Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = tab temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1906 KiB  
Article
Explainable and Optuna-Optimized Machine Learning for Battery Thermal Runaway Prediction Under Class Imbalance Conditions
by Abir El Abed, Ghalia Nassreddine, Obada Al-Khatib, Mohamad Nassereddine and Ali Hellany
Thermo 2025, 5(3), 23; https://doi.org/10.3390/thermo5030023 - 15 Jul 2025
Viewed by 297
Abstract
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power [...] Read more.
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power and transportation systems. This paper presents an advanced machine learning method for forecasting and classifying the causes of TR. A generative model for synthetic data generation was used to handle class imbalance in the dataset. Hyperparameter optimization was conducted using Optuna for four classifiers: Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), tabular network (TabNet), and Extreme Gradient Boosting (XGBoost). A three-fold cross-validation approach was used to guarantee a robust evaluation. An open-source database of LIB failure events is used for model training and testing. The XGBoost model outperforms the other models across all TR categories by achieving 100% accuracy and a high recall (1.00). Model results were interpreted using SHapley Additive exPlanations analysis to investigate the most significant factors in TR predictors. The findings show that important TR indicators include energy adjusted for heat and weight loss, heater power, average cell temperature upon activation, and heater duration. These findings guide the design of safer battery systems and preventive monitoring systems for real applications. They can help experts develop more efficient battery management systems, thereby improving the performance and longevity of battery-operated devices. By enhancing the predictive knowledge of temperature-driven failure mechanisms in LIBs, the study directly advances thermal analysis and energy storage safety domains. Full article
Show Figures

Figure 1

17 pages, 3367 KiB  
Article
Removing High-Velocity Oxyfuel Coatings Through Electrolytic Dissolution
by Zdeněk Pitrmuc, Vivek Rana, Michal Slaný, Jiří Kyncl, Sunil Pathak and Libor Beránek
J. Manuf. Mater. Process. 2025, 9(2), 40; https://doi.org/10.3390/jmmp9020040 - 29 Jan 2025
Viewed by 872
Abstract
High-velocity oxyfuel (HVOF) coatings are used to protect components from corrosion and wear at higher temperatures and from wearing out after a certain period of time. Hence, to enhance the life of components, further recoating is required, but removing the older coating is [...] Read more.
High-velocity oxyfuel (HVOF) coatings are used to protect components from corrosion and wear at higher temperatures and from wearing out after a certain period of time. Hence, to enhance the life of components, further recoating is required, but removing the older coating is a challenging task due to its high hardness. Thus, this research work studied the electrolytic dissolution process of removing WC-CoCr 86/10/4 HVOF coatings and found that at a voltage of 3 V, the coating was not removed, but at a slightly higher voltage of 6 V, the coating was removed completely. When the voltage was 12 V, the surface was damaged, and corrosion also occurred. A combination of tartaric acid (C4H6O6), sodium bicarbonate (NaHCO3), and water was used as an electrolyte. By using a combination of a voltage of 4.5 V, a current of 1.6 A, and an electrode distance of 55 mm, the coating was completely removed after 10 h, with negligible attacks on the base material. Where the corrosion of the base material is unacceptable, voltages in the range of 4 to 6 V are recommended. If parts have coatings on all surfaces, a voltage within the range of 6 to 12 V can be recommended. The coating from tab SB-002JI-5 TOOLOX-11 and hexagonal mandrel SB-00EA-1 160 TIS was also removed successfully. Full article
Show Figures

