Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = tapir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9515 KiB  
Article
Survey of Piroplasmids in Wild Mammals, Unconventional Pets, and Ticks from Goiás State, Midwestern Brazil
by Raphaela Bueno Mendes Bittencourt, Ana Cláudia Calchi, Lucianne Cardoso Neves, Nicolas Jalowitzki de Lima, Gabriel Cândido dos Santos, Ennya Rafaella Neves Cardoso, Warley Vieira de Freitas Paula, Luciana Batalha de Miranda Araújo, Jessica Rocha Gonçalves, Elisângela de Albuquerque Sobreira, Luiz Alfredo Martins Lopes Baptista, Hermes Ribeiro Luz, Marcos Rogério André, Filipe Dantas-Torres and Felipe da Silva Krawczak
Pathogens 2025, 14(6), 585; https://doi.org/10.3390/pathogens14060585 - 12 Jun 2025
Viewed by 1191
Abstract
Tick-borne piroplasmids are apicomplexan protozoa that infect a wide range of vertebrate hosts, with significant implications for animal and human health. This study investigated the occurrence and genetic diversity of piroplasmids in wild mammals, unconventional pets, and associated ticks in Goiás state, midwestern [...] Read more.
Tick-borne piroplasmids are apicomplexan protozoa that infect a wide range of vertebrate hosts, with significant implications for animal and human health. This study investigated the occurrence and genetic diversity of piroplasmids in wild mammals, unconventional pets, and associated ticks in Goiás state, midwestern Brazil. Between April 2023 and January 2024, 105 blood samples, 22 tissue samples, and 300 ticks were collected from 21 mammalian species housed in wildlife screening centers, zoos, and veterinary clinics. Molecular screening targeting the 18S rRNA gene of piroplasmids detected a 25.7% (27/105) overall positivity, with gray brockets (Subulo gouazoubira) and South American tapirs (Tapirus terrestris) showing the highest infection rates. Three tick samples tested positive, including two Amblyomma sculptum nymphs and a male of Amblyomma dubitatum collected from a tapir and capybara (Hydrochoerus hydrochaeris). Cytauxzoon brasiliensis was reported, for the first time, in cougars (Puma concolor) from Goiás state, midwestern Brazil, indicating the role of this feline as a host of this parasite. Babesia goianiaensis was confirmed in a capybara, and Theileria terrestris in tapirs. Phylogenetic analyses clustered gray brockets-associated Theileria sequences with Theileria sp. previously detected in Neotropical deer from Brazil and Theileria cervi. While the phylogenetic analysis of amino acid sequences of the cytochrome c oxidase subunit III separated Theileria genotypes detected in S. gouazoubira from T. cervi, hsp70-based phylogenetic inferences clustered the genotypes detected in Tapirus terrestris with Theileria terrestris, suggesting host-specific evolutionary lineages. These findings contribute to the understanding of Piroplasmida diversity and circulation in South American wild mammals, emphasizing the need for enhanced molecular surveillance to elucidate transmission dynamics, assess potential health risks, and contribute to the establishment of wildlife conservation and One Health strategies. Full article
Show Figures

Figure 1

17 pages, 964 KiB  
Article
Using Digital PCR to Unravel the Occurrence of Piroplasmids, Bartonella spp., and Borrelia spp. in Wild Animals from Brazil
by Ana Cláudia Calchi, Anna Claudia Baumel Mongruel, Fernanda Beatriz Pereira Cavalcanti, Lilliane Bartone, José Maurício Barbanti Duarte, Emília Patrícia Medici, Danilo Kluyber, Mayara G. Caiaffa, Mario Henrique Alves, Arnaud Leonard Jean Desbiez, Taciana Fernandes Souza Barbosa Coelho, Rosangela Zacarias Machado, Edward B. Breitschwerdt, Ricardo G. Maggi and Marcos Rogério André
Pathogens 2025, 14(6), 567; https://doi.org/10.3390/pathogens14060567 - 6 Jun 2025
Viewed by 878
Abstract
Piroplasmids (Babesia spp., Rangelia spp., Theileria spp., Cytauxzoon spp.) are tick-borne apicomplexan protozoa that infect, depending on the species, erythrocytes and leucocytes in a wide variety of mammals and birds. The genera Bartonella and Borrelia include vector-borne bacteria that can infect and [...] Read more.
Piroplasmids (Babesia spp., Rangelia spp., Theileria spp., Cytauxzoon spp.) are tick-borne apicomplexan protozoa that infect, depending on the species, erythrocytes and leucocytes in a wide variety of mammals and birds. The genera Bartonella and Borrelia include vector-borne bacteria that can infect and cause disease in both animals and humans. Detection of hemotropic bacteria and piroplasmids in wild animals is often challenging due to low bacteremia or parasitemia. Digital (d)PCR has proven to be an effective modality for the detection and quantification of DNA of hemotropic pathogens with low parasitemia. This study compared dPCR results from 366 biological samples from seven different Brazilian wild animal groups (5 Xenarthra species, 5 deer species, 3 felid species, 1 canid species, 3 rodent species, 1 bat species, 1 tapir species, and 12 bird species) to two other molecular diagnostic techniques: quantitative real-time (qPCR) and nested (nPCR). For this study, DNA extracted from wild animal blood and spleen samples were subjected to a multiplex dPCR assay for piroplasmids, Bartonella spp., and Borrelia spp. For comparison, the same primers and probes for each agent were used in qPCR assays. Additionally, an nPCR based on the 18S rRNA gene for piroplasmids was performed. The proportions of positive results obtained using dPCR were 85.5% for piroplasmids, 33.6% for Bartonella spp., and 16.7% for Borrelia spp. For all tested agents, dPCR proved to be the technique with the highest sensitivity, making it a useful tool for screening vector-borne agents in biological samples from wild animals with low parasitemia. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

