Study on the Reasonability of Single-Objective Optimization in Miniscrew Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Testing Methods and Equipment
2.3. Taguchi Method’s Quality Characteristics and ANOVA
3. Results
4. Discussion
5. Conclusions
- The Taguchi method effectively reduces the number of experiments.
- This study confirmed that the same control factor can have opposite effects on different evaluation indicators.
- When researching the optimization design of miniscrews, focusing solely on a single indicator would be unreasonable.
- Multi-objective optimization should be considered to determine the optimal parameters.
- This study provides an optimization result based on equal weighting, which can serve as a valuable reference for manufacturers in designing miniscrews.
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Migliorati, M.; Benedicenti, S.; Signori, A.; Drago, S.; Barberis, F.; Tournier, H.; Silvestrini-Biavati, A. Miniscrew design and bone characteristics: An experimental study of primary stability. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 228–234. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, J.S.; Roberts, W.E. Failure rates for stainless steel versus titanium alloy infrazygomatic crest bone screws: A single-center, randomized double-blind clinical trial. Angle Orthod. 2018, 89, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Giuliano Maino, B.; Pagin, P.; Di Blasio, A. Success of miniscrews used as anchorage for orthodontic treatment: Analysis of different factors. Prog. Orthod. 2012, 13, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Park, J.H.; Bay, R.C.; Choi, S.; Chae, J. Cortical bone thickness and bone density effects on miniscrew success rates: A systematic review and meta-analysis. Orthod. Craniofacial Res. 2020, 24, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Baumgaertel, S.; Palomo, J.M.; Zaverdinos, M.; Elshebiny, T. Ten years of miniscrew use in a U.S. orthodontic residency program. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.S.; Yow, M.; Chew, M.T.; Foong, W.C.; Womg, H.C. A study of success rate of miniscrew implants as temporary anchorage devices in Singapore. Int. J. Dent. 2015, 2015, 294670. [Google Scholar] [CrossRef] [PubMed]
- Lam, R.; Goonewardene, M.S.; Allan, B.P.; Sugawara, J. Success rates of a skeletal anchorage system in orthodontics: A retro-spective analysis. Angle Orthod. 2018, 88, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.H.; Behrents, R.G.; Kim, K.B.; Kyung, H.-M.; Buschang, P.H. Effects of screw and host factors on insertion torque and pullout strength. Angle Orthod. 2012, 82, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Reynders, R.A.M.; Ronchi, L.; Ladu, L.; van Etten-Jamaludin, F.; Bipat, S. Insertion torque and success of orthodontic mini-implants: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 596–614.e5. [Google Scholar] [CrossRef]
- Jedliński, M.; Janiszewska-Olszowska, J.; Mazur, M.; Grocholewicz, K.; Suárez Suquía, P.; Suárez Quintanilla, D. How does orthodontic mini-implant thread minidesign influence the stability?—Systematic review with meta-analysis. J. Clin. Med. 2022, 11, 5304. [Google Scholar] [CrossRef]
- Katyal, S.; Bhatia, N.K.; Sardana, R.; Singh, S.; Chugh, A.; Shamim, M.A.; Anil, A.; Negi, A.; Chugh, V.K. Success rate and factors affecting stability of infrazygomatic miniscrew implants: A systematic review and meta-analysis. Eur. J. Orthod. 2024, 47, cjae074. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Choi, S.-H.; Yu, H.-S.; Erenebat, T.; Liu, J.; Cha, J.-Y. Stability and success rate of dual-thread miniscrews. Angle Orthod. 2021, 91, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Çaglar, S.; Özlem, A. Techniques to measure miniscrew implant stability. J. Orthod. Res. 2013, 1, 5–10. [Google Scholar] [CrossRef]
- Mutheus, M.P.; Matilde, G.N.; Lincolin, I.N. Primary stability of orthodontic mini-implants inserted into maxilla and mandible of swine. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2012, 113, 748–754. [Google Scholar]