Figure 1

26 pages, 9543 KiB  
Article
Design Analysis of 26650 and 18650 LFP Cells for High Power and Low Temperature Use Cases
by Florian Wätzold, Anton Schlösser, Max Leistikow and Julia Kowal
Batteries 2025, 11(1), 38; https://doi.org/10.3390/batteries11010038 - 20 Jan 2025
Viewed by 2106
Abstract
This study investigates the design and geometric properties of high-power and low-temperature 18650 and 26650 lithium iron phosphate (LFP) cells. The analysis focuses on the geometry and components’ thicknesses and deriving CAD models for both cell formats. Design variations were observed, even within [...] Read more.
This study investigates the design and geometric properties of high-power and low-temperature 18650 and 26650 lithium iron phosphate (LFP) cells. The analysis focuses on the geometry and components’ thicknesses and deriving CAD models for both cell formats. Design variations were observed, even within cells from the same manufacturer. For instance, one manufacturer’s 26650 cell was not a scaled-up version of their 18650 cell, and no equivalence was found between the designs of high-power and low-temperature cells from the same manufacturer. Thus, modifications are not purely chemistry based. The results also reveal deviations from the literature values for jelly roll component thicknesses, with anode current collectors averaging 61 µm and cathode current collectors averaging 60 µm. Coating thicknesses varied, with anode coatings averaging 32 µm and cathode coatings averaging 52 µm. These variations in current collector and coating thicknesses suggest that both high-power and low-temperature LFP cell designs differ from the typical literature values. Furthermore, a trade-off was observed between low-temperature operation with two-tab designs and high pulse capability with limited minimum operating temperatures. Additionally, smaller particle sizes in anode coatings were associated with lower impedance. Full article
(This article belongs to the Special Issue Battery Manufacturing: Current Status, Challenges, and Opportunities)
Show Figures

Graphical abstract

16 pages, 5055 KiB  
Article
A Millimeter-Resolution Operando Thermal Image of Prismatic Li-Ion Batteries Using a Distributed Optical Fiber Sensor
by Zhen Guo, Mina Abedi Varnosfaderani, Calum Briggs, Erdogan Guk and James Marco
Batteries 2025, 11(1), 19; https://doi.org/10.3390/batteries11010019 - 8 Jan 2025
Cited by 1 | Viewed by 1398
Abstract
With the demand for energy gravimetric and volumetric density in electrical vehicles, lithium-ion batteries are undergoing a trend toward larger formats, along with maximized cell-to-pack efficiency. Current battery thermal management systems and battery modeling, relying on point measurement (thermocouples/thermistors), face challenges in providing [...] Read more.
With the demand for energy gravimetric and volumetric density in electrical vehicles, lithium-ion batteries are undergoing a trend toward larger formats, along with maximized cell-to-pack efficiency. Current battery thermal management systems and battery modeling, relying on point measurement (thermocouples/thermistors), face challenges in providing comprehensive characterization for larger batteries and extensive monitoring across the pack. Here, we proposed a novel Rayleigh-scattering-based distributed optical fiber sensor to deliver thermal images of a large prismatic cell. Using an optical fiber of 1 mm diameter wrapped around the cell, the optical sensor delivered over 400 unique measurement locations at 3 mm spatial resolution. During a 1.0 C charge, the optical-measured maximum temperature difference was 8.2 °C, while point-like thermocouples, located at the cell front surface and rear surface center, only had a 0.8 °C maximum temperature difference. Moreover, the all-surface-covered optical sensor identified hotspot generation around the vicinity of the tabs, highlighting the essential role of tabs. The maximum temperature on the negative current tab reached 113.9 °C during a 1.5 C discharge, while the hottest spot on the cell surface was only 52.1 °C. This was further validated by the operando thermal image in both the time domain and the spatial domain, facilitating a detailed analysis of the thermal-behavior-like heat generation on the current tabs, transmission through the surface, and dissipation to the cell bottom. Full article
Show Figures