18 pages, 1886 KiB  
Article
Population Dynamics and Survival Strategies of Two Endangered Ungulates in a Low Water-Availability Site of the Maya Forest of Mexico
by Rafael Reyna-Hurtado, Jonathan O. Huerta-Rodríguez, Alan Duarte-Morales, Itzel Poot-Sarmiento, Lizzi Valeria Martínez-Martínez and Manuel Alejandro Jiménez-Sánchez
Animals 2025, 15(9), 1307; https://doi.org/10.3390/ani15091307 - 30 Apr 2025
Viewed by 540
Abstract
White-lipped peccary (Tayassu pecari) and Central American tapir (Tapirus bairdii) are two endangered ungulates that inhabit the Maya Forest in Southern Mexico. These species need water sources almost every day to fill their ecological and physiological needs. How have [...] Read more.
White-lipped peccary (Tayassu pecari) and Central American tapir (Tapirus bairdii) are two endangered ungulates that inhabit the Maya Forest in Southern Mexico. These species need water sources almost every day to fill their ecological and physiological needs. How have they survived in a landscape like the Calakmul Biosphere Reserve where the water is very scarce and temporal? We analyzed 10 years of data for both species, collected through the intensive use of camera traps located in 18 ephemeral ponds of the Mexican side of the Maya Forest. These data in combination with occasional data on individual movements of both species collected with radiotelemetry allowed us to describe changes in occupancy, abundance, and movements that show the different strategies these species must cope with during dry periods. The white-lipped peccary population passed through cycles and disappeared from periods of water scarcity, and later, they appeared and stayed close to a few sources of water while the tapir population remained constant and occupied almost all sources of water throughout the years. This contribution increases the ecological knowledge and survival strategies of two endangered tropical ungulates of Mesoamerican Forests that have been disappearing at alarming rates in other forests of the region. Full article
(This article belongs to the Special Issue Ungulate Ecology, Population Dynamics, and Conservation)
Show Figures

Figure 1

13 pages, 5151 KiB  
Article
First Report of Paralytic Rabies in a Lowland Tapir (Tapirus terrestris) in Argentina
by Matías Castillo Giraudo, María Marcela Orozco, Marcelo Juan Zabalza, Leonardo Minatel, Laura Patricia Novaro, Gabriela Alejandra Centurión, Marcos Adolfo Fabeiro, Luciano Coppola, Vanina Daniela Marchione, María Carolina Artuso, Pablo Daniel Aon and Susana Elida Russo
Viruses 2025, 17(4), 570; https://doi.org/10.3390/v17040570 - 15 Apr 2025
Viewed by 1414
Abstract
As a significant zoonotic disease, rabies poses substantial economic challenges for the livestock sector, highlighting the need for effective wildlife monitoring as part of a One Health approach. This study documents the first case of paralytic rabies in a lowland tapir (Tapirus [...] Read more.
As a significant zoonotic disease, rabies poses substantial economic challenges for the livestock sector, highlighting the need for effective wildlife monitoring as part of a One Health approach. This study documents the first case of paralytic rabies in a lowland tapir (Tapirus terrestris) at the Guaycolec Wildlife Station in Formosa, Argentina. The 12-year-old male tapir exhibited neurological symptoms, including limb paralysis and dysphagia, leading to its death. The rabies virus was confirmed through direct immunofluorescence, virus isolation in BHK-21 cells, and molecular diagnostics via real-time RT-PCR and conventional PCR. Antigenic variant 3, associated with Desmodus rotundus, was identified. Histopathological examination revealed non-suppurative encephalitis with lymphocytic perivascular cuffs, neuronal vacuolization, and acidophilic intracytoplasmic inclusion bodies in the grey matter. This case underscores the importance of expanded surveillance for non-traditional hosts, as it demonstrates the potential for rabies transmission in changing environments. The findings highlight the need to maintain epidemiological surveillance systems at the wildlife–livestock–human interface and to develop targeted control strategies to mitigate the spread of rabies, particularly in areas where vampire bat populations are subject to anthropogenic pressures. Comprehensive monitoring and early detection are essential for effective rabies management in both wildlife and urban contexts. Full article
(This article belongs to the Special Issue Advances in Rabies Research 2024)
Show Figures

