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Abstract: Large-format lithium-ion (Li-ion) batteries are increasingly applied in energy storage
systems for electric vehicles, owing to their flexible shape design, lighter weight, higher specific energy,
and compact layouts. Nevertheless, the large thermal gradient of Li-ion batteries leads to performance
degradation and irreversible safety issues. The difference in the highest temperature position at
various operational modes makes accurate temperature monitoring complicated. Accordingly, a full
understanding of the temperature inconsistency of large-format Li-ion batteries is crucial. In this
study, these inconsistent characteristics are analyzed by establishing an electrothermal model and
conducting experiments based on an 8-Ah pouch-type ternary Li-ion battery with contraposition
tabs. Regarding the characteristic of inhomogeneous temperature distribution, the analysis results
demonstrate that it is primarily attributable to the uneven heat generation within the battery system
and the effects of the two tabs. For the evolution of the highest temperature position, this study
compares the maximum temperature rise of the positive tab and main battery body. The results
illustrate that the operating temperature has a greater impact on the maximum temperature rise of the
main battery body since its resistance strongly depends on the operating temperature compared to
the positive and negative tabs. In addition, the electrothermal model is expected to be employed for
the battery thermal management system (BTMS) to mitigate the battery temperature inconsistency.

Keywords: large-format li-ion battery; temperature inconsistency; battery thermal management
system; electrothermal model

1. Introduction

Severe energy crises and environmental pollution immensely promote the develop-
ment and adoption of electrical vehicles (EVs) [1–3]. As the main energy storage system for
EVs, Li-ion batteries are extensively applied due to their outstanding overall performance,
such as no memory effect, high specific energy and power density, long cycling and calen-
dar lifetime, and so forth [4–6]. Li-ion batteries generally generate a large amount of heat
under typical cycling conditions, but the significant difference between the heat dissipation
coefficient and thermal conductivity results in the uneven temperature distribution of the
battery [7,8]. The large temperature gradient inside the battery has a significant impact on
its performance and safety [9–11]. Carter et al. [11] demonstrated that the interelectrode
temperature gradients lead to battery capacity degradation, and their directionality de-
termines the distinct degradation modes of the battery. Wang et al. [12] discovered that
the inhomogeneous temperature distribution inside the battery would be likely to induce
local Li-plating even at room temperature. In addition, the battery thermal gradients also
lead to nonuniform current density distribution and in-plane state-of-charge (SOC) differ-
ences, thereby exacerbating uneven aging inside the battery and increasing the hazard of
battery thermal runaway [13,14]. Furthermore, the differences in temperature distribution
of Li-ion batteries under various operating conditions put forward higher requirements
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for monitoring the battery temperature in real time [15]. This study collectively refers
to the aforementioned two thermal behaviors as inconsistent temperature characteristics
of the battery. With consumers in constant demand for batteries with large format and
enhanced performance, the temperature inconsistency of Li-ion batteries would be likely to
be enlarged. Therefore, a full understanding of the temperature inconsistency is conducive
to the development of the BTMS as well as preventing battery performance degradation
and potential hazards.

In theory, the temperature evolution of Li-ion batteries arises from heat generation
and transfer during their operations. Heat generation is composed of reversible heat and
irreversible heat. Specifically, reversible heat is primarily attributable to the entropy change
during electrochemical reactions, and irreversible heat is mainly ascribed to the polarization
and Ohmic resistances associated with the migration of ions and electrons [16]. To date,
numerous calculation equations that describe battery heat generation have been formulated
in terms of the electrochemical reaction mechanism of Li-ion batteries. Among them, the
typical heat generation formula derived by Bernardi has been extensively employed in
considerable studies [17]. Moreover, several simplified forms of calculating irreversible
heat have also been proposed in the existing literature on the basis of Bernardi’s, which
can be roughly categorized into two versions, namely the overpotential-based [18,19] and
equivalent resistance-based [20,21] methods. As for reversible heat, it can be easily calcu-
lated based on the known entropic heat coefficient [15]. In addition, this term is generally
neglected in some research due to its microscopic proportion to total heat generation [22].

