Research on Temperature Inconsistency of Large-Format Lithium-Ion Batteries Based on the Electrothermal Model
Abstract
:1. Introduction
2. Experiments and Thermal Behavior Analysis
2.1. Testing Platform and Testing Schedule
2.2. Thermal Response Analysis
3. Electrothermal Model
3.1. Model Assumption
- As described in the introduction, reversible heat accounts for a small proportion of the total heat generation, and thus this work is only interested in irreversible heat. To demonstrate the validity of this assumption, the ratio of reversible heat to total heat generation is calculated here, and the results are illustrated in Figure 6. As will be readily seen, the relative proportion of the reversible heat of the battery is tiny in comparison to the irreversible heat, and the proportion is positively correlated with the operating temperature. Hence, the omission of reversible heat has less impact on the overall heat generation of the battery.
- Since the battery is placed in an atmosphere of constant temperature and humidity, this work assumes that each direction of the battery has identical cooling conditions, i.e., an identical convection coefficient and boundary temperature [40].
- From the perspective of material properties and simulation results reported in the existing literature [41], the temperature distribution of the two tabs is assumed to be uniform in this study.
3.2. Model Establishment
3.2.1. Electric Model
3.2.2. Thermal Model
3.3. Model Parameterization
3.3.1. Parameterization of the Electric Model
- Initialization of the forgetting factor , parameter vector and covariance matrix .
- Update the gain matrix:
- Calculate the estimation error:
- Update the parameter vector:
- Update the covariance matrix:
3.3.2. Parameterization of the Thermal Model
- Initialize the position and velocity of each particle at each dimension randomly within a permissible range.
- Calculate the fitness value of each particle.
- Update the personal best solution of each particle and the global best solution of the entire particle swarm based on the fitness value of each particle.
- Update the position and velocity of each particle
- Determine whether the termination criteria are satisfied. The termination criteria are generally the maximum iterations or optimal fitness value.
4. Analysis and Discussion
4.1. The Analysis of Temperature Inconsistency of Large-Format Li-Ion Batteries
4.1.1. The Characteristic of Uneven Temperature Distribution
4.1.2. The Evolution of the Highest Temperature Position
4.2. Potential Thermal Management Strategies Based on the Electrothermal Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Liu, Y.; You, M.; Xiong, R.; Zhou, X. Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction. Green Energy Intell. Transp. 2022, 1, 100008. [Google Scholar] [CrossRef]
- Zhu, J.G.; Xu, W.; Knapp, M.; Darma, M.S.D.; Mereacre, L.; Su, P.; Hua, W.; Liu-Théato, X.; Dai, H.; Wei, X.; et al. A method to prolong lithium-ion battery life during the full life cycle. Cell Rep. Phys. Sci. 2023, 7, 101464. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Du, J.; Cong, X.; Zhang, L.; Jiang, Y.; Wang, L. Fault diagnosis for lithium-ion batteries in electric vehicles based on signal decomposition and two-dimensional feature clustering. Green Energy Intell. Transp. 2022, 1, 100009. [Google Scholar] [CrossRef]
- Zhu, J.G.; Darma, M.S.D.; Knapp, M.; Sørensen, D.R.; Heere, M.; Fang, Q.; Wang, X.; Dai, H.; Mereacre, L.; Senyshyn, A.; et al. Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance. J. Power Sources 2020, 448, 227575. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wei, X.Z.; Chen, Q.J.; Zhu, J.G.; Dai, H.F. Lithium-ion battery temperature on-line estimation based on fast impedance calculation. J. Energy Storage 2019, 26, 100952. [Google Scholar] [CrossRef]
- Noura, N.; Boulon, L.; Jemei, S. A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges. World Electr. Veh. J. 2020, 11, 66. [Google Scholar] [CrossRef]