Figure 1

20 pages, 4431 KiB  
Article
An Integrative Computational Approach for Identifying Cotton Host Plant MicroRNAs with Potential to Abate CLCuKoV-Bur Infection
by Muhammad Aleem Ashraf, Imran Shahid, Judith K. Brown and Naitong Yu
Viruses 2025, 17(3), 399; https://doi.org/10.3390/v17030399 - 12 Mar 2025
Viewed by 1049
Abstract
Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bur) has a circular single-stranded ssDNA genome of 2759 nucleotides in length and belongs to the genus Begomovirus (family, Geminiviridae). CLCuKoV-Bur causes cotton leaf curl disease (CLCuD) and is transmitted by the whitefly Bemisis tabaci cryptic [...] Read more.
Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bur) has a circular single-stranded ssDNA genome of 2759 nucleotides in length and belongs to the genus Begomovirus (family, Geminiviridae). CLCuKoV-Bur causes cotton leaf curl disease (CLCuD) and is transmitted by the whitefly Bemisis tabaci cryptic species. Monopartite begomoviruses encode five open reading frames (ORFs). CLCuKoV-Bur replicates through a dsDNA intermediate. Five open reading frames (ORFs) are organized in the small circular, single-stranded (ss)-DNA genome of CLCuKoV-Bur (2759 bases). RNA interference (RNAi) is a naturally occurring process that has revolutionized the targeting of gene regulation in eukaryotic organisms to combat virus infection. The aim of this study was to elucidate the potential binding attractions of cotton-genome-encoded microRNAs (Gossypium hirsutum-microRNAs, ghr-miRNAs) on CLCuKoV-Bur ssDNA-encoded mRNAs using online bioinformatics target prediction tools, RNA22, psRNATarget, RNAhybrid, and TAPIR. Using this suite of robust algorithms, the predicted repertoire of the cotton microRNA-binding landscape was determined for a CLCuKoV-Bur consensus genome sequence. Previously experimentally validated cotton (Gossypium hirsutum L.) miRNAs (n = 80) were selected from a public repository miRNA registry miRBase (v22) and hybridized in silico into the CLCuKoV-Bur genome (AM421522) coding and non-coding sequences. Of the 80 ghr-miRNAs interrogated, 18 ghr-miRNAs were identified by two to four algorithms evaluated. Among them, the ghr-miR399d (accession no. MIMAT0014350), located at coordinate 1747 in the CLCuKoV-Bur genome, was predicted by a consensus or “union” of all four algorithms and represents an optimal target for designing an artificial microRNA (amiRNA) silencing construct for in planta expression. Based on all robust predictions, an in silico ghr-miRNA-regulatory network was developed for CLCuKoV-Bur ORFs using Circos software version 0.6. These results represent the first predictions of ghr-miRNAs with the therapeutic potential for developing CLCuD resistance in upland cotton plants. Full article
(This article belongs to the Special Issue Roles of Small RNAs in Virus–Plant Interactions)
Show Figures

