Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = tapered tip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 621 KB  
Article
Evaluation of a Novel Tapered Tip EUS-FNB Needle: A UK Multicentre Study
by Darragh Storan, John Leeds, Arif Hussenbux, Mohamed Elseragy, Ruridh Allen, Tareq El Menabawey, Aaron McGowan, Matthew T. Huggett, Umair Kamran, Bidour Awadelkarim, Beate Haugk, Kofi Oppong and Manu Nayar
Cancers 2025, 17(20), 3390; https://doi.org/10.3390/cancers17203390 - 21 Oct 2025
Viewed by 108
Abstract
Introduction: A new core biopsy needle with a novel tapered stylet tip has been introduced for endoscopic ultrasound-guided fine needle biopsy (EUS-FNB). The tapered point stylet is purported to improve ease of puncture, leading to improved tissue acquisition and accuracy. However, there [...] Read more.
Introduction: A new core biopsy needle with a novel tapered stylet tip has been introduced for endoscopic ultrasound-guided fine needle biopsy (EUS-FNB). The tapered point stylet is purported to improve ease of puncture, leading to improved tissue acquisition and accuracy. However, there are no data available in the published literature. The aim of this study was to compare the diagnostic performance of the tapered stylet needle with conventional end-cutting FNB needles for tissue acquisition from solid lesions. Methods: Patients who underwent EUS-FNB of a solid lesion using the tapered stylet FNB needle across four tertiary hepatopancreaticobiliary centres in the UK were included in the study. Demographic, clinical, and performance outcomes were included in the analysis. Diagnostic performance was compared with a similar cohort of patients who underwent EUS-FNB using standard end-cutting FNB needles with a blunt-tipped stylet. The primary outcome was accuracy for the diagnosis of malignancy. Results: A total of 270 patients were included for analysis; 129 patients (48%) had sampling with the novel tapered stylet tip needle, among which 50% were female, the median age was 69, 74% had pancreatic lesions, and 80% had a final diagnosis of malignancy; 141 control cases (52%) were included for comparison, among which 48% were female, the median age was 68, 67% had pancreatic lesions, and 72% had a final diagnosis of malignancy. The tapered stylet needle demonstrated a sensitivity of 90% and an NPV of 72% for the diagnosis of malignancy compared with 88% and 77% for controls (p = 0.147). The overall diagnostic accuracy of the tapered stylet needle was 92.2% compared with 91.5% for controls (p = 0.634). Conclusions: The novel tapered tip stylet FNB needle demonstrated comparable sensitivity, NPV, and diagnostic accuracy to conventional FNB needles. This is the first and largest study reporting results for this new needle. However, further large comparative studies are warranted to validate our results and to determine if the tapered stylet offers an advantage over the conventional design. Full article
(This article belongs to the Special Issue New Advances in Oncology Research and Practice)
Show Figures