In the case of heat transfer within the battery systems, this includes heat conduction,
convection, and radiation. In particular, battery heat radiation is almost negligible, or it
can be treated in conjunction with heat convection [23,24]. In recent decades, substan-
tial analysis techniques have been proposed to simulate heat transfer processes, which
can be divided into three groups, i.e., equivalent thermal resistance methods, order re-
duction methods, and numerical techniques. The equivalent thermal resistance methods
model the heat conduction inside the battery as well as the heat convection and radia-
tion at the boundary by utilizing various thermal resistances. For instance, Lin et al. [25]
applied two thermal resistances to represent the heat transfer of cylindrical Li-ion batter-
ies, and then Dai et al. [26] also employed this method for prismatic hard-cased Li-ion
batteries. The order reduction methods convert the complicated nonstationary partial
differential heat-conduction equation into a set of linear ordinary differential equations,
such as polynomial approximation [22,27], integral method approximation [28], Galerkin
approximation [29], and quadratic assumption [30]. Numerical techniques accurately simu-
late the heat transfer processes by solving energy conservation equations, including the
finite element method (FEM) [31], the finite volume method (FVM) [13], and the finite
difference method (FDM) [18].

Due to the reduced performance and safety of Li-ion batteries under high temperatures
and large thermal gradients, effective heat dissipation techniques are crucial. Fundamen-
tally, battery heat dissipation comprises two stages: the first is that the heat inside the
battery is conducted to the surface, and then the heat is removed from the surface by
contact with adjacent low-temperature media or materials [32]. Over time, a variety of
heat-dissipation methods have been proposed in academic and industrial fields, which
can be summarized into three types: active, passive, and hybrid. Active heat-dissipation
techniques need to provide extra energy for actuators to dissipate heat [33]. Specifically, this
technique includes liquid, forced air, thermoelectric effects, and so forth. In contrast, pas-
sive heat-dissipation techniques, which mainly include natural convection, phase-change
material (PCM)-based actuators, and heat pipes, do not need any additional actuators. As
for hybrid heat-dissipation techniques, they are generally composed of one of the active or
passive techniques and PCM [34].

The remainder of this article is constructed as follows: Section 2 details the battery-
testing procedure and the process of data analysis. The electrothermal model for large-
format Li-ion batteries is established in Section 3. In Section 4, the electrothermal model is
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parameterized and the temperature inconsistency of large-format Li-ion batteries is fully
analyzed. Finally, conclusions are drawn in Section 5.

2. Experiments and Thermal Behavior Analysis
2.1. Testing Platform and Testing Schedule

In this study, experiments were carried out with an 8-Ah pouch-type ternary Li-ion
battery with contraposition tabs. In accordance with the structure and shape of the battery,
five temperature measurement points were preset on the surface of the battery in order
to obtain its simplified thermodynamic and representative temperature dataset, and the
schematic of the preset locations is illustrated in Figure 1. Moreover, the experimental
platform for the battery testing is shown in Figure 2. Specifically, a Neware CT-8016-
5V100A-NTFA battery tester with a measurement accuracy of 0.1% FSR (full-scale range)
was used for the battery cycling. The constant experimental temperature was controlled
with a DHT-375-40-AR-SD thermal chamber. Six TX-F-T T-type thermocouples with a
measurement error of less than 0.5 ◦C and a Neware CA-4008-1U-VT-TX temperature
acquisition module were employed to collect temperature signals. Since there is a differ-
ence between the temperature displayed in the thermal chamber and measured by the
thermocouple, an additional thermocouple was placed in the thermal chamber to ensure
the unity of the temperature signal, and the remaining five thermocouples were attached
to the battery plane.
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Figure 1. Schematic of thermocouple placements (Mp and Mn represent measurement points at the
positive and negative tabs, respectively. Mcp and Mcn represent measurement points at the main
battery body that are close to the positive and negative tabs, respectively. Mc represents measurement
point at the center of the main battery body.).

