging should guide individualized care while TB-aware prediction models and implementation studies are developed and validated in high-burden settings. Full article
Show Figures

Figure 1

13 pages, 1749 KB  
Article
Addisonian Crisis Mimicking Acute Kidney Injury in Dogs: A Retrospective Study of 34 Dogs Diagnosed with Acute Kidney Injury in Romania
by Ștefania Roșca, Gheorghe Solcan, Mihail Moroz, Raluca Adriana Ștefănescu, Alina Levința and Paula Maria Pașca
Life 2026, 16(1), 127; https://doi.org/10.3390/life16010127 - 14 Jan 2026
Abstract
Primary hypoadrenocorticism (Addison’s disease) is an uncommon but potentially life-threatening endocrine disorder in dogs. Affected animals may present with clinicopathological features mimicking acute kidney injury (AKI). The challenge in diagnosing hypoadrenocorticism arises from its highly heterogeneous and non-specific clinical presentation, including acute kidney [...] Read more.
Primary hypoadrenocorticism (Addison’s disease) is an uncommon but potentially life-threatening endocrine disorder in dogs. Affected animals may present with clinicopathological features mimicking acute kidney injury (AKI). The challenge in diagnosing hypoadrenocorticism arises from its highly heterogeneous and non-specific clinical presentation, including acute kidney injury (AKI). This retrospective observational study aimed to evaluate dogs presenting with AKI and to identify cases in which primary hypoadrenocorticism was the underlying etiology. Thirty-four dogs diagnosed with acute kidney injury were evaluated at the Clinical Hospital for Companion Animals of the “Ion Ionescu de la Brad” University of Life Sciences, Iași, Romania, among which three (8.8%) were endocrinologically confirmed to have primary hypoadrenocorticism. The evaluation protocol included a complete clinical examination, hematological, biochemical, and hormonal investigations, urinalysis, abdominal ultrasonography, and an ACTH stimulation test. These dogs exhibited hyponatremia, hyperkalemia, a reduced sodium-to-potassium ratio, and azotemia at admission, closely resembling intrinsic AKI. Following fluid therapy and hormone replacement, rapid normalization of electrolyte and renal parameters was observed. These findings support hypovolemia and electrolyte imbalance as the primary mechanisms underlying reversible prerenal azotemia in these cases. If not diagnosed early, this condition has a significant risk of progressing to acute tubular necrosis. The findings highlight the need for careful differentiation between primary AKI and renal dysfunction secondary to Addison’s disease, as well as the importance of promptly initiating hormone replacement therapy. In conclusion, hypoadrenocorticism should be considered in dogs presenting with AKI and electrolyte imbalance. Early endocrine evaluation and prompt initiation of targeted therapy are essential to avoiding misdiagnosis and optimizing clinical outcomes. Full article
(This article belongs to the Special Issue Veterinary Pathology and Veterinary Anatomy: 3rd Edition)
Show Figures