Figure 1

28 pages, 8901 KB  
Article
Aerodynamic Performance of a Natural Laminar Flow Swept-Back Wing for Low-Speed UAVs Under Take Off/Landing Flight Conditions and Atmospheric Turbulence
by Nikolaos K. Lampropoulos, Ioannis E. Sarris, Spyridon Antoniou, Odysseas Ziogas, Pericles Panagiotou and Kyros Yakinthos
Aerospace 2025, 12(10), 934; https://doi.org/10.3390/aerospace12100934 - 16 Oct 2025
Viewed by 168
Abstract
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The [...] Read more.
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The aim of this work is the numerical verification that a typical wing design (tapered with moderate aspect ratio and wash-out), being constructed out of aerodynamically highly efficient NLF airfoils during cruise, can deliver high aerodynamic loading under minimal freestream turbulence as well as realistic atmospheric conditions of intermediate turbulence. Thus, high mission flexibility is achieved, e.g., short take off/landing capabilities on the deck of ship where moderate air turbulence is prevalent. Special attention is paid to the effect of the Wing Tip Vortex (WTV) under minimal inflow turbulence regimes. The flight conditions are take off or landing at moderate Reynolds number, i.e., one to two millions. The numerical simulation is based on an open source CFD code and parallel processing on a High Performance Computing (HPC) platform. The aim is the identification of both mean flow and turbulent structures around the wing and subsequently the formation of the wing tip vortex. Due to the purely three-dimensional character of the flow, the turbulence is resolved with advanced modeling, i.e., the Improved Delayed Detached Eddy Simulation (IDDES) which is well-customized to switch modes between Delayed Detached Eddy Simulation (DDES) and Wall-Modeled Large Eddy Simulation (WMLES), thus increasing the accuracy in the shear layer regions, the tip vortex and the wake, while at the same time keeping the computational cost at reasonable levels. IDDES also has the capability to resolve the transition of the boundary layer from laminar to turbulent, at least with engineering accuracy; thus, it serves as a high-fidelity turbulence model in this work. The study comprises an initial benchmarking of the code against wind tunnel measurements of the airfoil and verifies the adequacy of mesh density that is used for the simulation around the wing. Subsequently, the wing is positioned at near-stall conditions so that the aerodynamic loading, the kinematics of the flow and the turbulence regime in the wing vicinity, the wake and far downstream can be estimated. In terms of the kinematics of the WTV, a thorough examination is attempted which comprises its inception, i.e., the detachment of the boundary layer on the cut-off wing tip, the roll-up of the shear layer to form the wake and the motion of the wake downstream. Moreover, the effect of inflow turbulence of moderate intensity is investigated that verifies the bibliography with regard to the performance degradation of static airfoils in a turbulent atmospheric regime. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

12 pages, 5832 KB  
Article
The Influence of Reaming Velocity During Preparation of the Femoral Canal—An In Vitro Analysis of Two Straight Femoral Revision Stems with a Fluted Tapered Design
by Oliver E. Bischel, Jörn B. Seeger, Matthias K. Jung, Stefan Dörfler, Arnold J. Höppchen, Alexander Jahnke and Eike Jakubowitz
Bioengineering 2025, 12(9), 984; https://doi.org/10.3390/bioengineering12090984 - 16 Sep 2025
Viewed by 446
Abstract
Background: The use of tapered fluted revision stems has been shown to be reliable and safe. Primary stability is mandatory for a long-lasting fixation between bone and a prosthesis. Nevertheless, aseptic loosening due to insufficient primary stability occurs and may be related to [...] Read more.
Background: The use of tapered fluted revision stems has been shown to be reliable and safe. Primary stability is mandatory for a long-lasting fixation between bone and a prosthesis. Nevertheless, aseptic loosening due to insufficient primary stability occurs and may be related to technically improper preparation of the femoral canal. Instructions of manufacturers are heterogeneous regarding preparation of implant beds. Questions/Purposes: Does speed or the design of the reamer influence the accuracy of the implant bed and, consecutively, primary stability? Materials and Methods: A test foam with an elastic moduli and pressure resistance similar to that of cancellous bone was used. The medullary canal was prepared with the use of reamers of two different straight and tapered femoral revision devices. Three different rotational speeds were used for preparation. After preparation, primary stability was measured and fixating characteristics were derived. Results: Sufficient primary stability was achievable by all three preparation methods but fixating characteristics were different. Significantly higher micro-motions were detected near the tip of the prosthesis compared to those at all more proximal measuring points. Reaming with high velocity resulted in significantly higher micro-motions compared to that with mid- or low-speed burring. Conclusions: Different preparation methods may be one explanation for the range of reported survivorship data of the two devices with aseptic loosening as the end point. The precision of the implant bed and fixating characteristics were best after reaming with lower velocity. Superior but not significantly better fixation characteristics were achieved with the monobloc stem compared to those with the modular device. Full article
(This article belongs to the Special Issue Joint Biomechanics and Implant Design)
Show Figures