To acquire the detailed electric and thermal signals of the battery in a wide temperature
range, the battery testing schedule, which consists of characterization tests and dynamic
driving tests, was designed based on the aforementioned experimental platform [35].

The characterization tests, including the static capacity tests (SCTs) and hybrid pulse
power characteristic (HPPC) tests, were performed at −20 ◦C, −15 ◦C, −10 ◦C, −5 ◦C,
0 ◦C, 5 ◦C, 15 ◦C, 25 ◦C, and 40 ◦C. Before conducting the HPPC tests, the SCTs needed
to be carried out to obtain the actual capacity of the battery based on the manufacturing
manual, i.e., the battery was fully charged with a constant current constant voltage (CCCV)
charging protocol at a current of 8 A at 25 ◦C, and then the battery was discharged to the
lower cut-off voltage at a constant current of 8 A at the experimental temperature. In each
HPPC test, the battery was rested for 2 h to ensure the internal electrochemical status of the
battery was close to equilibrium at each preset SOC (from 1 to 0 with an interval of 0.1). In
addition, after the battery was rested, the charging and discharging pulses were applied
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when the preset SOC ranged from 0.9 to 0.1. The amplitude and duration of the pulses
were 8 A and 10 s, respectively, and the interval between the charging and discharging
pulses was set to 5 min.
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Figure 2. Connection schematic of the battery experimental platform.

The dynamic driving tests, including the federal urban dynamic schedule (FUDS)
and the new European driving cycle (NEDC), were performed at −10 ◦C, 5 ◦C, and 25 ◦C.
Specifically, the battery was first fully charged with a CCCV charging protocol, and then it
was discharged to reach a suitable SOC by drawing a current of 1 C-rate as well as being
rested for 2 h at the experimental temperature before each dynamic testing profile was
employed. To avoid Li-plating inside the battery, the maximum currents of the dynamic
testing profile were set to 6 C-rate at −10 ◦C and 5 ◦C, and those at 25 ◦C were set to
10 C-rate. Note that the current represented by 1 C-rate is the actual battery capacity at
the current experimental temperature in this study. In addition, all tests were limited to a
voltage window of 2.75~4.20 V.

2.2. Thermal Response Analysis

The thermal responses of the pouch-type battery under FUDS and NEDC testing
profiles at various ambient temperatures are illustrated in Figures 3 and 4, respectively. As
will be readily seen, the location of the highest temperature on the battery surface would
be likely to vary with the operating temperature. Specifically, at operating temperatures of
25 ◦C and 5 ◦C, the highest temperature of the battery occurs at measurement point Mp,
and the lowest temperature of the battery generally occurs at measurement points Mcn or
Mn. Nevertheless, the location of the highest temperature will progressively transfer from
the positive tab to the center of the main battery body when the operating temperature is
reduced to −10 ◦C.
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Furthermore, this study summarizes the temperature distribution of other cell geome-
tries and tab arrangements at various test scenarios based on the datasets reported in the
existing literature [15,36–39], as shown in Table 1. It can be seen that the thermal behavior
of temperature field evolution extensively exists in various dimensions and types of Li-ion
batteries. From the perspective of the external impact factor, this thermal characteristic is
primarily attributable to the magnitude of the loading current and operating temperature
during the charging and discharging processes.

Table 1. Overview of temperature distribution of large-format Li-ion batteries under various ambient
temperatures.

Battery Type
Schematic of Cell

Geometries and Temperature
Acquisition

Test Scenario Temperature Distribution Ref.

20 Ah pouch-type laminated
Li-ion iron phosphate

(LiFePO4)/graphite battery
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25 ◦C: the highest temperature of the battery occurs
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at measurement point #5.