Figure 1

13 pages, 2923 KiB  
Article
In Silico Identification of Banana High-Confidence MicroRNA Binding Sites Targeting Banana Streak GF Virus
by Muhammad Aleem Ashraf, Babar Ali, Maryam Fareed, Ahsan Sardar, Eisha Saeed, Samaa Islam, Shaher Bano and Naitong Yu
Appl. Microbiol. 2025, 5(1), 13; https://doi.org/10.3390/applmicrobiol5010013 - 27 Jan 2025
Viewed by 1282
Abstract
Banana streak GF virus (BSGFV) is the extremely dangerous monopartite badnavirus (genus, Badnavirus; family, Caulimoviridae) of banana (Musa acuminata AAA Group) that imposes a serious threat to global banana production. The BSGFV causes a devastating pandemic in banana crops, transmitted by [...] Read more.
Banana streak GF virus (BSGFV) is the extremely dangerous monopartite badnavirus (genus, Badnavirus; family, Caulimoviridae) of banana (Musa acuminata AAA Group) that imposes a serious threat to global banana production. The BSGFV causes a devastating pandemic in banana crops, transmitted by deadly insect pest mealybug vectors and replicated through an RNA intermediate. The BSGFV is a reverse-transcribing DNA virus that has a monopartite open circular double-stranded DNA (dsDNA) genome with a length of 7325 bp. RNA interference (RNAi) is a natural mechanism that has revolutionized the target gene regulation of various organisms to combat virus infection. The current study aims to locate the potential target binding sites of banana-encoded microRNAs (mac-miRNAs) on the BSGFV-dsDNA-encoded mRNAs based on three algorithms, RNA22, RNAhybrid and TAPIR. Mature banana (2n = 3x = 33) miRNAs (n = 32) were selected and hybridized to the BSGFV genome (MN296502). Among the 32 targeted mature locus-derived mac-miRNAs investigated, two banana mac-miRNA homologs (mac-miR162a and mac-miR172b) were identified as promising naturally occurring biomolecules to have binding affinity at nucleotide positions 5502 and 9 of the BSGFV genome. The in silico banana-genome-encoded mac-miRNA/mbg-miRNA-regulatory network was developed with the BSGFV—ORFs using Circos software (version 0.69-9) to identify potential therapeutic target proteins. Therefore, the current work provides useful biological material and opens a new range of opportunities for generating BSGFV-resistant banana plants through the genetic manipulation of the selected miRNAs. Full article
(This article belongs to the Special Issue Microbial Evolutionary Genomics and Bioinformatics)
Show Figures

Figure 1

40 pages, 4795 KiB  
Article
New Insights into the Molecular Evolution of Tapirus pinchaque (Tapiridae, Perissodactyla) and the Rise and Fall of Tapirus kabomani as a Full Species
by Manuel Ruiz-García, Armando Castellanos, Franz Kaston, Myreya Pinedo-Castro and Joseph Mark Shostell
Genes 2024, 15(12), 1537; https://doi.org/10.3390/genes15121537 - 28 Nov 2024
Viewed by 1889
Abstract
Large wild mammals are extremely important in their respective ecological communities and are frequently considered to be emblematic. This is the case of the different tapir species, the largest terrestrial mammals from the Neotropics. Despite their large size and being objects of interest [...] Read more.
Large wild mammals are extremely important in their respective ecological communities and are frequently considered to be emblematic. This is the case of the different tapir species, the largest terrestrial mammals from the Neotropics. Despite their large size and being objects of interest for many naturalists, the field still lacks critical genetics and systematics information about tapir species. In the current work, we analyzed four molecular datasets (mitogenomes, and three nuclear genes, RAG 1-2, IRBP, and BRCA1) of two South American tapirs: the Andean tapir (Tapirus pinchaque) and the alleged new species of tapir, Tapirus kabomani. We derived four main findings. (1) Our molecular phylogenetic analyses showed T. pinchaque as the youngest tapir branch in Neotropics and a sister species of Tapirus terrestris. This contradicts the traditional morphological observations of renowned zoologists and paleontologists, who considered T. pinchaque as the oldest Neotropical tapir. (2) Our data does not support that the alleged T. kabomani is a full species. Rather, it is a specific group within T. terrestris. (3) T. pinchaque is the Neotropical tapir species which yielded the lowest levels of genetic diversity (both for mitochondrial and nuclear data). (4) The spatial genetic structure for T. pinchaque shows differences depending on the type of molecular marker used. With mitogenomes, the spatial structure is relatively weak, whereas with two nuclear genes (RAG 1-2 and IRBP), the spatial structure is highly significant. Curiously, for the other nuclear gene (BRCA1), the spatial structure is practically nonexistent. In any case, the northernmost population of T. pinchaque we studied (Los Nevados National Park in Colombia) was in a peripatric situation and was the most genetically differentiated. This is important for the adequate conservation of this population. (5) T. pinchaque showed clear evidence of population expansion during the last part of the Pleistocene, a period during which the dryness and glacial cold extinguished many large mammals in the Americas. However, T. pinchaque survived and spread throughout the Northern Andes. Full article
Show Figures