Figure 1

13 pages, 450 KB  
Article
Synergistic Effect of Passiflora incarnata L., Herba and Cognitive Behavioural Therapy in the Management of Benzodiazepine Misuse
by Matteo Carminati, Mattia Tondello, Martina Zappia and Raffaella Zanardi
Pharmaceuticals 2026, 19(1), 141; https://doi.org/10.3390/ph19010141 - 14 Jan 2026
Abstract
Background/Objectives. Chronic benzodiazepine (BDZ) use is frequently maintained beyond recommended durations due to neuroadaptation, psychological dependence, and withdrawal-related issues. Passiflora incarnata L., herba (P. incarnata) has shown anxiolytic and GABAergic activity that may mitigate withdrawal symptoms, while cognitive-behavioural therapy (CBT) [...] Read more.
Background/Objectives. Chronic benzodiazepine (BDZ) use is frequently maintained beyond recommended durations due to neuroadaptation, psychological dependence, and withdrawal-related issues. Passiflora incarnata L., herba (P. incarnata) has shown anxiolytic and GABAergic activity that may mitigate withdrawal symptoms, while cognitive-behavioural therapy (CBT) targets maladaptive beliefs and behaviours sustaining BDZ misuse. This study investigates the independent and interactive effects of P. incarnata and CBT on BDZ dose reduction during a three-month tapering program. Methods. This retrospective observational study included 186 outpatients with anxiety or depressive disorders in clinical remission undergoing BDZ tapering, of whom 93 received a dry extract of P. incarnata as adjunctive treatment and 93, matched for diagnosis, age and sex, followed a standard tapering protocol. BDZ doses were assessed at baseline and three months. CBT was recorded as a binary variable based on the information documented in the medical records. An ANCOVA was performed to assess the impact of CBT and P. incarnata on BDZ reduction (change in mg diazepam equivalents), adjusting for sex, age, education, baseline anxiety and depression scores, initial BDZ and antidepressant dosage. A subgroup analysis was conducted to investigate the role of P. incarnata dosage in BDZ reduction. Results. Both CBT and P. incarnata were associated with significantly greater reductions in BDZ dosage at three months (CBT: p = 0.005, effect size: 0.032; P. incarnata: p < 0.001, effect size: 0.128). A significant interaction between CBT and P. incarnata was also observed (p = 0.037, effect size: 0.018), indicating a synergistic effect when both interventions were combined. Baseline sociodemographic characteristics, BDZ and antidepressant dosage and symptom severity did not differ significantly between groups. Patients taking 400–600 mg of P. incarnata dry extract showed a higher BDZ reduction compared to those taking 200 mg. Conclusions. These findings suggest that P. incarnata and CBT exert independent yet complementary effects in supporting BDZ tapering. Their combination appears to enhance dose reduction beyond either intervention alone, supporting a multimodal approach that addresses both neurobiological and psychological components of BDZ addiction. Prospective controlled studies are needed to confirm these results and to clarify their impact on long-term discontinuation outcomes. Full article
(This article belongs to the Special Issue Natural Products as an Alternative for Treatment of Human Diseases)
Show Figures

Figure 1

21 pages, 889 KB  
Review
Transient Receptor Potential (TRP) Channels as Fundamental Regulators of Fibrosis and Pruritus—A New Therapeutic Target for Pathological Scar Management
by Yuchen Tang, Zheng Zhang and Yixin Zhang
Int. J. Mol. Sci. 2026, 27(2), 815; https://doi.org/10.3390/ijms27020815 - 14 Jan 2026
Abstract
Pathological scars (PSs), which encompass hypertrophic scars (HSs and keloids, pose significant challenges in the realm of plastic surgery due to their characteristics of excessive fibrosis and persistent pruritus. This fibrosis can lead to both functional limitations and aesthetic issues, while pruritus often [...] Read more.
Pathological scars (PSs), which encompass hypertrophic scars (HSs and keloids, pose significant challenges in the realm of plastic surgery due to their characteristics of excessive fibrosis and persistent pruritus. This fibrosis can lead to both functional limitations and aesthetic issues, while pruritus often indicates ongoing scar development and greatly impacts quality of life. Although the underlying cause of both conditions is linked to dysregulated inflammation, the specific connections between fibrosis and pruritus are not well understood. Transient receptor potential channels (TRP), known for their roles in systemic fibrotic diseases and as mediators of chronic pruritus in skin disorders, may play a crucial role in the environment of pathological scars. This review compiles existing research to investigate the idea that certain TRP subfamilies (TRPA1, TRPV1, TRPV3, TRPV4) could link fibrosis and pruritus in pathological scars by interacting with common inflammatory mediators. We suggest that these channels might act as central molecular hubs that connect the signaling pathways of fibrosis and pruritus in these scars. Therefore, targeting TRP channels pharmacologically could be a promising approach to simultaneously alleviate both fibrosis and pruritus, potentially leading to a new dual-pathway treatment strategy for managing pathological scars. Our review also critically examines the current landscape of TRP-targeted therapies, pointing out challenges such as limited selectivity for specific subtypes and the lack of clinical trials focused on pathological scars, while emphasizing the necessity for interdisciplinary advancements in this area. In conclusion, while TRP channels are attractive targets for therapeutic intervention in pathological scars, their effective clinical application necessitates a more profound understanding of the mechanisms specific to scars and the creation of targeted delivery methods. Full article
(This article belongs to the Special Issue Dermatology: Advances in Pathophysiology and Therapies (3rd Edition))
Show Figures