Figure 1

18 pages, 4643 KB  
Article
The Effect of Non-Transferred Plasma Torch Electrodes on Plasma Jet: A Computational Study
by Sai Likitha Siddanathi, Lars-Göran Westerberg, Hans O. Åkerstedt, Henrik Wiinikka and Alexey Sepman
Appl. Sci. 2025, 15(15), 8367; https://doi.org/10.3390/app15158367 - 28 Jul 2025
Cited by 1 | Viewed by 652
Abstract
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on [...] Read more.
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on plasma behavior. The results reveal that different cathode designs require varying current levels to maintain a consistent power output. This paper presents the changes in electric conductivity and electric potential for different input currents across the arc formation path (from the cathode tip to the anode beginning) and relating to Ohm’s law. Significant variations in plasma jet velocity and temperature were observed, especially near the cathode tip. The study concludes by evaluating thermal efficiency across geometry configurations. Flat cathodes demonstrated the highest efficiency, while the anode shape had minimal impact. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

20 pages, 5671 KB  
Article
Evaluation of Proppant Placement Efficiency in Linearly Tapering Fractures
by Xiaofeng Sun, Liang Tao, Jinxin Bao, Jingyu Qu, Haonan Yang and Shangkong Yao
Geosciences 2025, 15(7), 275; https://doi.org/10.3390/geosciences15070275 - 21 Jul 2025
Viewed by 470
Abstract
With growing reliance on hydraulic fracturing to develop tight oil and gas reservoirs characterized by low porosity and permeability, optimizing proppant transport and placement has become critical to sustaining fracture conductivity and production. However, how fracture geometry influences proppant distribution under varying field [...] Read more.
With growing reliance on hydraulic fracturing to develop tight oil and gas reservoirs characterized by low porosity and permeability, optimizing proppant transport and placement has become critical to sustaining fracture conductivity and production. However, how fracture geometry influences proppant distribution under varying field conditions remains insufficiently understood. This study employed computational fluid dynamics to investigate proppant transport and placement in hydraulic fractures of which the aperture tapers linearly along their length. Four taper rate models (δ = 0, 1/1500, 1/750, and 1/500) were analyzed under a range of operational parameters: injection velocities (1.38–3.24 m/s), sand concentrations (2–8%), proppant particle sizes (0.21–0.85 mm), and proppant densities (1760–3200 kg/m3). Equilibrium proppant pack height was adopted as the key metric for pack morphology. The results show that increasing injection rate and taper rate both serve to lower pack heights and enhance downstream transport, while a higher sand concentration, larger particle size, and greater density tend to raise pack heights and promote more stable pack geometries. In tapering fractures, higher δ values amplify flow acceleration and turbulence, yielding flatter, “table-top” proppant distributions and extended placement lengths. Fine, low-density proppants more readily penetrate to the fracture tip, whereas coarse or dense particles form taller inlet packs but can still be carried farther under high taper conditions. These findings offer quantitative guidance for optimizing fracture geometry, injection parameters, and proppant design to improve conductivity and reduce sand-plugging risk in tight formations. These insights address the challenge of achieving effective proppant placement in complex fractures and provide quantitative guidance for tailoring fracture geometry, injection parameters, and proppant properties to improve conductivity and mitigate sand plugging risks in tight formations. Full article
Show Figures

Figure 1

8 pages, 1503 KB  
Proceeding Paper
A Wind Tunnel Study of the Aerodynamic Characteristics of Wings with Arc-Shaped Wingtips
by Stanimir Penchev and Hristian Panayotov
Eng. Proc. 2025, 100(1), 28; https://doi.org/10.3390/engproc2025100028 - 11 Jul 2025
Viewed by 553
Abstract
Wingtip devices like winglets and other types have been created to improve the aerodynamic efficiency of aircraft based on minimizing the induced drag of tip vortices. This study aims to investigate the aerodynamic characteristics of these devices at low Reynolds numbers. In the [...] Read more.
Wingtip devices like winglets and other types have been created to improve the aerodynamic efficiency of aircraft based on minimizing the induced drag of tip vortices. This study aims to investigate the aerodynamic characteristics of these devices at low Reynolds numbers. In the present study, the models of a basic non-swept tapered wing and a wing with arc-shaped wingtips are examined. For this purpose, the basic model is equipped with replaceable tips with different geometries. The measurements are performed in a low-speed wind tunnel at a Reynolds number of around 100,000. The analysis of the collected data shows that the best aerodynamic characteristics have a configuration with a 45-degree dihedral angle at the tips of the wing. These results can be used in the conceptual design of small unmanned aerial vehicles (UAVs) to improve their performance in terms of range and endurance. Full article
Show Figures