Figure 1

22 pages, 5058 KiB  
Article
Characterization of the Blood Bacterial Microbiota in Lowland Tapirs (Tapirus terrestris), a Vulnerable Species in Brazil
by Anna Claudia Baumel Mongruel, Emília Patrícia Medici, Rosangela Zacarias Machado, Keith Clay and Marcos Rogério André
Microorganisms 2024, 12(11), 2270; https://doi.org/10.3390/microorganisms12112270 - 8 Nov 2024
Cited by 3 | Viewed by 1309
Abstract
Microbiome studies targeting hypervariable regions of the 16S rRNA gene are suitable for understanding interactions between animals and their associated bacteria. While many studies focus on the gut microbiome, assessments of blood microbiota remain scarce despite the prevalence of blood-borne pathogens in vertebrates. [...] Read more.
Microbiome studies targeting hypervariable regions of the 16S rRNA gene are suitable for understanding interactions between animals and their associated bacteria. While many studies focus on the gut microbiome, assessments of blood microbiota remain scarce despite the prevalence of blood-borne pathogens in vertebrates. This study aimed to investigate the bacterial community in blood samples from 79 living and 7 road-killed lowland tapirs (Tapirus terrestris), a vulnerable species, sampled in two biomes in midwestern Brazil: Pantanal and Cerrado. Animals were categorized by condition (living or road-killed), sex, age, and biome. V3–V4 16S rRNA fragments were obtained from 86 blood samples and 4 negative controls. After filtering contaminants, 13,742,198 sequences representing 2146 ASVs were analyzed. Alpha diversity significantly differed by condition, while beta diversity differed by condition, site, and age (adults vs. sub-adults). For living animals (79/86 samples), alpha diversity showed no significant differences, but beta diversity differed by age. Different vector-borne bacterial pathogens, including Anaplasmataceae, Bartonella, and Borrelia spp., were detected. Additionally, evidence of transient translocation of microbial communities from other body regions to the bloodstream was observed. Amplification of bacterial 16S rRNA from blood samples of wild T. terrestris provided novel information about the diversity of blood-borne microbiota of lowland tapirs, members of a poorly studied mammalian family. Next-generation sequencing proved to be a valuable tool for screening potential vector-borne pathogens in this host. Full article
Show Figures

Figure 1

13 pages, 1549 KiB  
Article
Serum 25(OH)D Analysis in Captive Pachyderms (Loxodonta africana, Elephas maximus, Diceros bicornis, Rhinoceros unicornis, Tapirus indicus) in Europe
by Linda G. R. Bruins-van Sonsbeek and Ronald J. Corbee
Animals 2024, 14(19), 2843; https://doi.org/10.3390/ani14192843 - 2 Oct 2024
Cited by 1 | Viewed by 1205
Abstract
This study aimed to detect seasonal and species differences in serum 25-hydroxy vitamin D (25(OH)D) concentrations during summer and winter months in captive pachyderms in Europe. Both elephant species had low 25(OH)D while African elephants did not show a seasonal variation. Asian elephants [...] Read more.
This study aimed to detect seasonal and species differences in serum 25-hydroxy vitamin D (25(OH)D) concentrations during summer and winter months in captive pachyderms in Europe. Both elephant species had low 25(OH)D while African elephants did not show a seasonal variation. Asian elephants had significantly higher 25(OH)D compared to their African counterparts but also did not show a seasonal difference. Both rhinoceros species investigated had higher 25(OH)D compared to both elephant species; the Indian rhinoceros had high circulating levels year-round, while the black rhinoceroses showed significantly lower 25(OH)D in winter. Malayan tapirs have very low 25(OH)D, comparable to horses. The higher 25(OH)D of elephants and rhinoceroses could indicate that elephants and rhinoceroses are capable of producing vitamin D. This might indicate that the Indian rhinoceroses are capable of producing enough endogenous vitamin D year-round at latitudes around 52° N, while both elephant species and the black rhinoceros are not. This study also showed that it is likely that both elephant species and rhinoceros species are capable of absorbing cholecalciferol from the digestive tract, according to the existing literature, while tapirs may not. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