- Kuroda, S.; Sugawara, Y.; Deguchi, T.; Kyung, H.-M.; Takano-Yamamoto, T. Clinical use of miniscrew implants as orthodontic anchorage: Success rates and postoperative discomfort. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Mitchell, B.; Sakamaki, T.; Hirai, Y.; Kim, D.-G.; Deguchi, T.; Suzuki, M.; Ueda, K.; Tanaka, E. Mechanical stability of orthodontic miniscrew depends on a thread shape. J. Dent. Sci. 2021, 17, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Wilmes, B.; Ottenstreuer, S.; Su, Y.-Y.; Drescher, D. Impact of Implant Design on Primary Stability of Orthodontic Mini-implants. J. Orofac. Orthop. Kieferorthopadie 2008, 69, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Mešić, E.; Muratović, E.; Redžepagić-Vražalica, L.; Pervan, N.; Muminović, A.J.; Delić, M.; Glušac, M. Experimental & FEM Analysis of Orthodontic Mini-Implant Design on Primary Stability. Appl. Sci. 2021, 11, 5461. [Google Scholar] [CrossRef]
- Cozzani, M.; Nucci, L.; Lupini, D.; Dolatshahizand, H.; Fazeli, D.; Barzkar, E.; Naeini, E.; Jamilian, A. The ideal insertion angle after immediate loading in Jeil, Storm, and Thunder miniscrews: A 3D-FEM study. Int. Orthod. 2020, 18, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Scribante, A.; Montasser, M.A.; Radwan, E.S.; Bernardinelli, L.; Alcozer, R.; Gandini, P.; Sfondrini, M.F. Reliability of orthodontic minis-crews: Bending and maximum load of different Ti-6Al-4V titanium and stainless steel temporary anchorage devices (TADs). Materials 2018, 11, 1138. [Google Scholar] [CrossRef]
- Kim, G.-T.; Jin, J.; Mangal, U.; Lee, K.-J.; Kim, K.-M.; Choi, S.-H.; Kwon, J.-S. Primary Stability of Orthodontic Titanium Miniscrews due to Cortical Bone Density and Re-Insertion. Materials 2020, 13, 4433. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, A.C.; Marquezan, M.; Lima, I.; Lopes, R.T.; Nojima, L.I.; Sant'Anna, E.F. Influence of bone architecture on the primary stability of different mini-implant designs. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 45–51. [Google Scholar] [CrossRef]
- Kang, S.-Y.; Yu, J.-M.; Kim, H.-S.; Lee, J.-S.; Yeon, C.-M.; Park, K.-S.; Choi, S.-H.; Lee, S.-Y. Influence of Orthodontic Anchor Screw Anchorage Method on the Stability of Artificial Bone: An In Vitro Study. Materials 2020, 13, 3205. [Google Scholar] [CrossRef] [PubMed]
- Barros, S.E.; Janson, G.; Chiqueto, K.; Garib, D.G.; Janson, M. Effect of mini-implant diameter on fracture risk and self-drilling efficacy. Am. J. Orthod. Dentofac. Orthop. 2011, 140, e181–e192. [Google Scholar] [CrossRef]
- Gracco, A.; Giagnorio, C.; Incerti Parenti, S.; Alessandri Bonetti, G.A.; Siciliani, G.S. Effects of thread shape on the pullout strength of miniscrews. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Tepedino, M.; Masedu, F.; Chimenti, C. Comparative evaluation of insertion torque and mechanical stability for self-tapping and self-drilling orthodontic miniscrews—An in vitro study. Head Face Med. 2017, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-A.; Cha, J.-Y.; Hwang, C.-J. Insertion Torque of Orthodontic Miniscrews According to Changes in Shape, Diameter and Length. Angle Orthod. 2008, 78, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Radwan, E.S.; Montasser, M.A.; Maher, A. Influence of geometric design characteristics on primary stability of orthodontic miniscrews. J. Orofac. Orthop. Kieferorthopadie 2018, 79, 191–203. [Google Scholar] [CrossRef]
- Migliorati, M.; Benedicenti, S.; Signori, A.; Drago, S.; Cirillo, P.; Barberis, F.; Biavati, A.S. Thread shape factor: Evaluation of three different orthodontic miniscrews stability. Eur. J. Orthod. 2012, 35, 401–405. [Google Scholar] [CrossRef]
- Sharma, A.; Maurya, N.K.; Singh, Y.; Singh, N.K.; Gupta, S.K. Effect of design parameters on performance and emissions of DI diesel engine running on biodiesel-diesel blends: Taguchi and utility theory. Fuel 2020, 281, 118765. [Google Scholar] [CrossRef]
- Ye, Y.; Yi, W.; Fan, S.; Zhao, L.; Yu, Y.; Lu, Y.; Yao, Q.; Wang, W.; Chang, S. Effect of thread depth and thread pitch on the primary stability of miniscrews receiving a torque load: A finite element analysis. J. Orofac. Orthop. 2023, 84, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, S.; Tanaka, E. Risks and complications of miniscrew anchorage in clinical orthodontics. Jpn. Dent. Sci. Rev. 2014, 50, 79–85. [Google Scholar] [CrossRef]
- Kitahara-Céia, F.M.; Assad-Loss, T.F.; Mucha, J.N.; Elias, C.N. Morphological evaluation of the active tip of six types of orthodontic mini-implants. Dent. Press. J. Orthod. 2013, 18, 36–41. [Google Scholar] [CrossRef] [PubMed]
- ASTM F138-19; Standard Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673). ASTM International: West Conshohocken, PA, USA, 2019.