Figure 1

20 pages, 12065 KB  
Article
Design and Optimization of a Tapered Magnetic Soft Continuum Robot for Enhanced Navigation in Cerebral Vasculature
by Jiahang Wang, Yuhang Liu, Xiwen Lu, Yunlong Zhu and Chenyao Bai
Micromachines 2025, 16(6), 701; https://doi.org/10.3390/mi16060701 - 12 Jun 2025
Cited by 1 | Viewed by 1370
Abstract
Magnetic soft continuum robots (MSCRs) have broad application advantages in vascular intervention; however, current MSCRs still face challenges in navigating the narrower and tortuous structure of the cerebral vasculature. To address this challenge, we propose a tapered MSCR (T-MSCR), which is designed to [...] Read more.
Magnetic soft continuum robots (MSCRs) have broad application advantages in vascular intervention; however, current MSCRs still face challenges in navigating the narrower and tortuous structure of the cerebral vasculature. To address this challenge, we propose a tapered MSCR (T-MSCR), which is designed to facilitate smooth navigation through microvascular structures via its miniature tip. Specifically, to optimize its bending ability, we combine the Gray Wolf Optimizer (GWO) with the Euler–Bernoulli beam theory and introduce a Discrete GWO (DGWO) approach to optimize the distribution of magnetic particles within the T-MSCR. We then demonstrate the optimization process of the T-MSCR’s bending ability, comparing and analyzing its deflection angle and deformation characteristics, highlighting its capability to enter microvasculars. Furthermore, we demonstrate the magnetic steering and path selection capabilities of T-MSCR in a two-dimensional vascular model and its navigation performance in real-scale human vascular models. Finally, biocompatibility tests confirm that T-MSCR exhibits no toxicity to human cells, thereby laying a solid foundation for its clinical application. The proposed T-MSCR design and optimization are expected to provide a more efficient and feasible solution for future cerebrovascular interventions. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

12 pages, 2589 KB  
Article
Understanding Cyclic Fatigue in Three Nickel–Titanium Pediatric Files: An In Vitro Study for Enhanced Patient Care
by Alwaleed Abushanan, Rajashekhara Bhari Sharanesha, Fahd Aljarbou, Hadi Alamri, Mohammed Hamad Almasud, Abdulfatah AlAzmah, Sara Alghamdi and Mubashir Baig Mirza
Medicina 2025, 61(5), 830; https://doi.org/10.3390/medicina61050830 - 30 Apr 2025
Cited by 1 | Viewed by 700
Abstract
Background and Objectives: Nickel–titanium (Niti) instruments have enhanced root canal cleaning in primary teeth, but file fractures are still common. Materials and Methods: This study evaluated the cyclic fatigue resistance of 120 Niti files from four different systems, A: Kedo SG (n [...] Read more.
Background and Objectives: Nickel–titanium (Niti) instruments have enhanced root canal cleaning in primary teeth, but file fractures are still common. Materials and Methods: This study evaluated the cyclic fatigue resistance of 120 Niti files from four different systems, A: Kedo SG (n = 30); B: Neoendo Pedoflex (n = 30); C: Pedoflex Waldent files (n = 30); and D: Vortex Blue files (n = 30). All the files had similar tip diameters (0.25 mm) and tapers (0.4%) and underwent heat treatment during manufacturing. Cyclic fatigue tests showed notable variations in cycles to fracture (NCF) across groups. All fracture surfaces of the files were assessed through scanning electron microscopy. Results: The mean values achieved in the experimental groups (A, B, C) were less than those in the control Group D (976.90 ± 1085.19). Files in Group A demonstrated the highest NCF (697.01 ± 420.09), while Pedoflex files in Group C showed the lowest values (203.88 ± 155.46). Statistical analysis using the Mann–Whitney test revealed significant differences between Group C and Groups A, B, and D and no differences among Groups A, B, and D. Conclusions: These findings suggest that Kedo SG and Neoendo Pedoflex files offer comparable cyclic fatigue resistance to Vortex Blue files. In contrast, Pedoflex Waldent files exhibit lower resistance to fracture. Full article
(This article belongs to the Special Issue Current and Future Trends in Dentistry and Oral Health)
Show Figures