Figure 1

16 pages, 6476 KiB  
Article
Cross-Linked Polyimide Aerogels with Excellent Thermal and Mechanical Properties
by Haoran Qian, Zhiqi Li and Song He
Gels 2024, 10(10), 667; https://doi.org/10.3390/gels10100667 - 19 Oct 2024
Cited by 3 | Viewed by 2324
Abstract
With the increasing development of productivity, new materials that allow for the efficient use of energy are slowly becoming a sought-after goal, as well as a challenge that is currently being faced. For this reason, we have made aerogels as the target of [...] Read more.
With the increasing development of productivity, new materials that allow for the efficient use of energy are slowly becoming a sought-after goal, as well as a challenge that is currently being faced. For this reason, we have made aerogels as the target of our research and prepared different series (CLPI (1–5)) of cross-linked polyimide aerogels by mixing and cross-linking the heat-insulating cross-linking agent 1,3,5-tris(4-aminobenzylamino)benzene (TAB) with polyamic acid solution. We created a three-dimensional spatial organization by using vacuum freeze-drying and programmed high-temperature drying, then controlled the concentration of the polyamidate solution to investigate the concentration and TAB’s influence on aerogel-related properties. Among them, the shrinkage is reduced from 40% in CLPI-1 to 28% in CLPI-5, and it also shows excellent mechanical characteristics, the highest compression strength (CLPI-5) reaches 0.81 MPa and specific modulus reaches 41.95 KN m/Kg. In addition, adding TAB improves the aerogel thermal resistance, T5 in N2 from PI-2 519 °C to CLPI-2 556 °C. The three-dimensional network-type structure of the aerogel shows an excellent thermal insulation effect, where the thermal conductivity can be as low as 24.4 mWm−1 K−1. Compared with some protective materials, cross-linked polyimide aerogel presents better flame-retardant properties, greatly improving the scope of its application in the industrial protection. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

15 pages, 4167 KiB  
Article
Real-Time Impedance Detection for PEM Fuel Cell Based on TAB Converter Voltage Perturbation
by Jialong Zhou, Jinhai Jiang, Fulin Fan, Chuanyu Sun, Zhen Dong and Kai Song
Energies 2024, 17(17), 4320; https://doi.org/10.3390/en17174320 - 29 Aug 2024
Cited by 1 | Viewed by 1494
Abstract
Fuel cells, as clean and efficient energy conversion devices, hold great potential for applications in the fields of hydrogen-based transportation and stand-alone power systems. Due to their sensitivity to load parameters, environmental parameters, and gas supply, the performance monitoring and fault diagnosis of [...] Read more.
Fuel cells, as clean and efficient energy conversion devices, hold great potential for applications in the fields of hydrogen-based transportation and stand-alone power systems. Due to their sensitivity to load parameters, environmental parameters, and gas supply, the performance monitoring and fault diagnosis of fuel cell systems have become crucial research areas. Electrochemical impedance spectroscopy (EIS) is a widely applied analytical method in fuel cell systems. that can provide rich information about dynamic system responses, internal impedance, and transmission characteristics. Currently, EIS detection is primarily implemented by using simple topologies such as boost circuits. However, the injection of excitation signals often results in significant power fluctuations, leading to issues such as uneven temperature distributions within the cell, unstable gas supply, and damage to the proton exchange membrane. To address this issue, this paper proposes a real-time EIS detection technique for a proton exchange membrane fuel cell (PEMFC) system that connects a lithium-ion battery and injects the load voltage perturbation through a triple active bridge (TAB) converter. By applying the small-signal model of the TAB converter and designing a system controller using a decoupling control method, the PEMFC power remains stable after the disturbance injection across the entire frequency range under tests. Furthermore, the lithium-ion battery can instantly track load changes during fluctuations. The proposed EIS detection method can acquire EIS data in real time to monitor the state of the PEMFC. Simulation results validate the effectiveness and accuracy of the proposed method for EIS detection. Full article
(This article belongs to the Special Issue Renewable Energy and Hydrogen Energy Technologies)
Show Figures