- Hu, X.S.; Liu, W.X.; Lin, X.K.; Xie, Y. A Comparative Study of Control-Oriented Thermal Models for Cylindrical Li-Ion Batteries. IEEE Trans. Transp. Electrif. 2019, 5, 1237–1253. [Google Scholar] [CrossRef]
- Wei, G.; Huang, R.; Zhang, G.; Jiang, B.; Zhu, J.; Guo, Y.; Han, G.; Wei, X.; Dai, H. A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards. Appl. Energy 2023, 349, 121651. [Google Scholar] [CrossRef]
- Wang, T.X.; Li, C.L.; Chang, L.; Duan, B.; Zhang, C.H. Thermal behavior analysis of Pouch Lithium ion Battery using distributed electro-thermal model. In Proceedings of the 3rd Conference on Vehicle Control and Intelligence (CVCI), Hefei, China, 21–22 September 2019; pp. 302–306. [Google Scholar]
- Sun, T.; Shen, T.; Zheng, Y.; Ren, D.; Zhu, W.; Li, J.; Han, X.; Lu, L.; Ouyang, M. Modeling the inhomogeneous lithium plating in lithium-ion batteries induced by non-uniform temperature distribution. Electrochim. Acta 2022, 425, 140701. [Google Scholar] [CrossRef]
- Carter, R.; Kingston, T.A.; Atkinson, R.W.; Parmananda, M.; Dubarry, M.; Fear, C.; Mukherjee, P.P.; Love, C.T. Directionality of thermal gradients in lithium-ion batteries dictates diverging degradation modes. Cell Rep. Phys. Sci. 2021, 2, 100351. [Google Scholar] [CrossRef]
- Wang, H.S.; Zhu, Y.; Kim, S.C.; Pei, A.; Li, Y.; Boyle, D.T.; Wang, H.; Zhang, Z.; Ye, Y.; Huang, W.; et al. Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proc. Natl. Acad. Sci. USA 2020, 117, 29453–29461. [Google Scholar] [CrossRef] [PubMed]
- Fleckenstein, M.; Bohlen, O.; Roscher, M.A.; Baker, B. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients. J. Power Sources 2011, 196, 4769–4778. [Google Scholar] [CrossRef]
- Tian, Y.; She, Y.; Wu, J.F.; Chai, M.; Huang, L.S. Thermal runaway propagation characteristics of lithium-ion batteries with a non-uniform state of charge distribution. J. Solid State Electrochem. 2023, 27, 2185–2197. [Google Scholar]
- Liu, W.X.; Hu, X.; Lin, X.; Yang, X.-G.; Song, Z.; Foley, A.M.; Couture, J. Toward high-accuracy and high-efficiency battery electrothermal modeling: A general approach to tackling modeling errors. Etransportation 2022, 14, 100195. [Google Scholar] [CrossRef]
- Liu, H.Q.; Wei, Z.B.; He, W.D.; Zhao, J.Y. Thermal issues about Li-ion batteries and recent progress in battery thermal management system: A review. Energy Convers. Manag. 2017, 150, 304–330. [Google Scholar] [CrossRef]
- Bernardi, D.; Pawlikowski, E.; Newman, J. A general energy-balance for battery systems. J. Electrochem. Soc. 1985, 132, 5–12. [Google Scholar] [CrossRef]
- Sattarzadeh, S.; Roy, T.; Dey, S. Real-Time Estimation of 2-D Temperature Distribution in Lithium-Ion Pouch Cells. IEEE Trans. Transp. Electrif. 2021, 7, 2249–2259. [Google Scholar] [CrossRef]
- Forgez, C.; Do, D.V.; Friedrich, G.; Morcrette, M.; Delacourt, C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J. Power Sources 2010, 195, 2961–2968. [Google Scholar] [CrossRef]
- Soltani, M.; De Sutter, L.; Ronsmans, J.; van Mierlo, J. A high current electro-thermal model for lithium-ion capacitor technology in a wide temperature range. J. Energy Storage 2020, 31, 101624. [Google Scholar] [CrossRef]
- Xie, Y.; He, X.-J.; Hu, X.-S.; Li, W.; Zhang, Y.-J.; Liu, B.; Sun, Y.-T. An improved resistance-based thermal model for a pouch lithium-ion battery considering heat generation of posts. Appl. Therm. Eng. 2020, 164, 114455. [Google Scholar] [CrossRef]
- Richardson, R.R.; Howey, D.A. Sensorless Battery Internal Temperature Estimation Using a Kalman Filter with Impedance Measurement. IEEE Trans. Sustain. Energy 2015, 6, 1190–1199. [Google Scholar] [CrossRef]
- Hatchard, T.D.; MacNeil, D.D.; Stevens, D.A.; Christensen, L.; Dahn, J.R. Importance of heat transfer by radiation in Li-ion batteries during thermal abuse. Electrochem. Solid State Lett. 2000, 3, 305–308. [Google Scholar] [CrossRef]
- Hu, X.S.; Feng, F.; Liu, K.L.; Zhang, L.; Xie, J.L.; Liu, B. State estimation for advanced battery management: Key challenges and future trends. Renew. Sustain. Energy Rev. 2019, 114, 109334. [Google Scholar] [CrossRef]