Figure 1

33 pages, 11917 KB  
Article
Multi-Fidelity Surrogate-Assisted Aerodynamic Optimization of Aircraft Wings
by Eleftherios Nikolaou, Spyridon Kilimtzidis and Vassilis Kostopoulos
Aerospace 2025, 12(4), 359; https://doi.org/10.3390/aerospace12040359 - 20 Apr 2025
Viewed by 1617
Abstract
This paper presents a multi-fidelity optimization procedure for aircraft wing design, implemented in the early stages of the aircraft design process. Since wing shape is a key factor that influences aerodynamic performance, having an accurate estimate of its efficiency at the conceptual design [...] Read more.
This paper presents a multi-fidelity optimization procedure for aircraft wing design, implemented in the early stages of the aircraft design process. Since wing shape is a key factor that influences aerodynamic performance, having an accurate estimate of its efficiency at the conceptual design phase is highly beneficial for aircraft designers. This study introduces a comprehensive optimization framework for designing the wing of a Class I fixed-wing mini-UAV with electric propulsion, focusing on maximizing aerodynamic efficiency and operational performance. Utilizing Class-Shape Transformation (CST) in combination with Surrogate-Based Optimization (SBO) techniques, the research first optimizes the airfoil shape to identify the most suitable airfoil for the UAV wing. Subsequently, SBO techniques are applied to generate wing geometries with varying characteristics, including aspect ratio (AR), taper ratio (λ), quarter-chord sweep angle (Λ0.25), and tip twist angle (ε). These geometries are then evaluated using both low- and high-fidelity aerodynamic simulations. The integration of SBO techniques enables an efficient exploration of the design space while minimizing the computational costs associated with iterative simulations. Specifically, the proposed SBO framework enhances the wing’s aerodynamic characteristics by optimizing the lift-to-drag ratio and reducing drag. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

10 pages, 4772 KB  
Article
Effectiveness of Nickel–Titanium Files for Retreatment of Molars Filled with Single-Cone Hydraulic Technique Using Bioceramic Sealers: An In Vitro Study
by Jane Lee, Hyeon-Cheol Kim, Timothy Kirkpatrick, David E. Jaramillo, Sang Won Kwak and Ji Wook Jeong
Materials 2025, 18(6), 1265; https://doi.org/10.3390/ma18061265 - 13 Mar 2025
Viewed by 1115
Abstract
Recently, the single-cone hydraulic canal filling technique using bioceramic sealers was found to hinder retreatment due to the mechanical properties of the bioceramic sealers. This study assessed the effectiveness of four nickel–titanium rotary files in removing gutta-percha and bioceramic sealer from molar root [...] Read more.
Recently, the single-cone hydraulic canal filling technique using bioceramic sealers was found to hinder retreatment due to the mechanical properties of the bioceramic sealers. This study assessed the effectiveness of four nickel–titanium rotary files in removing gutta-percha and bioceramic sealer from molar root canals in vitro. Eighty-eight root canals from extracted molars were instrumented with Vortex Blue rotary files and filled with gutta-percha and bioceramic sealer using a single-cone technique. After 30 days, the filled canals were randomly divided into four groups according to the file used for re-instrumentation: ProTaper Gold (PTG), Endo ReStart (ERS), XP-3D Shaper (XPD), and HyFlex Remover (HFR). This study assessed whether root canal filling material removal and patency were achieved within a 10-min time frame, recording the time required in seconds. The rate of regaining patency and the time required to achieve patency were compared among groups using a generalized linear model. Scanning electron microscopy was used to evaluate the mechanical changes to the files after use. The patency rate of XPD and HFR was significantly higher than PTG. ERS and XPD demonstrated shorter patency times than HFR and significantly shorter patency times than PTG. SEM images revealed a varied range of reverse windings across file groups. PTG and ERS exhibited microcracks and fractured tips, while XPD and HFR did not display these mechanical alterations. The four file systems in this study displayed varying levels of effectiveness in the retreatment of root canals filled with bioceramic sealers. Full article
(This article belongs to the Special Issue Properties of Dental Restorative Materials (Volume II))
Show Figures