Figure 1

19 pages, 6250 KiB  
Article
Enhancing Ablation Resistance of TaB2-Based Ultra-High Temperature Ceramics by Mixing Fine TaC Particles and Dispersed Multi-Walled Carbon Nanotubes
by Guangxu Bo, Xiaoke Tian, Huanhuan Li, Luona Ye, Xiaoling Xu, Zhaorui Gu, Jinyong Yan, Xingjian Su and Yunjun Yan
Materials 2024, 17(14), 3394; https://doi.org/10.3390/ma17143394 - 9 Jul 2024
Viewed by 1081
Abstract
Ultra-high temperature ceramics (UHTCs) have been widely applied in many fields. In order to enhance the comprehensive properties of TaB2-based UHTCs, the first collaborative use of fine TaC particles and dispersed multi-walled carbon nanotubes (MWCNTs) was employed via spark plasma sintering [...] Read more.
Ultra-high temperature ceramics (UHTCs) have been widely applied in many fields. In order to enhance the comprehensive properties of TaB2-based UHTCs, the first collaborative use of fine TaC particles and dispersed multi-walled carbon nanotubes (MWCNTs) was employed via spark plasma sintering (SPS) at 1700 °C. The derived UHTCs exhibited an average grain size of 1.3 μm, a relative density of 98.6%, an elastic modulus of 386.3 GPa, and a nano hardness of 21.7 GPa, leading to a greatly improved oxidation resistance with a lower linear ablation rate at −3.3 × 10−2 μm/s, and a markedly reinforced ablation resistance with mass ablation rate of −1.3 × 10−3 mg/(s·cm2). The enhanced ablation resistance was attributable to the physical pinning effect, sealing effect and self-healing effect. Thus, this study provides a potential strategy for preparation of UHTCs with bettered ablation resistance and physical properties. Full article
Show Figures

Figure 1

29 pages, 8342 KiB  
Article
Anti-Gravity 3D Pulsating Heat Pipe for Cooling Electric Vehicle Batteries
by Ji-Su Lee, Su-Jong Kim, Woo-Sung Han and Seok-Ho Rhi
Energies 2024, 17(10), 2283; https://doi.org/10.3390/en17102283 - 9 May 2024
Cited by 5 | Viewed by 2229
Abstract
This study proposes an anti-gravity 3D pulsating heat pipe (PHP) for cooling pouch batteries in electric vehicles. The 3D PHP envelops the battery cells and rapidly transfers heat generated from the batteries to the bottom cold plate. While the batteries generate heat on [...] Read more.
This study proposes an anti-gravity 3D pulsating heat pipe (PHP) for cooling pouch batteries in electric vehicles. The 3D PHP envelops the battery cells and rapidly transfers heat generated from the batteries to the bottom cold plate. While the batteries generate heat on their frontal surface during charging and discharging, structural characteristics lead to localized heat accumulation at the electrode lead tabs. Therefore, to address frontal heating, Pattern A with a consistent height for the 3D PHP and Pattern B with varying heights to enhance heat transfer in the localized heating area were designed. The target application involved creating a battery simulator for 340 × 100 mm pouch battery cells, considering the battery’s heat generation characteristics. The experiments for the thermal characteristics were conducted, considering factors such as the working fluid (methanol, Novec7100), filling ratio, supplied heat, and orientation. Additionally, to observe internal flow mechanisms, a special experimental apparatus was used, employing transparent fluorine rubber tubes to observe the flow mechanism of the 3D PHP. In the results of the thermal characteristics, the optimal filling ratio was 15% when heat generation levels of 50 W and 100 W were supplied and 20% when 150 W was supplied. The impact of orientation yielded varied results depending on the pattern and working fluid, attributed to the complex interplay of flow momentum due to orientation changes and the influence of the working fluid’s buoyancy under anti-gravity conditions. Pattern B, designed with the goal of applying a localized heat model, exhibited relatively decreased heat transfer performance in areas with varying heights. As the distance from the varying height portion increased, temperature oscillations and heat transfer became more active. These results suggest that variations in the shape of the 3D PHP could be a primary design variable for crafting localized heat models. Observations of internal flow revealed that the 3D PHP, with its unique shape and operation under anti-gravity conditions, exhibits longer and more irregular cycles compared to gravity-assist PHPs, transferring heat through rapid oscillations of internal working fluid liquid/vapor slug/plug. The potential of 3D PHPs for cooling electric vehicle batteries is suggested by these findings, and further experimentation is planned to evaluate the optimal design and applicability. Full article
Show Figures