- Lin, X.F.; Perez, H.E.; Siegel, J.B.; Stefanopoulou, A.G.; Li, Y.; Anderson, R.D.; Ding, Y.; Castanier, M.P. Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring. IEEE Trans. Control Syst. Technol. 2013, 21, 1745–1755. [Google Scholar]
- Dai, H.F.; Zhu, L.T.; Zhu, J.G.; Wei, X.Z.; Sun, Z.C. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries. J. Power Sources 2015, 293, 351–365. [Google Scholar] [CrossRef]
- .Kim, Y.; Siegel, J.B.; Stefanopoulou, A.G. A Computationally Efficient Thermal Model of Cylindrical Battery Cells for the Estimation of Radially Distributed Temperatures. In Proceedings of the American Control Conference (ACC), Washington, DC, USA, 17–19 June 2013; pp. 698–703. [Google Scholar]
- Mahamud, R.; Park, C. Spatial-resolution, lumped-capacitance thermal model for cylindrical Li-ion batteries under high Biot number conditions. Appl. Math. Model. 2013, 37, 2787–2801. [Google Scholar] [CrossRef]
- Richardson, R.R.; Zhao, S.; Howey, D.A. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part I. Low-order thermal modelling. J. Power Sources 2016, 326, 377–388. [Google Scholar] [CrossRef]
- Richardson, R.R.; Ireland, P.T.; Howey, D.A. Battery internal temperature estimation by combined impedance and surface temperature measurement. J. Power Sources 2014, 265, 254–261. [Google Scholar] [CrossRef]
- Jeon, D.H. Numerical modeling of lithium ion battery for predicting thermal behavior in a cylindrical cell. Curr. Appl. Phys. 2014, 14, 196–205. [Google Scholar] [CrossRef]
- Shah, K.; McKee, C.; Chalise, D.; Jain, A. Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes. Energy 2016, 113, 852–860. [Google Scholar] [CrossRef]
- Osmani, K.; Alkhedher, M.; Ramadan, M.; Choi, D.S.; Li, L.K.; Doranehgard, M.H.; Olabi, A.-G. Recent progress in the thermal management of lithium-ion batteries. J. Clean. Prod. 2023, 389, 136024. [Google Scholar] [CrossRef]
- Ghaeminezhad, N.; Wang, Z.S.; Ouyang, Q. A Review on lithium-ion battery thermal management system techniques: A control-oriented analysis. Appl. Therm. Eng. 2023, 219, 119497. [Google Scholar] [CrossRef]
- Christophersen, J.P. Battery Test Manual for Electric Vehicles, Revision 3; U.S. Department of Energy: Washington, DC, USA, 2015. [Google Scholar]
- Grandjean, T.; Barai, A.; Hosseinzadeh, E.; Guo, Y.; McGordon, A.; Marco, J. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management. J. Power Sources 2017, 359, 215–225. [Google Scholar] [CrossRef]
- Yu, Y.F.; Vergori, E.; Worwood, D.; Tripathy, Y.; Guo, Y.; Somá, A.; Greenwood, D.; Marco, J. Distributed thermal monitoring of lithium ion batteries with optical fibre sensors. J. Energy Storage 2021, 39, 102560. [Google Scholar] [CrossRef]
- Liu, S.Z.; Zhang, T.; Zhang, C.; Yuan, L.H.; Xu, Z.C.; Jin, L. Non-uniform heat generation model of pouch lithium-ion battery based on regional heat generation rate. J. Energy Storage 2023, 63, 107074. [Google Scholar] [CrossRef]
- Sheng, L.; Zhang, Z.; Su, L.; Zhang, H.; Zhang, H.; Li, K.; Fang, Y.; Ye, W. Experimental and numerical approach for analyzing thermal behaviors of a prismatic hard-cased lithium-ion battery. J. Energy Storage 2021, 35, 102313. [Google Scholar] [CrossRef]
- Hu, X.S.; Liu, W.X.; Lin, X.K.; Xie, Y.; Foley, A.M.; Hu, L. A Control-Oriented Electrothermal Model for Pouch-Type Electric Vehicle Batteries. IEEE Trans. Power Electron. 2021, 36, 5530–5544. [Google Scholar] [CrossRef]
- Goutam, S.; Nikolian, A.; Jaguemont, J.; Smekens, J.; Omar, N.; Bossche, P.V.D.; Van Mierlo, J. Three-dimensional electro-thermal model of li-ion pouch cell: Analysis and comparison of cell design factors and model assumptions. Appl. Therm. Eng. 2017, 126, 796–808. [Google Scholar] [CrossRef]
- Xiao, R.X.; Hu, Y.W.; Jia, X.G.; Chen, G.S. A novel estimation of state of charge for the lithium-ion battery in electric vehicle without open circuit voltage experiment. Energy 2022, 243, 123072. [Google Scholar] [CrossRef]