Figure 1

16 pages, 5119 KB  
Article
A Comparative Analysis of ProTaper Ultimate and Five Multifile Systems: Design, Metallurgy, and Mechanical Performance
by Jorge N. R. Martins, Emmanuel João Nogueira Leal Silva, Victor Talarico Leal Vieira, Rui Pereira da Costa, Abayomi O. Baruwa, Francisco Manuel Braz Fernandes and Marco Aurélio Versiani
Materials 2025, 18(6), 1260; https://doi.org/10.3390/ma18061260 - 13 Mar 2025
Viewed by 1408
Abstract
The present research compared the design, metallurgical properties, and mechanical characteristics of the ProTaper Ultimate instruments with five multifile systems. A total of 469 new nickel–titanium rotary finishing instruments, all 25 mm in length but varying in size, taper, and metal alloy composition, [...] Read more.
The present research compared the design, metallurgical properties, and mechanical characteristics of the ProTaper Ultimate instruments with five multifile systems. A total of 469 new nickel–titanium rotary finishing instruments, all 25 mm in length but varying in size, taper, and metal alloy composition, from six different multifile systems (ProTaper Ultimate, ProTaper Next, ProFile, Mtwo, EndoSequence, and GT Series X), were inspected for irregularities and analyzed for their spiral density (spirals per millimetre), blade design, surface finishing, alloy composition, phase transformation temperatures, and mechanical performance (microhardness, torsional, and bending resistance tests). Group comparisons were performed using Kruskal–Wallis and one-way ANOVA with post hoc Tukey’s tests (α = 5%). ProFile instruments exhibited a greater number of spirals and a higher density of spirals per millimetre compared to the other systems. Microscopic analysis revealed distinct tip geometries and blade designs among tested instruments. All of them displayed parallel marks from the machining process, but the EndoSequence system had the smoothest surface finish. The alloys of all instruments consisted of an almost equiatomic ratio of nickel to titanium. At the testing temperature, the ProTaper Ultimate system exhibited a complete R-phase crystallographic arrangement, while the ProFile and Mtwo systems were fully austenitic. The ProTaper Ultimate F2, F3, and FX instruments demonstrated the highest maximum torque values (1.40, 1.45, and 3.55 N.cm, respectively) and the lowest maximum bending loads (202.7, 254.9, and 408.4 gf, respectively). EndoSequence instruments showed the highest angles of rotation, while the highest microhardness values were recorded for GT Series X (407.1 HVN) and ProTaper Next (425.0 HVN) instruments. The ProTaper Ultimate system showed a high spiral density per millimetre and a complete R-phase crystallographic arrangement at room temperature, which significantly contributed to its superior flexibility and torsional strength when compared to the other tested systems. Full article
(This article belongs to the Special Issue Development and Research of New Dental Materials)
Show Figures