19 pages, 3370 KiB  
Article
Ere, a Family of Short Interspersed Elements in the Genomes of Odd-Toed Ungulates (Perissodactyla)
by Ilia G. Ustyantsev, Sergey A. Kosushkin, Olga R. Borodulina, Nikita S. Vassetzky and Dmitri A. Kramerov
Animals 2024, 14(13), 1982; https://doi.org/10.3390/ani14131982 - 5 Jul 2024
Cited by 1 | Viewed by 1198
Abstract
Short Interspersed Elements (SINEs) are eukaryotic retrotransposons transcribed by RNA polymerase III (pol III). Many mammalian SINEs (T+ SINEs) contain a polyadenylation signal (AATAAA), a pol III transcription terminator, and an A-rich tail in their 3′-end. The RNAs of such SINEs have [...] Read more.
Short Interspersed Elements (SINEs) are eukaryotic retrotransposons transcribed by RNA polymerase III (pol III). Many mammalian SINEs (T+ SINEs) contain a polyadenylation signal (AATAAA), a pol III transcription terminator, and an A-rich tail in their 3′-end. The RNAs of such SINEs have the capacity for AAUAAA-dependent polyadenylation, which is unique to pol III-generated transcripts. The structure, evolution, and polyadenylation of the Ere SINE of ungulates (horses, rhinos, and tapirs) were investigated in this study. A bioinformatics analysis revealed the presence of up to ~4 × 105 Ere copies in representatives of all three families. These copies can be classified into two large subfamilies, EreA and EreB, the former distinguished by an additional 60 bp sequence. The 3′-end of numerous EreA and all EreB copies exhibit a 50 bp sequence designated as a terminal domain (TD). The Ere family can be further subdivided into subfamilies EreA_0TD, EreA_1TD, EreB_1TD, and EreB_2TD, depending on the presence and number of terminal domains (TDs). Only EreA_0TD copies can be assigned to T+ SINEs as they contain the AATAAA signal and the TCTTT transcription terminator. The analysis of young Ere copies identified by comparison with related perissodactyl genomes revealed that EreA_0TD and, to a much lesser extent, EreB_2TD have retained retrotranspositional activity in the recent evolution of equids and rhinoceroses. The targeted mutagenesis and transfection of HeLa cells were used to identify sequences in equine EreA_0TD that are critical for the polyadenylation of its pol III transcripts. In addition to AATAAA and the transcription terminator, two sites in the 3′ half of EreA, termed the β and τ signals, were found to be essential for this process. The evolution of Ere, with a particular focus on the emergence of T+ SINEs, as well as the polyadenylation signals are discussed in comparison with other T+ SINEs. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