Figure 1

18 pages, 5824 KiB  
Article
Low-Computational Model to Predict Individual Temperatures of Cells within Battery Modules
by Ali Abbas, Nassim Rizoug, Rochdi Trigui, Eduardo Redondo-Iglesias and Serge Pelissier
Batteries 2024, 10(3), 98; https://doi.org/10.3390/batteries10030098 - 12 Mar 2024
Cited by 3 | Viewed by 3139
Abstract
Predicting the operating temperature of lithium-ion battery during different cycles is important when it comes to the safety and efficiency of electric vehicles. In this regard, it is vital to adopt a suitable modeling approach to analyze the thermal performance of a battery. [...] Read more.
Predicting the operating temperature of lithium-ion battery during different cycles is important when it comes to the safety and efficiency of electric vehicles. In this regard, it is vital to adopt a suitable modeling approach to analyze the thermal performance of a battery. In this paper, the temperature of lithium-ion NMC pouch battery has been investigated. A new formulation of lumped model based on the thermal resistance network is proposed. Unlike previous models that treated the battery as a single entity, the proposed model introduces a more detailed analysis by incorporating thermal interactions between individual cells and tabs within a single cell scenario, while also considering interactions between cells and insulators or gaps, located between the cells, within the module case. This enhancement allows for the precise prediction of temperature variations across different cells implemented within the battery module. In order to evaluate the accuracy of the prediction, a three-dimensional finite element model was adopted as a reference. The study was performed first on a single cell, then on modules composed of several cells connected in series, during different operating conditions. A comprehensive comparison between both models was conducted. The analysis focused on two main aspects, the accuracy of temperature predictions and the computational time required. Notably, the developed lumped model showed a significant capability to estimate cell temperatures within the modules. The thermal results revealed close agreement with the values predicted by the finite element model, while needing significantly lower computational time. For instance, while the finite element model took almost 21 h to predict the battery temperature during consecutive charge/discharge cycles of a 10-cell module, the developed lumped model predicted the temperature within seconds, with a maximum difference of 0.42 °C. Full article
(This article belongs to the Special Issue Towards a Smarter Battery Management System)
Show Figures

Figure 1

16 pages, 8228 KiB  
Article
Thermal Runaway Characteristics and Gas Analysis of LiNi0.9Co0.05Mn0.05O2 Batteries
by Chao Shi, Hewu Wang, Hengjie Shen, Juan Wang, Cheng Li, Yalun Li, Wenqiang Xu and Minghai Li
Batteries 2024, 10(3), 84; https://doi.org/10.3390/batteries10030084 - 1 Mar 2024
Cited by 3 | Viewed by 3336
Abstract
Layered ternary materials with high nickel content are regarded as the most promising cathode materials for high-energy-density lithium-ion batteries, owing to their advantages of high capacity, low cost, and relatively good safety. However, as the nickel content increases in ternary layered materials, their [...] Read more.
Layered ternary materials with high nickel content are regarded as the most promising cathode materials for high-energy-density lithium-ion batteries, owing to their advantages of high capacity, low cost, and relatively good safety. However, as the nickel content increases in ternary layered materials, their thermal stability noticeably decreases. It is of paramount importance to explore the characteristics of thermal runaway for lithium-ion batteries. In this study, two high-nickel LiNi0.9Co0.05Mn0.05O2 batteries were laterally heated to thermal runaway in a sealed chamber filled with nitrogen to investigate the thermal characteristics and gas compositions. The temperature of the battery tabs was measured, revealing that both batteries were in a critical state of thermal runaway near 120 degrees Celsius. A quantitative analysis method was employed during the eruption process, dividing it into three stages: ultra-fast, fast, and slow; the corresponding durations for the two batteries were 3, 2, 27 s and 3, 3, 26 s. By comparing the changes in chamber pressure, it was observed that both batteries exhibited a similar continuous venting duration of 32 s. However, the pressure fluctuation ranges of the two samples were 99.5 and 68.2 kPa·m·s−1. Compared to the other sample, the 211 Ah sample exhibited larger chamber pressure fluctuations and reached higher peak pressures, indicating a higher risk of explosion. In the experimental phenomenon captured by a high-speed camera, it took only 1 s for the sample to transition from the opening of the safety valve to filling the experimental chamber with smoke. The battery with higher energy density exhibited more intense eruption during thermal runaway, resulting in more severe mass loss. The mass loss of the two samples is 73% and 64.87%. The electrolyte also reacted more completely, resulting in a reduced number of measured exhaust components. The main components of gaseous ejections are CO, CO2, H2, C2H4, and CH4. For the 211 Ah battery, the vented gases were mainly composed of CO (41.3%), CO2 (24.8%), H2 (21%), C2H4 (7.4%) and CH4 (3.9%), while those for the other 256 Ah battery were mainly CO (30.6%), CO2 (28.5%), H2 (21.7%), C2H4 (12.4%) and CH4 (5.8%). Comparatively, the higher-capacity battery produced more gases. The gas volumes, converted to standard conditions (0 °C, 101 kPa) and normalized, resulted in 1.985 L/Ah and 2.182 L/Ah, respectively. The results provide valuable guidance for the protection of large-capacity, high-energy-density battery systems. The quantitative analysis of the eruption process has provided assistance to fire alarm systems and firefighting strategies. Full article
Show Figures