[15]

20 Ah pouch-type cell with LiC6
negative electrode and LiFePO4

positive electrode
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Table 1. Cont.

Battery Type
Schematic of Cell

Geometries and Temperature
Acquisition

Test Scenario Temperature Distribution Ref.

8 Ah prismatic hard-cased
LiFePO4/graphite cell
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Constant current and
numerical simulation

The highest temperature occurs at the bottom of the
battery at low ambient temperatures and low C-rates,
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[39]

3. Electrothermal Model

As the heat generation rate of the battery is calculated by the equivalent resistance-
based method, an electrothermal model for large-format Li-ion batteries is established in
this section, which is composed of a first-order RC electric model and a two-dimensional (2-
D) spatially-resolved thermal model that combines two lumped-mass thermal sub-models
and the FDM solving technique. The schematic of the electrothermal model is illustrated in
Figure 5. In addition, the parameterization of the electrothermal model is also addressed in
this section.
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3.1. Model Assumption

As Li-ion batteries are complicated electrochemical systems with distinct nonlinearity,
the application of several reasonable assumptions is conducive to modeling and analysis
of the battery on the premise that it has less impact on simulation fidelity. Therefore, the
following assumptions are presented in this study.

• As described in the introduction, reversible heat accounts for a small proportion of
the total heat generation, and thus this work is only interested in irreversible heat.
To demonstrate the validity of this assumption, the ratio of reversible heat to total
heat generation is calculated here, and the results are illustrated in Figure 6. As will
be readily seen, the relative proportion of the reversible heat of the battery is tiny in
comparison to the irreversible heat, and the proportion is positively correlated with
the operating temperature. Hence, the omission of reversible heat has less impact on
the overall heat generation of the battery.
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• Since the battery is placed in an atmosphere of constant temperature and humidity,
this work assumes that each direction of the battery has identical cooling conditions,
i.e., an identical convection coefficient and boundary temperature [40].

• From the perspective of material properties and simulation results reported in the
existing literature [41], the temperature distribution of the two tabs is assumed to be
uniform in this study.
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3.2. Model Establishment
3.2.1. Electric Model

In this study, the first-order RC electric model is employed to capture the electric
behavior of the battery. According to Kirchhoff’s law, its mathematical formulae can be
expressed by [42]

Cp
dUp

dt
+

Up

Rp
= I (1)

Ut = Uoc + Up + IRo (2)

where Cp, Rp and Up are the polarization capacitance, resistance and voltage, respectively.
Uoc and Ut represent the open circuit voltage and terminal voltage, respectively. Ro is the
Ohmic resistance. I is the loading current, which is positive for charging and negative for
discharging in this study.

The Laplace transform and bilinear transform are introduced to discretize the afore-
mentioned expression which is time-continuous, and the time-discrete expressions as
described by

Φk =
[
−(Ut − Uoc)k−1 Ik Ik−1] (3)

θk =
[
c1 c2 c3

]T (4)

y = Φkθk (5)

where Φk and θk represent the data vector and parameter vector, respectively, and the
subscript k is the time steps. Subsequently, the electric model parameters can be obtained
in accordance with the parameter vector; the specific calculation expressions are given by

Ro = (c2 − c3)/(1 − c1) (6)

Rp = (c2 + c3)/(1 + c1)− Ro (7)

Cp = (1 − c1)/(2c1 + 2)Rp (8)
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3.2.2. Thermal Model

Lumped-mass thermal sub-models for the two tabs: The temperature evolution of the tabs
is attributable to three sources, including heat generation, heat flow between the tabs
and the main battery body, and convection heat dissipation between the tabs and the
external environment. Since the positive and negative tabs have identical principles of
heat generation and transfer, the generic thermal model for the two tabs is given here. It is
formulated by