2 pages, 194 KiB  
Correction
Correction: Mongruel et al. Expanding the Universe of Hemoplasmas: Multi-Locus Sequencing Reveals Putative Novel Hemoplasmas in Lowland Tapirs (Tapirus terrestris), the Largest Land Mammals in Brazil. Microorganisms 2022, 10, 614
by Anna Claudia Baumel Mongruel, Emília Patrícia Medici, Ariel da Costa Canena, Ana Cláudia Calchi, Rosangela Zacarias Machado and Marcos Rogério André
Microorganisms 2024, 12(7), 1326; https://doi.org/10.3390/microorganisms12071326 - 28 Jun 2024
Viewed by 783
Abstract
In the original publication [...] Full article
(This article belongs to the Section Veterinary Microbiology)
11 pages, 308 KiB  
Article
The Study of Bluetongue Virus (BTV) and Epizootic Hemorrhagic Disease Virus (EHDV) Circulation and Vectors at the Municipal Parks and Zoobotanical Foundation of Belo Horizonte, Minas Gerais, Brazil (FPMZB-BH)
by Eduardo Alves Caixeta, Mariana Andrioli Pinheiro, Victoria Souza Lucchesi, Anna Gabriella Guimarães Oliveira, Grazielle Cossenzo Florentino Galinari, Herlandes Penha Tinoco, Carlyle Mendes Coelho and Zélia Inês Portela Lobato
Viruses 2024, 16(2), 293; https://doi.org/10.3390/v16020293 - 15 Feb 2024
Cited by 3 | Viewed by 2252
Abstract
Bluetongue Virus (BTV) and Epizootic Hemorrhagic Disease Virus (EHDV) are Orbiviruses primarily transmitted by their biological vector, Culicoides spp. Latreille, 1809 (Diptera: Ceratopogonidae). These viruses can infect a diverse range of vertebrate hosts, leading to disease outbreaks in domestic and wild ruminants worldwide. [...] Read more.
Bluetongue Virus (BTV) and Epizootic Hemorrhagic Disease Virus (EHDV) are Orbiviruses primarily transmitted by their biological vector, Culicoides spp. Latreille, 1809 (Diptera: Ceratopogonidae). These viruses can infect a diverse range of vertebrate hosts, leading to disease outbreaks in domestic and wild ruminants worldwide. This study, conducted at the Belo Horizonte Municipal Parks and Zoobotany Foundation (FPMZB-BH), Minas Gerais, Brazil, focused on Orbivirus and its vectors. Collections of Culicoides spp. were carried out at the FPMZB-BH from 9 December 2021 to 18 November 2022. A higher prevalence of these insects was observed during the summer months, especially in February. Factors such as elevated temperatures, high humidity, fecal accumulation, and proximity to large animals, like camels and elephants, were associated with increased Culicoides capture. Among the identified Culicoides spp. species, Culicoides insignis Lutz, 1913, constituted 75%, and Culicoides pusillus Lutz, 1913, 6% of the collected midges, both described as competent vectors for Orbivirus transmission. Additionally, a previously unreported species in Minas Gerais, Culicoides debilipalpis Lutz, 1913, was identified, also suspected of being a transmitter of these Orbiviruses. The feeding preferences of some Culicoides species were analyzed, revealing that C. insignis feeds on deer, Red deer (Cervus elaphus) and European fallow deer (Dama dama). Different Culicoides spp. were also identified feeding on humans, raising concerns about the potential transmission of arboviruses at the site. In parallel, 72 serum samples from 14 susceptible species, including various Cervids, collected between 2012 and 2022 from the FPMZB-BH serum bank, underwent Agar Gel Immunodiffusion (AGID) testing for BTV and EHDV. The results showed 75% seropositivity for BTV and 19% for EHDV. Post-testing analysis revealed variations in antibody presence against BTV in a tapir and a fallow deer and against EHDV in a gemsbok across different years. These studies confirm the presence of BTV and EHDV vectors, along with potential virus circulation in the zoo. Consequently, implementing control measures is essential to prevent susceptible species from becoming infected and developing clinical diseases. Full article
(This article belongs to the Special Issue Culicoides-Borne Viruses 2023)
15 pages, 1285 KiB  
Article
Rickettsial Infection in Ticks from a National Park in the Cerrado Biome, Midwestern Brazil
by Raquel Loren dos Reis Paludo, Warley Vieira de Freitas Paula, Lucianne Cardoso Neves, Luiza Gabriella Ferreira de Paula, Nicolas Jalowitzki de Lima, Bianca Barbara Fonseca da Silva, Brenda Gomes Pereira, Gracielle Teles Pádua, Filipe Dantas-Torres, Marcelo B. Labruna, Thiago Fernandes Martins, Jonas Sponchiado, Lucas Christian de Sousa-Paula, Wellington Hannibal and Felipe da Silva Krawczak
Pathogens 2024, 13(1), 13; https://doi.org/10.3390/pathogens13010013 - 22 Dec 2023
Cited by 4 | Viewed by 2199
Abstract
This study was carried out from February 2020 to September 2021 in Parque Nacional das Emas (PNE), a national park located in the Cerrado biome, midwestern Brazil, as well as in surrounding rural properties. Serum and tick samples were collected from dogs, terrestrial [...] Read more.
This study was carried out from February 2020 to September 2021 in Parque Nacional das Emas (PNE), a national park located in the Cerrado biome, midwestern Brazil, as well as in surrounding rural properties. Serum and tick samples were collected from dogs, terrestrial small mammals, and humans. Ticks were also collected from the environment. Dogs were infested with Rhipicephalus linnaei adults, whereas small mammals were infested by immature stages of Amblyomma spp., Amblyomma triste, Amblyomma dubitatum, and Amblyomma coelebs. Ticks collected from vegetation belonged to several species of the genus Amblyomma, including A. coelebs, A. dubitatum, Amblyomma naponense, Amblyomma sculptum, and A. triste. Two Rickettsia species were molecularly detected in ticks: Rickettsia parkeri in A. triste from the vegetation and a Rickettsia sp. (designated Rickettsia sp. strain PNE) in A. sculptum and A. triste collected from lowland tapirs (Tapirus terrestris). Based on short gltA gene fragments, this rickettsial organism showed 99.7–100% to Rickettsia tillamookensis. Seroreactivity to Rickettsia antigens was detected in 21.9% of dogs, 15.4% of small mammals, and 23.5% of humans. The present study reveals the richness of ticks and demonstrates the circulation of rickettsial agents in one of the largest conservation units in the Cerrado biome in Brazil. To our knowledge, this is the first report of a rickettsial phylogenetically related to R. tillamookensis in Brazil. Full article
(This article belongs to the Special Issue Advanced Research on the Tick-Borne Rickettsiae)
Show Figures