Figure 1

31 pages, 3388 KB  
Review
Molecular Insights into Dominant Pseudouridine RNA Modification: Implications for Women’s Health and Disease
by Qiwei Yang, Ayman Al-Hendy and Thomas G. Boyer
Biology 2026, 15(2), 142; https://doi.org/10.3390/biology15020142 - 14 Jan 2026
Abstract
Pseudouridine (Ψ), the most abundant RNA modification, plays essential roles in shaping RNA structure, stability, and translational output. Beyond cancer, Ψ is dynamically regulated across numerous physiological and pathological contexts—including immune activation, metabolic disorders, stress responses, and pregnancy-related conditions such as preeclampsia—where elevated [...] Read more.
Pseudouridine (Ψ), the most abundant RNA modification, plays essential roles in shaping RNA structure, stability, and translational output. Beyond cancer, Ψ is dynamically regulated across numerous physiological and pathological contexts—including immune activation, metabolic disorders, stress responses, and pregnancy-related conditions such as preeclampsia—where elevated Ψ levels reflect intensified RNA turnover and modification activity. These broad functional roles highlight pseudouridylation as a central regulator of cellular homeostasis. Emerging evidence demonstrates that Ψ dysregulation contributes directly to the development and progression of several women’s cancers, including breast, ovarian, endometrial, and cervical malignancies. Elevated Ψ levels in tissues, blood, and urine correlate with tumor burden, metastatic potential, and therapeutic responsiveness. Aberrant activity of Ψ synthases such as PUS1, PUS7, and the H/ACA ribonucleoprotein component dyskerin alters pseudouridylation patterns across multiple RNA substrates, including rRNA, tRNA, mRNA, snoRNAs, and ncRNAs. These widespread modifications reshape ribosome function, modify transcript stability and translational efficiency, reprogram RNA–protein interactions, and activate oncogenic signaling programs. Advances in high-resolution, site-specific Ψ mapping technologies have further revealed mechanistic links between pseudouridylation and malignant transformation, highlighting how modification of distinct RNA classes contributes to altered cellular identity and tumor progression. Collectively, Ψ and its modifying enzymes represent promising biomarkers and therapeutic targets across women’s cancers, while also serving as sensitive indicators of diverse non-cancer physiological and disease states. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Figure 1

19 pages, 2464 KB  
Review
The Role of Lipid Alteration in Multiple Sclerosis
by Agnieszka Damiza-Detmer, Małgorzata Pawełczyk and Andrzej Głąbiński
Int. J. Mol. Sci. 2026, 27(2), 812; https://doi.org/10.3390/ijms27020812 - 14 Jan 2026
Abstract
Multiple sclerosis (MS) is traditionally recognized as a chronic immune-mediated disorder of the central nervous system (CNS), but increasing evidence suggests that systemic metabolic alterations may also contribute to its pathophysiology. Lipid abnormalities in MS have recently attracted renewed research interest, with studies [...] Read more.
Multiple sclerosis (MS) is traditionally recognized as a chronic immune-mediated disorder of the central nervous system (CNS), but increasing evidence suggests that systemic metabolic alterations may also contribute to its pathophysiology. Lipid abnormalities in MS have recently attracted renewed research interest, with studies focusing both on dysregulation of lipid signaling pathways and on alterations in standard lipid profile components, including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), and non-HDL cholesterol. Although disturbances in serum lipid profiles are consistently reported in patients with MS, their origin remains unresolved. Emerging data indicate that dyslipidemia may stem from aberrant cholesterol metabolism within the CNS, secondary to demyelination and myelin sheath destruction, leading to the release of lipid-rich debris and subsequent systemic metabolic imbalance. These lipid changes appear to correlate with blood–brain barrier (BBB) dysfunction, suggesting a link between peripheral lipid metabolism and CNS inflammation. This review summarizes current knowledge on the mechanisms underlying dyslipidemia in MS, its potential impact on disease progression, and its relevance as a possible therapeutic or biomarker target in future translational studies. Full article
(This article belongs to the Special Issue The Role of Lipids in Health and Diseases)
Show Figures

Figure 1

Back to TopTop