Figure 1

17 pages, 2358 KiB  
Article
Surface-Active Ionic Liquids and Surface-Active Quaternary Ammonium Salts from Synthesis, Characterization to Antimicrobial Properties
by Marta Wojcieszak, Damian Krystian Kaczmarek, Maciej Karolak, Łukasz Pałkowski, Aneta Lewandowska, Agnieszka Marcinkowska, Katarzyna Dopierała and Katarzyna Materna
Molecules 2024, 29(2), 443; https://doi.org/10.3390/molecules29020443 - 16 Jan 2024
Cited by 1 | Viewed by 2180
Abstract
The present work provides new evidence of the ongoing potential of surface-active ionic liquids (SAILs) and surface-active quaternary ammonium salts (surface-active QASs). To achieve this, a series of compounds were synthesized with a yield of ≥85%, and their thermal analyses were studied. Additionally, [...] Read more.
The present work provides new evidence of the ongoing potential of surface-active ionic liquids (SAILs) and surface-active quaternary ammonium salts (surface-active QASs). To achieve this, a series of compounds were synthesized with a yield of ≥85%, and their thermal analyses were studied. Additionally, antimicrobial activity against both human pathogenic and soil microorganisms was investigated. Subsequently, their surface properties were explored with the aim of utilizing SAILs and surface-active QASs as alternatives to commercial amphiphilic compounds. Finally, we analyzed the wettability of the leaves’ surface of plants occurring in agricultural fields at different temperatures (from 5 to 25 °C) and the model plant membrane of leaves. Our results show that the synthesized compounds exhibit higher activity than their commercial analogues such as, i.e., didecyldimethylammonium chloride (DDAC) and dodecyltrimethylammonium bromide (C12TAB), for which the CMC values are 2 mM and 15 mM. The effectiveness of the antimicrobial properties of synthesized compounds relies on their hydrophobic nature accompanied by a cut-off effect. Moreover, the best wettability of the leaves’ surface was observed at 25 °C. Our research has yielded valuable insights into the potential effectiveness of SAILs and surface-active QASs as versatile compounds, offering a promising alternative to established antimicrobials and crop protection agents, all the while preserving substantial surface activity. Full article
(This article belongs to the Topic Advances in Chemistry and Chemical Engineering)
Show Figures