Cptmt
∂Tt

∂t
= I2Rot − hct Act(Tt − T∞)− Qbt (9)

where Cpt and mt denote the specific heat capacity and mass of the tab, respectively.
Rot represents the equivalent Ohmic resistance of the tab. hct and Act are the equivalent
convection coefficient and convection area, respectively. Tt and T∞ are the bulk temperature
of the tab and the ambient temperature, respectively. Qbt denotes the heat flux between
the tabs and the main battery body, which is approximately described by the following
empirical expression:

Qbt =
n

∑
y=1

hbt Abt
(
Tt − Tx,y

)
(10)

where hbt denotes the heat transfer coefficient. Abt and Tx,y are the average cross-sectional
area and the temperature of the discrete grid points connected directly to the tab, respec-
tively. The subscripts x and y represent the location of grid points, and here x = 1, m. In
addition, m and n are the number of discrete grid points along the length and width of the
battery body, respectively.

FDM solving technique for the main battery body: The energy conservation equation
applied in the 2-D thermal model is described by the following second-order parabolic
partial differential equation (PDE) [40]:

ρCp
∂T
∂t

= kx
∂2T
∂x2 + ky

∂2T
∂y2 + q (11)

The convective boundary conditions for the 2-D thermal model are subject to

∂T
∂x

=
h
kx

(Tr − T∞)
∂T
∂x

=
h
kx

(T∞ − Tl) (12)

∂T
∂y

=
h
ky

(Tu − T∞)
∂T
∂x

=
h
ky

(T∞ − Tb) (13)

where ρ and Cp are the volume-averaged density and specific heat capacity of the main
battery body, respectively. kx and ky represent the thermal conductivity along the x and y
directions, respectively, which are assumed to be identical here and expressed by k. T is the
temperature distribution in the battery plane. The subscripts r, l, u and b represent the right,
left, upper and bottom boundaries of the battery, respectively. h is the equivalent convection
coefficient. The term q denotes the volumetric heat-accumulation rate in the main battery
body, including the heat generation inside the battery and the heat flux between the tabs
and the main battery body. In addition, this study considers that the latter only exists in
the discrete grid points connected directly to the tabs if the thermal interaction between the
tabs and the battery body is considered.

According to the aforementioned 2-D governing equations, this study first discretizes
the main battery body into m × n grid points in the spatial domain, herein m = n = 5, and
the schematic of discretization strategy is shown in Figure 5. Accordingly, the subscripts
(x, y) serve to distinguish the variables at the discrete grid points, 1 ≤ x ≤ m and 1 ≤ y ≤ n.
Subsequently, the FDM method is utilized to convert the PDE problem (above mentioned
Equations (8)–(10)) into a set of linear Ordinary Differential Equations (ODEs), where
this method includes the forward, backward, and central difference approaches derived
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generally from Taylor expansion [43]. In this study, the central difference method is applied
to Equation (8); taking the center grid points, for example, they are expressed by

dTx,y

dt
=

k
ρCp

(
Tx+1,y

∆x2 +
Tx−1,y

∆x2 +
Tx,y+1

∆y2 +
Tx,y−1

∆y2 − 2
(

1
∆x2 +

1
∆y2

))
+

qx,y

ρCp
(14)

With regard to the boundary grid points and corner grid points, the similar difference
approach is followed and the discrete boundary conditions are combined, where the
discrete boundary conditions are described by

Tm+1,y − Tm−1,y

2∆x
=

h
k
(Tr − T∞)

T2,y − T0,y

2∆x
=

h
k
(T∞ − Tl) (15)

Tx,n+1 − Tx,n−1

2∆y
=

h
k
(Tu − T∞)

Tx,2 − Tx,0

2∆y
=

h
k
(T∞ − Tb) (16)

Finally, we end up with m × n ODEs, which can be converted into a state-space form
expressed by

.
x = Ax + Bu y = Cx (17)

where the system state is x =
[
x1,1 x2,1 · · · xm,1 x1,2 · · · xm,n

]T , the system input

is u =
[
q1,1 q2,1 · · · qm,1 q1,2 · · · qm,n T∞

]T , and the measured temperatures in

the main battery body are extracted as the system output, namely y =
[
T2 T3 T4

]T . A, B
and C are the system matrices, whose detailed introductions can be found in [18].