Figure 1

14 pages, 1797 KB  
Article
Study on the Reasonability of Single-Objective Optimization in Miniscrew Design
by Yu-Ching Li, Jiun-Ren Hwang and Chin-Ping Fung
Materials 2025, 18(5), 973; https://doi.org/10.3390/ma18050973 - 21 Feb 2025
Cited by 2 | Viewed by 657
Abstract
Miniscrews are used in orthodontic treatment and can be applied immediately after implantation, making their initial stability crucial. However, clinical reports show that the success rate is not 100%, and many researchers have tried to identify the factors influencing success and optimize designs. [...] Read more.
Miniscrews are used in orthodontic treatment and can be applied immediately after implantation, making their initial stability crucial. However, clinical reports show that the success rate is not 100%, and many researchers have tried to identify the factors influencing success and optimize designs. A review of the literature reveals that studies on the same geometric parameter of miniscrews using different indicators and different brand samples have led to conflicting results. This study will use consistent miniscrew conditions to verify whether the design differences in the literature are reasonable. This study employs the Taguchi method and ANOVA for optimization analysis. The four control factors comprise thread pitch, thread depth, tip taper angle, and self-tapping notch. Using an L9(34) orthogonal array, the experimental models are reduced to nine. The primary stability indicators for the miniscrew include bending strength, pull-out strength, insertion torque, and self-tapping performance. The results of the single-objective experiments in this study align with the findings from the other literature. However, when analyzed collectively, they do not yield the same optimal solution. Under equal weighting, the combined multi-objective optimal solution is A2B2C1D1. This study exhibits minimal experimental error, ensuring high analytical reliability. The findings confirm that the optimal design does not converge across four single-objective analyses, as different stability indicators yield contradictory trends in design parameters. Given that these four indicators already demonstrate notable discrepancies, the influence of additional stability factors would be even more pronounced. Therefore, a multi-objective optimization approach is essential for the rational design of miniscrews. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

26 pages, 31728 KB  
Article
Discovery of Two New Deep-Sea Desmoscolex Species (Nematoda: Desmoscolecidae) with Wing-like Cephalic Setae from the Ulleung Basin, the East Sea, Korea
by Wooin Jung and Hyun Soo Rho
J. Mar. Sci. Eng. 2024, 12(12), 2257; https://doi.org/10.3390/jmse12122257 - 9 Dec 2024
Viewed by 1099
Abstract
This study describes two new species of the subgenus Desmoscolex (Nematoda: Desmoscolecidae) from deep-sea habitats in the Ulleung Basin, the East Sea, Korea, located in the NorthWest Pacific Ocean. Both species exhibit cephalic setae with wing-like appendages—a rare trait documented in only a [...] Read more.
This study describes two new species of the subgenus Desmoscolex (Nematoda: Desmoscolecidae) from deep-sea habitats in the Ulleung Basin, the East Sea, Korea, located in the NorthWest Pacific Ocean. Both species exhibit cephalic setae with wing-like appendages—a rare trait documented in only a few species of this subgenus. Desmoscolex (Desmoscolex) globiceps sp. nov. is characterized by a rounded head covered with concretion particles, wing-like cephalic setae equipped with thin, flap-like membranes, and oval amphidial fovea that cover most of the head. The body is composed of 17 main rings, bearing slender somatic setae that taper to an open tip and a conical terminal ring that elongates to a short spinneret. Females of this species lack subventral setae on the 14th main ring. Desmoscolex (Desmoscolex) ovaliceps sp. nov. features an oval head covered with foreign particles, wing-like cephalic setae with thin, flap-like membranes, and oval amphids encompassing much of the head. This species also has a body with 17 main rings, with subdorsal setae gradually tapering toward the tip, which is slightly differentiated from the rest, and shorter subventral setae ending with an open distal tip. The terminal ring is conical, slightly tapered, and terminates in an uncovered spinneret. Detailed morphological descriptions of both species are provided, incorporating scanning electron microscopy (SEM) and differential interference contrast (DIC) images. A comparative analysis with previously described taxa is included, along with a pictorial key to assist in the identification of related species, contributing to a deeper understanding of morphological diversity within the subgenus Desmoscolex. Full article
(This article belongs to the Special Issue Biodiversity and Population Ecology of Marine Invertebrates)
Show Figures