- ISO 5832-1:2016; Implants for Surgery—Metallic Materials—Part 1: Wrought Stainless Steel. ISO: Geneva, Switzerland, 2016.
- ASTM F1839-08; Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM F543-17; Standard Specification and Test Methods for Metallic Medical Bone Screws. ASTM International: West Conshohocken, PA, USA, 2017.
- Topouzelis, N.; Tsaousoglou, P. Clinical factors correlated with the success rate of miniscrews in orthodontic treatment. Int. J. Oral Sci. 2012, 4, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.N.; Zogakis, I.P.; Papadopoulos, M.A. Failure rates and associated risk factors of orthodontic miniscrew implants: A meta-analysis. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 577–595.e7. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Kim, G.-T.; Kwon, J.-S.; Choi, S.-H. Effects of Intrabony Length and Cortical Bone Density on the Primary Stability of Orthodontic Miniscrews. Materials 2020, 13, 5615. [Google Scholar] [CrossRef]
- Brinley, C.L.; Behrents, R.; Kim, K.B.; Condoor, S.; Kyung, H.-M.; Buschang, P.H. Pitch and Longitudinal Fluting Effects on the Primary Stability of Miniscrew Implants. Angle Orthod. 2009, 79, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, E.Y.; Suzuki, B. Placement and removal torque values of orthodontic miniscrew implants. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, A.S.; Naseri, H.; Nourisari, M.; Qaffari, H.; Kashaniaraqbidi, M.; Eslamiamirabadi, R. The clinical success of self-tapping and self-drilling orthodontic minis-crews. Eur. J. Orthod. 2015, 7, 113–137. [Google Scholar]
- Yi, J.; Ge, M.; Li, M.; Li, C.; Li, Y.; Li, X.; Zhao, Z. Comparison of the success rate between self-drilling and self-tapping miniscrews: A systematic review and meta-analysis. Eur. J. Orthod. 2016, 39, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Valeri, C.; Aloisio, A.; Quinzi, V.; di Stefano, G.; Marzo, G. Characterizing orthodontic mini-screws in the hard palate of pigs: An experimental and finite-element study. Heliyon 2024, 10, e24952. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Santos, C.; Sousa-Santos, S.; Mendes, J.; Coelho, C.; Aroso, C.; Sousa-Santos, P.; Mendes, J.M. The Influence of the Diameter of Orthodontic Mini-Implants on Primary Stability: Bending Tests—An In Vitro Study. Materials 2024, 17, 3149. [Google Scholar] [CrossRef] [PubMed]
- Do, T.V.; Hsu, Q.C.; Chen, P.H.; Chen, Y.L. Study on the Performance of Orthodontic Self-Drilling Correction Screw of Ti6Al4V and Stainless 316L. Mater. Sci. Forum 2016, 872, 276–280. [Google Scholar]
- Boukraa, M.; Chekifi, T.; Lebaal, N. Friction Stir Welding of Aluminum Using a Multi-Objective Optimization Approach Based on Both Taguchi Method and Grey Relational Analysis. Exp. Tech. 2022, 47, 603–617. [Google Scholar] [CrossRef]
- Hwang, J.-R.; Zheng, J.-Y.; Kuo, P.-C.; Huang, C.-D.; Fung, C.-P. Process Optimization of Inconel 718 Alloy Produced by Laser Powder Bed Fusion. Metals 2022, 12, 1494. [Google Scholar] [CrossRef]