Additionally, the following mathematical equations are introduced to calculate the
heat-accumulation rate of discrete grid points [40]. Regarding the discrete gird points not
connected directly to the tabs, the term is formulated by

q1 = qir = βI2(Ro + Rp)/V (18)

where β is an adjustment parameter correcting the Ohmic and polarization resistance
obtained by interpolation so that the accumulative deviation is avoided. V is the volume
of the main battery body. It is noteworthy that this study only considers the effects of
temperature and SOC on the Ohmic and polarization resistances. For the discrete grid
points connected directly to the tabs, the term is formulated by

q2 = q1 + hbt Abt
(
Tt − Tx,y

)
/(V/Ne) (19)

where Ne is the number of discrete elements, taking Ne = (m − 1)(n − 1).

3.3. Model Parameterization
3.3.1. Parameterization of the Electric Model

The parameterization process of the electric model can be divided into two steps.
Primarily, the terminal voltages under various temperatures and SOCs are extracted as
the OCVs when the internal electrochemical status of the battery is close to equilibrium.
Subsequently, in accordance with the discrete-time model derived from Kirchhoff’s law, the
recursive least-squares with forgetting factor (FFRLS) algorithm is applied to acquire the
optimal values of resistance and capacitance, whose detailed implementation procedure is
described as follows [44].

• Initialization of the forgetting factor λ, parameter vector θ and covariance matrix P.

• Update the gain matrix: Kk = Pk−1Φk
[
ΦT

k Pk−1Φk + λ
]−1

• Calculate the estimation error: ek = yk − ΦT
k θk−1

• Update the parameter vector: θk = θk−1 + Kkek

• Update the covariance matrix: Pk =
1
λ

(
Pk−1 − KkΦT

k Pk−1
)
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where k is the iterative time step. Φ represents the data vector. y denotes the actual
measurement value. The ultimate identification results of the electrical model parameters
are illustrated in Figure 7.
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3.3.2. Parameterization of the Thermal Model

As the 2-D spatially-resolved thermal model contains over 10 unknown parameters,
the parameters of the two tabs and main battery body are identified independently in order
to lower the difficulty of parameterization and avoid overfitting. Additionally, the particle
swarm optimization (PSO) algorithm is used as an identified procedure, whose detailed
implementation steps are given below [45].

• Initialize the position xid and velocity vid of each particle i at each dimension d ran-
domly within a permissible range.

• Calculate the fitness value of each particle.
• Update the personal best solution Pk

id,best of each particle and the global best solution
Gk

d,best of the entire particle swarm based on the fitness value of each particle.
• Update the position and velocity of each particle

vk+1
id = ωvk

id + c1r1

(
Pk

id,best − xk
id

)
+ c2r2

(
Gk

d,best − xk
id

)
xk+1

id = xk
id + vk+1

id

• Determine whether the termination criteria are satisfied. The termination criteria are
generally the maximum iterations or optimal fitness value.

where ω represents the inertia weight, c1 and c2 are the learning factors, r1 and r2 are
the random numbers within an interval of 0 to 1.

As described in the lumped-mass thermal model, the equivalent Ohmic resistance Rot,
the equivalent convection coefficient hct, and the heat transfer coefficient hbt are unknown,
and the identification results are summarized in Table 2. In the case of the main battery
body, its unknown parameters include the volume-averaged density ρ, the specific heat
capacity Cp, the thermal conductivity k, the convection coefficient h, and the adjustment
parameter β. Since the volume-averaged density and specific heat capacity always occur in
the form of a product, the equivalent coefficient µ = ρCp is introduced here to ensure the
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identified values are more representative. Moreover, as these parameters are insusceptible
to the battery status [27], the parameterization results under FUDS testing profiles at 5 ◦C
are taken as the parameters of the main battery body. The optimal values with and without
the consideration of thermal interplay are illustrated in Tables 3 and 4, respectively.