Figure 1

12 pages, 1238 KiB  
Article
Molecular Survey of Piroplasmids and Hemosporidians in Vampire Bats, with Evidence of Distinct Piroplasmida Lineages Parasitizing Desmodus rotundus from the Brazilian Amazon
by Victória Valente Califre de Mello, Ana Cláudia Calchi, Laryssa Borges de Oliveira, Taciana Fernandes Souza Barbosa Coelho, Daniel Antônio Braga Lee, Eliz Oliveira Franco, Rosangela Zacarias Machado and Marcos Rogério André
Parasitologia 2023, 3(3), 248-259; https://doi.org/10.3390/parasitologia3030026 - 8 Aug 2023
Cited by 4 | Viewed by 2496
Abstract
Although bats can serve as reservoirs for several viruses and bacteria, there is limited knowledge regarding the diversity of apicomplexan protozoan belonging to the Piroplasmida and Haemosporida orders within this group of mammals. The present study aimed to investigate the occurrence and phylogenetic [...] Read more.
Although bats can serve as reservoirs for several viruses and bacteria, there is limited knowledge regarding the diversity of apicomplexan protozoan belonging to the Piroplasmida and Haemosporida orders within this group of mammals. The present study aimed to investigate the occurrence and phylogenetic assessment of piroplasmids and hemosporidians in spleen samples collected from 229 vampire bats (228 Desmodus rotundus and 1 Diaemus youngii) in the states of Pará, Roraima, Amapá, and Amazonas, northern Brazil. Out of 229 bat spleen samples, 43 (18.77%) tested positive in a nested PCR for piroplasmids based on the 18S rRNA gene. Thirteen sequences (ranging from 474 to 828 base pairs) of the partial 18S rRNA gene showed 91.04–100% identity to Theileria sp., Babesia sp., and Piroplasmida previously detected in deer, tapirs, opossums, and crab-eating raccoons. The phylogenetic analysis based on the near-complete 18S rRNA gene positioned the obtained sequences from three D. rotundus in distinct clades (Theileria sensu stricto, Tapirus terrestris, and “South America Marsupialia”). All bat spleen DNA samples tested negative in a nested PCR assay for hemosporidians based on the cytB gene. The present study reported, for the first time, the presence Babesia sp. and Theileria sp. DNA in D. rotundus. The distinct positioning of the 18S rRNA gene sequences within different clades demonstrates the occurrence of different piroplasmid species in vampire bats. Full article
Show Figures

Figure 1

16 pages, 3314 KiB  
Article
In Silico Apple Genome-Encoded MicroRNA Target Binding Sites Targeting Apple Chlorotic Leaf Spot Virus
by Muhammad Aleem Ashraf, Nimra Murtaza, Judith K. Brown and Naitong Yu
Horticulturae 2023, 9(7), 808; https://doi.org/10.3390/horticulturae9070808 - 14 Jul 2023
Cited by 3 | Viewed by 2260
Abstract
Apple chlorotic leaf spot virus (ACLSV) (genus, Trichovirus; family, Betaflexiviridae) is a widespread, deleterious, and the most damaging pathogen of pome and fruit trees including domesticated apple (Malus × domestica Borkh.), to which it is transmitted by grafting and pruning. [...] Read more.
Apple chlorotic leaf spot virus (ACLSV) (genus, Trichovirus; family, Betaflexiviridae) is a widespread, deleterious, and the most damaging pathogen of pome and fruit trees including domesticated apple (Malus × domestica Borkh.), to which it is transmitted by grafting and pruning. The positive-sense, single-stranded RNA virus is 600–700 nm long and has a genome of 74.7–7.56 kbp in size, minus the poly-A tail and 3′- and 5′-untranslated regions. The genome has three overlapping open reading frames (ORFs) that encode a replication-associated protein (Rep), movement protein (MP), and coat protein (CP). RNA interference (RNAi)-mediated antiviral defense in eukaryotes has evolved to control infections in plant viruses. The objective of this study was to analyze locus-derived microRNAs (mdm-miRNAs) in the apple genome with potential for targeting ACLSV +ssRNA-encoded mRNAs, using a predictive approach that involves four algorithms. The goal is to mobilize the in silico-predicted endogenous mdm-miRNAs and trigger the RNAi pathway experimentally in apple trees to evaluate antiviral resistance to ACLSV. Experimentally validated apple (2n = 2X = 34) mdm-miRNAs (n = 322) were obtained from the miRBase database and aligned to the ACLSV genome (KU870525). Of the 322 targeting mature locus-derived mdm-miRNAs analyzed, nine apple mdm-miRNA homologs (mdm-miR395k, mdm-miR5225c, and mdm-miR7121 (a, b, c, d, e, f, g, h) were predicted by all “four algorithms”, whereas fifty-eight mdm-miRNAs were identified as consensus binding sites by the combined results of two algorithms. The miRanda, RNA22, and TAPIR algorithms predicted binding of mdm-miR395k at nucleotide position 4691 and identified it as the most effective interacting mdm-miRNA targeting the virus ORF1 sequence. An integrated Circos plot was generated to validate the accuracy of target prediction and determine if apple mdm-miRNAs could bind to the predicted ACLSV mRNA target(s). A genome-wide in silico-predicted miRNA-mediated target gene regulatory network was implicated to validate interactions necessary to warrant in vivo analysis. The availability of validated locus-derived microRNAs (mdm-miRNAs) with predicted potential to target ACLSV in infected apple trees represents the first step toward development of ACLSV-resistant apple trees. Full article
Show Figures

Figure 1

Back to TopTop