Graphical abstract

16 pages, 3987 KiB  
Article
Online Fast Charging Model without Lithium Plating for Long-Dimensional Cells in Automotive Applications
by Yu Wang, Shuoyuan Mao, Quanwei Chen, Fei Chen, Xue Zhang, Minggao Ouyang, Xuebing Han and Yuejiu Zheng
Batteries 2023, 9(12), 563; https://doi.org/10.3390/batteries9120563 - 22 Nov 2023
Cited by 2 | Viewed by 2305
Abstract
The internal negative electrode potential in lithium-ion batteries (LIBs) is intricately linked to the lithium-ion intercalation and plating reactions occurring within the cell. With the expansion of cell sizes, the internal negative electrode potential distribution gradually becomes inconsistent. However, the existing negative electrode [...] Read more.
The internal negative electrode potential in lithium-ion batteries (LIBs) is intricately linked to the lithium-ion intercalation and plating reactions occurring within the cell. With the expansion of cell sizes, the internal negative electrode potential distribution gradually becomes inconsistent. However, the existing negative electrode potential estimation models and fast charging strategies have not yet considered the impact of consistency, and the model estimation accuracy will be greatly influenced by different temperatures and charging rates. This study proposes an online lithium-free fast charging equivalent circuit model (OLFEM) for estimating the negative electrode potential terminal voltage and developing fast charging strategies of long-dimensional LIBs in real vehicles. This study employs distributed reference electrodes integrated into long-dimensional LIBs and compares the negative electrode potential measured in the vicinity of both the negative and positive tabs. Subsequently, based on the lowest negative electrode potential point, model parameters were obtained at different temperatures and charging rates. This model is further verified under different operating conditions. Finally, a fast-charging strategy without lithium plating is developed in real-time based on the negative electrode potential estimated by the model. The results demonstrate that long-dimensional cells exhibit a lower negative electrode potential on the positive tab side. Across various temperatures and charging rates, the calibrated model achieves a negative electrode potential estimated error within 25 mV, and the estimation error for terminal voltage is within 5 mV. The proposed fast-charging method prevents lithium plating and charges the cell up to 96.8% within an hour. After 100 cycles, the cell experiences a capacity degradation of less than 2%, and the disassembly results indicate that no lithium precipitation has occurred. The methods outlined in this study provide valuable insights for online fast charging of large-dimensional batteries without lithium plating. Full article
Show Figures

Graphical abstract

24 pages, 10583 KiB  
Article
Assessment of Health Indicators to Detect the Aging State of Commercial Second-Life Lithium-Ion Battery Cells through Basic Electrochemical Cycling
by Emanuele Michelini, Patrick Höschele, Syed Muhammad Abbas, Christian Ellersdorfer and Jörg Moser
Batteries 2023, 9(11), 542; https://doi.org/10.3390/batteries9110542 - 1 Nov 2023
Cited by 8 | Viewed by 4085
Abstract
Upon reaching certain limits, electric vehicle batteries are replaced and may find a second life in various applications. However, the state of such batteries in terms of aging and safety remains uncertain when they enter the second-life market. The aging mechanisms within these [...] Read more.
Upon reaching certain limits, electric vehicle batteries are replaced and may find a second life in various applications. However, the state of such batteries in terms of aging and safety remains uncertain when they enter the second-life market. The aging mechanisms within these batteries involve a combination of processes, impacting their safety and performance. Presently, direct health indicators (HIs) like state of health (SOH) and internal resistance increase are utilized to assess battery aging, but they do not always provide accurate indications of the battery’s health state. This study focuses on analyzing various HIs obtained through a basic charging–discharging cycle and assessing their sensitivity to aging. Commercial 50 Ah pouch cells with different aging histories were tested, and the HIs were evaluated. Thirteen HIs out of 31 proved to be highly aging-sensitive, and thus good indicators. Namely, SOH upon charging and discharging, Coulombic efficiency, constant current discharge time, voltage relaxation profile trend, voltage–charge area upon discharging, hysteresis open circuit voltage HIs, and temperature difference between the tabs upon charging. The findings offer valuable insights for developing robust qualification algorithms and reliable battery health monitoring systems for second-life batteries, ensuring safe and efficient battery operation in diverse second-life applications. Full article
(This article belongs to the Special Issue Advances in Battery Status Estimation and Prediction)
Show Figures