- Phan, T.-D.; Do, T.-V.; Pham, T.-L.; Duong, H.-L. Optimization of cutting parameters and nanoparticle concentration in hard milling for surface roughness of JIS SKD61 steel using linear regression and Taguchi method. Lect. Notes Netw. Syst. 2020, 2021, 628–635. [Google Scholar]
Trial | Control Factor Level | |||
---|---|---|---|---|
Thread Pitch [mm] | Thread Depth [mm] | Tip Taper Angle [Degree] | Self-Tapping Notch [Amount] | |
1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 |
4 | 2 | 1 | 2 | 3 |
5 | 2 | 2 | 3 | 1 |
6 | 2 | 3 | 1 | 2 |
7 | 3 | 1 | 3 | 2 |
8 | 3 | 2 | 1 | 3 |
9 | 3 | 3 | 2 | 1 |
Control Factor | Level | ||
---|---|---|---|
1 | 2 | 3 | |
A. Thread pitch [mm] | 0.75 | 0.8 | 0.85 |
B. Thread depth [mm] | 0.25 | 0.3 | 0.35 |
C. Tip taper angle [degree] | 20.4 | 24.8 | 29.1 |
D. Self-tapping notch [amount] | 0 | 1 | 2 |
Trial | MIT | MIIA | MPS | MBS | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | S/N | Mean ± SD | S/N | Mean ± SD | S/N | Mean ± SD | S/N | |
[cN·cm] | [dB] | [degree] | [dB] | [N] | [dB] | [N] | [dB] | |
1 | 12.75 ± 0.51 | −22.11 | 296.78 ± 08.60 | −49.45 | 509.02 ± 04.92 | 54.13 | 112.50 ± 8.23 | 40.97 |
2 | 11.98 ± 0.20 | −21.57 | 318.46 ± 09.01 | −50.06 | 467.84 ± 10.92 | 53.40 | 106.34 ± 7.04 | 40.49 |
3 | 09.71 ± 0.16 | −19.74 | 331.40 ± 16.13 | −50.42 | 435.91 ± 24.49 | 52.75 | 085.40 ± 2.75 | 38.62 |
4 | 12.06 ± 0.39 | −21.63 | 291.26 ± 12.76 | −49.29 | 448.89 ± 16.31 | 53.03 | 124.29 ± 4.56 | 41.87 |
5 | 14.87 ± 0.33 | −23.45 | 282.98 ± 12.02 | −49.04 | 560.35 ± 14.47 | 54.96 | 100.73 ± 3.18 | 40.05 |
6 | 13.00 ± 0.15 | −22.28 | 297.12 ± 07.79 | −49.46 | 514.32 ± 06.11 | 54.22 | 087.51 ± 4.09 | 38.82 |
7 | 12.87 ± 0.63 | −22.20 | 367.04 ± 10.92 | −51.30 | 477.78 ± 05.40 | 53.58 | 119.29 ± 3.05 | 41.53 |
8 | 13.63 ± 0.28 | −22.69 | 259.54 ± 12.03 | −48.29 | 498.02 ± 09.39 | 53.94 | 095.54 ± 2.10 | 39.60 |
9 | 15.34 ± 0.28 | −23.72 | 297.34 ± 10.13 | −49.47 | 557.00 ± 19.18 | 54.90 | 079.53 ± 1.61 | 38.01 |
Control Factor | Contribution [%] | |||
---|---|---|---|---|
MIT | MIIA | MPS | MBS | |
A. Thread pitch | 44.9 | 13.0 | 19.7 | 3.0 |
B. Thread depth | 7.2 | 21.2 | 9.1 | 91.9 |
C. Tip taper angle | 5.4 | 35.6 | 4.6 | 1.3 |
D. Self-tapping notch | 42.5 | 30.3 | 66.6 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-C.; Hwang, J.-R.; Fung, C.-P. Study on the Reasonability of Single-Objective Optimization in Miniscrew Design. Materials 2025, 18, 973. https://doi.org/10.3390/ma18050973
Li Y-C, Hwang J-R, Fung C-P. Study on the Reasonability of Single-Objective Optimization in Miniscrew Design. Materials. 2025; 18(5):973. https://doi.org/10.3390/ma18050973
Chicago/Turabian StyleLi, Yu-Ching, Jiun-Ren Hwang, and Chin-Ping Fung. 2025. "Study on the Reasonability of Single-Objective Optimization in Miniscrew Design" Materials 18, no. 5: 973. https://doi.org/10.3390/ma18050973
APA StyleLi, Y.-C., Hwang, J.-R., & Fung, C.-P. (2025). Study on the Reasonability of Single-Objective Optimization in Miniscrew Design. Materials, 18(5), 973. https://doi.org/10.3390/ma18050973