- Li, H.X.; Qi, C.K. Modeling of distributed parameter systems for applications—A synthesized review from time-space separation. J. Process Control 2010, 20, 891–901. [Google Scholar] [CrossRef]
- Sun, D.; Chen, X.K. Adaptive Parameter Identification Method and State of Charge Estimation of Lithium Ion Battery. In Proceedings of the 17th IEEE International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 855–860. [Google Scholar]
- Wang, Y.; Li, L. Li-ion battery dynamics model parameter estimation using datasheets and particle swarm optimization. Int. J. Energy Res. 2016, 40, 1050–1061. [Google Scholar] [CrossRef]
Battery Type | Schematic of Cell Geometries and Temperature Acquisition | Test Scenario | Temperature Distribution | Ref. |
---|---|---|---|---|
20 Ah pouch-type laminated Li-ion iron phosphate (LiFePO4)/graphite battery | 2C-CCD FUDS NEDC | 25 °C: the highest temperature of the battery occurs at measurement point #1 (positive tab). −15 °C: the highest temperature of the battery occurs at measurement point #5. | [15] | |
20 Ah pouch-type cell with LiC6 negative electrode and LiFePO4 positive electrode | Constant current | 10 C-rate current at 40 °C and 50 °C: the temperature of measurement point #1 is the highest. Other C-rates and temperatures: the highest temperature occurs at measurement points #6 and #13 (the center of the cell). | [36] | |
5Ah pouch-type Nickel Manganese Cobalt (NCM)/graphite battery | Constant current | 25 °C: the hottest surface temperature of the cell is primarily near the positive side and region 2. 10 °C: the hottest region is primarily region 4. | [37] | |
3.435 Ah Lithium Cobalt Oxide (LiCoO2) pouch-type battery | Constant current | 15 °C and 25 °C: the highest temperature of the cell occurs at measurement point #6. 35 °C and 45 °C: the highest temperature of the cell occurs at measurement point #2. | [38] | |
8 Ah prismatic hard-cased LiFePO4/graphite cell | Constant current and numerical simulation | The highest temperature occurs at the bottom of the battery at low ambient temperatures and low C-rates, but that gradually moves to the region near the tabs as the C-rate increases at normal temperatures | [39] |
Test Scenario | Tab Position | Equivalent Ohmic Resistance (ohm) | Equivalent Convection Coefficient (W·m−2·K−1) | Heat Transfer Coefficient (W·m−2·K−1) |
---|---|---|---|---|
25 °C | Positive tab | 8.70 × 10−5 | 0.8523 | 956.6317 |
Negative tab | 2.71 × 10−5 | 3.5273 | 3074.8912 | |
5 °C | Positive tab | 2.19 × 10−5 | 2.3046 | 681.8795 |
Negative tab | 4.90 × 10−5 | 2.1950 | 1617.2398 | |
−10 °C | Positive tab | 2.71 × 10−5 | 3.9425 | 1854.8619 |
Negative tab | 2.25 × 10−5 | 3.2700 | 2033.9228 |
(J·m−3·K−1) | Thermal Conductivity (W·m−2·K−1) | Convection Coefficient (W·m−2·K−1) | |
---|---|---|---|
1.42 × 105 | 0.6060 | 2.9826 | 0.0395 |
(J·m−3·K−1) | Thermal Conductivity (W·m−2·K−1) | Convection Coefficient (W·m−2·K−1) | |
---|---|---|---|
1.42 × 105 | 0.6659 | 3.1873 | 0.0419 |
Test Scenario | Ambient Temperature | Measurement Point Mp | Measurement Point Mc |
---|---|---|---|
NEDC | 5 °C | 4.48 °C | 2.46 °C |
−10 °C | 3.50 °C | 4.62 °C | |
FUDS | 5 °C | 4.05 °C | 3.13 °C |
−10 °C | 4.54 °C | 4.85 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Zhu, J.; Wei, X.; Dai, H. Research on Temperature Inconsistency of Large-Format Lithium-Ion Batteries Based on the Electrothermal Model. World Electr. Veh. J. 2023, 14, 271. https://doi.org/10.3390/wevj14100271
Yu C, Zhu J, Wei X, Dai H. Research on Temperature Inconsistency of Large-Format Lithium-Ion Batteries Based on the Electrothermal Model. World Electric Vehicle Journal. 2023; 14(10):271. https://doi.org/10.3390/wevj14100271
Chicago/Turabian StyleYu, Chao, Jiangong Zhu, Xuezhe Wei, and Haifeng Dai. 2023. "Research on Temperature Inconsistency of Large-Format Lithium-Ion Batteries Based on the Electrothermal Model" World Electric Vehicle Journal 14, no. 10: 271. https://doi.org/10.3390/wevj14100271