Figure 1

17 pages, 17797 KiB  
Article
Research on Temperature Inconsistency of Large-Format Lithium-Ion Batteries Based on the Electrothermal Model
by Chao Yu, Jiangong Zhu, Xuezhe Wei and Haifeng Dai
World Electr. Veh. J. 2023, 14(10), 271; https://doi.org/10.3390/wevj14100271 - 1 Oct 2023
Cited by 3 | Viewed by 3014
Abstract
Large-format lithium-ion (Li-ion) batteries are increasingly applied in energy storage systems for electric vehicles, owing to their flexible shape design, lighter weight, higher specific energy, and compact layouts. Nevertheless, the large thermal gradient of Li-ion batteries leads to performance degradation and irreversible safety [...] Read more.
Large-format lithium-ion (Li-ion) batteries are increasingly applied in energy storage systems for electric vehicles, owing to their flexible shape design, lighter weight, higher specific energy, and compact layouts. Nevertheless, the large thermal gradient of Li-ion batteries leads to performance degradation and irreversible safety issues. The difference in the highest temperature position at various operational modes makes accurate temperature monitoring complicated. Accordingly, a full understanding of the temperature inconsistency of large-format Li-ion batteries is crucial. In this study, these inconsistent characteristics are analyzed by establishing an electrothermal model and conducting experiments based on an 8-Ah pouch-type ternary Li-ion battery with contraposition tabs. Regarding the characteristic of inhomogeneous temperature distribution, the analysis results demonstrate that it is primarily attributable to the uneven heat generation within the battery system and the effects of the two tabs. For the evolution of the highest temperature position, this study compares the maximum temperature rise of the positive tab and main battery body. The results illustrate that the operating temperature has a greater impact on the maximum temperature rise of the main battery body since its resistance strongly depends on the operating temperature compared to the positive and negative tabs. In addition, the electrothermal model is expected to be employed for the battery thermal management system (BTMS) to mitigate the battery temperature inconsistency. Full article
Show Figures

Figure 1

17 pages, 29214 KiB  
Article
Orthogonal Experimental Optimization of Preparation and Microstructural Properties of a Diffusion Barrier for Tantalum-Based Silicide Coatings
by Lairong Xiao, Jiawei Xu, Xiaojun Zhou, Yafang Zhang, Guanzhi Deng, Hongtai Shen, Wei Li, Xiaojun Zhao and Zhenyang Cai
Materials 2023, 16(11), 4097; https://doi.org/10.3390/ma16114097 - 31 May 2023
Cited by 6 | Viewed by 1624
Abstract
To solve the problem of silicide coatings on tantalum substrates failing due to elemental diffusion under high-temperature oxidation environments and to find diffusion barrier materials with excellent effects of impeding Si elemental spreading, TaB2 and TaC coatings were prepared on tantalum substrates [...] Read more.
To solve the problem of silicide coatings on tantalum substrates failing due to elemental diffusion under high-temperature oxidation environments and to find diffusion barrier materials with excellent effects of impeding Si elemental spreading, TaB2 and TaC coatings were prepared on tantalum substrates by the encapsulation and infiltration methods, respectively. Through orthogonal experimental analysis of the raw material powder ratio and pack cementation temperature, the best experimental parameters for the preparation of TaB2 coatings were selected: powder ratio (NaF:B:Al2O3 = 2.5:1:96.5 (wt.%)) and pack cementation temperature (1050 °C). After diffusion treatment at 1200 °C for 2 h, the thickness change rate of the Si diffusion layer prepared using this process was 30.48%, which is lower than that of non-diffusion coating (36.39%). In addition, the physical and tissue morphological changes of TaC and TaB2 coatings after siliconizing treatment and thermal diffusion treatment were compared. The results prove that TaB2 is a more suitable candidate material for the diffusion barrier layer of silicide coatings on tantalum substrates. Full article
(This article belongs to the Special Issue Study on Advanced Metal Matrix Composites)
Show Figures

Figure 1

Back to TopTop