Figure 1

31 pages, 42833 KB  
Article
Two New Species of Desmoscolex (Nematoda: Desmoscolecidae) from Subtidal Benthic Habitats in Korea, with a Comparative Analysis of Cephalic Setae Variability
by Wooin Jung, Ji-Hoon Kihm and Hyun Soo Rho
J. Mar. Sci. Eng. 2024, 12(12), 2168; https://doi.org/10.3390/jmse12122168 - 27 Nov 2024
Cited by 4 | Viewed by 1134
Abstract
This study describes two new species of the subgenus Desmoscolex (Nematoda: Desmoscolecidae) from subtidal benthic habitats in Korea, located in the Northwestern Pacific Ocean. Both species are distinguished by the absence of cephalic setae—a rare feature previously documented in only three species within [...] Read more.
This study describes two new species of the subgenus Desmoscolex (Nematoda: Desmoscolecidae) from subtidal benthic habitats in Korea, located in the Northwestern Pacific Ocean. Both species are distinguished by the absence of cephalic setae—a rare feature previously documented in only three species within this subgenus: Desmoscolex (Desmoscolex) rostratus Timm, 1970; D. (D.) asetosus Decraemer, 1975; and D. (D.) obscurus Bussau, 1993. The new species exhibit distinct morphological features. Desmoscolex (D.) lanceosetatus sp. nov. is characterized by an asymmetrical, dorsally curved head; large amphidial fovea that extend to the posterior margin of the first main ring; and lance-shaped subdorsal setae. In females, the absence of subventral setae on the 14th ring deviates from the typical arrangement of 17 main rings. Desmoscolex (D.) rotundicephalus sp. nov. is identified by its globular head, oval amphidial fovea, and tapering subdorsal setae with an open tip. In females, the absence of subventral setae on the 14th ring further differentiates it from closely related species. This paper provides detailed morphological descriptions supported by scanning electron microscopy (SEM) and differential interference contrast (DIC) images. Additionally, it includes a comprehensive morphological comparison with previously described species, species diagnoses, and a pictorial key for identification. Full article
(This article belongs to the Special Issue Biodiversity and Population Ecology of Marine Invertebrates)
Show Figures

Figure 1

38 pages, 20738 KB  
Article
A Reformulated-Vortex-Particle-Method-Based Aerodynamic Multi-Objective Design Optimization Strategy for Proprotor in Hover and High-Altitude Cruise
by Zhiwei Ding, Chaoqun Zhang, Minghua Peng and Jianbo Li
Aerospace 2024, 11(11), 906; https://doi.org/10.3390/aerospace11110906 - 4 Nov 2024
Cited by 2 | Viewed by 2175
Abstract
An improved multi-objective design optimization framework is proposed for the efficient design of proprotor blades tailored to specific high-altitude mission requirements. This framework builds upon existing methods by leveraging a reformulated Vortex Particle Method (rVPM) and incorporates three key stages: (1) rapid determination [...] Read more.
An improved multi-objective design optimization framework is proposed for the efficient design of proprotor blades tailored to specific high-altitude mission requirements. This framework builds upon existing methods by leveraging a reformulated Vortex Particle Method (rVPM) and incorporates three key stages: (1) rapid determination of overall proprotor parameters using a semi-empirical model, (2) optimized blade chord and twist distribution bounds based on minimum energy loss theory, and (3) global optimization with a high-fidelity rVPM-based aerodynamic solver coupled with a multi-objective hybrid optimization algorithm. Applied to a small high-altitude tiltrotor, the framework produced Pareto-optimal proprotor designs with a figure of merit of 0.814 and cruise efficiency of 0.896, exceeding mission targets by over 15%. Key findings indicate that large taper ratios and low twist improve hover performance, while elliptical blade planforms with high twist enhance cruise efficiency, and a tip anhedral further boosts overall performance. This framework streamlines the industrial customization of proprotor blades, significantly reducing the design space for advanced optimization while improving performance in demanding high-altitude environments. Full article
(This article belongs to the Special Issue Aerodynamic Numerical Optimization in UAV Design)
Show Figures

Figure 1

Back to TopTop