Table 2. Identification results of the lumped-mass thermal sub-models for two tabs under FUDS at
various temperatures.

Test Scenario Tab Position Equivalent Ohmic
Resistance (ohm)

Equivalent Convection
Coefficient (W·m−2·K−1)

Heat Transfer Coefficient
(W·m−2·K−1)

25 ◦C
Positive tab 8.70 × 10−5 0.8523 956.6317

Negative tab 2.71 × 10−5 3.5273 3074.8912

5 ◦C
Positive tab 2.19 × 10−5 2.3046 681.8795

Negative tab 4.90 × 10−5 2.1950 1617.2398

−10 ◦C
Positive tab 2.71 × 10−5 3.9425 1854.8619

Negative tab 2.25 × 10−5 3.2700 2033.9228

Table 3. Identification results for the main battery body with the consideration of thermal interplay
at 5 ◦C.

Equivalent Coefficient µ
(J·m−3·K−1)

Thermal Conductivity
(W·m−2·K−1)

Convection Coefficient
(W·m−2·K−1) Adjustment Parameter β

1.42 × 105 0.6060 2.9826 0.0395

Table 4. Identification results for the main battery body without the consideration of thermal interplay
at 5 ◦C.

Equivalent Coefficient µ
(J·m−3·K−1)

Thermal Conductivity
(W·m−2·K−1)

Convection Coefficient
(W·m−2·K−1) Adjustment Parameter β

1.42 × 105 0.6659 3.1873 0.0419

4. Analysis and Discussion
4.1. The Analysis of Temperature Inconsistency of Large-Format Li-Ion Batteries
4.1.1. The Characteristic of Uneven Temperature Distribution

This study considers that this inconsistent characteristic is primarily attributable to
inhomogeneous heat generation within the main battery body and the thermal interplay
between the two tabs and the main battery body. Regarding the inhomogeneous heat
generation, Figure 8 illustrates the heat-generation rate of each measurement point in the
main battery body under 1 C-rate current excitation at various temperatures. It can be
seen that the heat-generation rate at various measurement points and the nonuniformity
between various measurement points increase as the operating temperature decreases,
which is strongly related to the variation in the battery’s internal resistance. Furthermore,
the difference in the heat-generation rate in the battery plane is small and almost negligible
at 25 ◦C. And the order of the heat-generation rate at each measurement point is opposite
to the order of their temperatures. For instance, the highest temperature in the battery
plane is at measurement point Mc under the constant current testing profile at −10 ◦C,
while the heat-generation rate at measurement point Mc is the lowest. Therefore, there
must be some other thermal behaviors that affect the characteristics of inhomogeneous
temperature distribution.
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The influence of thermal interplay on the temperature distribution is validated by
comparing the temperature outputs of the thermal models with and without consideration
of thermal interplay, and the comparison results are illustrated in Figure 9. Moreover, the
output results are reasonable if the output errors are in the range of −0.5 ◦C to 0.5 ◦C, for
the reason that the temperature measurement device adopted has a measurement error
of 0.5 ◦C. As shown in the second row in Figure 9, the temperature output errors of the
thermal model with consideration of thermal interplay are less than those without this
consideration, and the errors of the thermal model with this consideration are within
the tolerance limits. In addition, the mean absolute error (MAE) of the thermal model
incorporating the effects of the two tabs considerably outperforms another thermal model,
indicating that the heat generation and flux of the two tabs cannot be ignored. In conclusion,
the inhomogeneous temperature distribution of large-format Li-ion batteries is generally
the result of the combined action of the aforementioned two thermal behaviors.
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4.1.2. The Evolution of the Highest Temperature Position

For the characteristics of the difference in the highest temperature position at various
operating modes, this study extracts the maximum temperature rise at measurement points
Mp and Mc under various dynamic driving tests at −10 ◦C and 5 ◦C, which are given
in Table 5. It can be seen that the maximum temperature rise at measurement point Mc
undergoes a significant change as the battery operating temperature decreases, but the
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impact on the positive tab is relatively slight. As the temperature rise of the two tabs and
main battery body is mainly attributable to their heat generation rate, this study compares
the resistance change rate at measurement points Mp and Mc from −10 ◦C to 5 ◦C, and the
results are shown in Figure 10. The mathematical expression of the resistance change rate
is formulated by

Rchange,k =
R−10,k − R5,k

R−10,k
× 100% (20)

where the subscript k is the time step. In addition, the resistances of measurement points
Mp and Mc at each time step are obtained using the interpolation method.

Table 5. Comparison of the maximum temperature rise at measurement points Mp and Mc under
various dynamic driving tests at two temperatures.

Test Scenario Ambient Temperature Measurement Point Mp Measurement Point Mc

NEDC
5 ◦C 4.48 ◦C 2.46 ◦C

−10 ◦C 3.50 ◦C 4.62 ◦C

FUDS
5 ◦C 4.05 ◦C 3.13 ◦C

−10 ◦C 4.54 ◦C 4.85 ◦C
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As can be seen from Table 2 and Figure 7, the resistances of the positive tab and main
battery body show a consistent negative correlation with temperature. Nevertheless, it can
be seen from Figure 10 that the resistance change rate of measurement point Mc is larger
than that of measurement point Mp as the temperature decreases. For instance, the average
change rate of measurement point Mc is 57.08% under NEDC from −10 ◦C to 5 ◦C, while
that of measurement point Mp is 24.51%. These are mainly attributable to the material
properties of the positive tab and main battery body. The material of the positive tab is
aluminum, whose resistance is slightly affected by temperature. Nevertheless, as a complex
of “micro cells”, the resistances of the main battery body have a significant dependence on
temperature, which is caused by the sluggish kinetics of ion/electrons at low temperatures
and the increased electrolyte viscosity with the decreased temperature.

4.2. Potential Thermal Management Strategies Based on the Electrothermal Model

As per the aforementioned description, inconsistent temperature characteristics exist
in most large-format Li-ion batteries. Accordingly, a comprehensive understanding of
temperature inconsistency has provided strong guidelines for the development of the
BTMS. For instance, the layout of temperature sensors can be designed in terms of the
temperature information under a series of operating conditions, which is obtained through
experiments or simulation ahead of time. Taking the battery employed in this study
as an example, its maximum temperature generally occurs at the positive tab and the
center of the battery. Hence, as long as the BTMS accurately monitors the temperatures of
these positions in real time, the deteriorated thermal behaviors of the battery that include
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overheating and thermal runaways can be avoided. Nevertheless, confronting the intricate
and variable thermal characteristics of Li-ion batteries, limited sensors are incapable of
supplying sufficient temperature information to the BTMS. In light of this, establishing an
electrothermal model capable of capturing the detailed thermal dynamics of large-format
Li-ion batteries is especially significant. In addition, this study analyzes the sensitivity
of the electrothermal model applied here to key parameters, whose analysis results are
illustrated in Figure 11. It can be seen that the model is sensitive to the variation in external
coolant conditions, namely the convection coefficient and ambient temperature, indicating
that the electrothermal model effectively tracks actual values even in the time-varying
operating environment. Therefore, the real-time thermal information predicted by the
electrothermal model can be transmitted as inputs to the BTMS, and then the power output
of the cooling or heating equipment in the BTMS can be controlled based on these inputs,
thereby mitigating the thermal gradient of the battery during operation.
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5. Conclusions

Based on the experimental data of an 8-Ah pouch-type ternary Li-ion battery with
contraposition tabs and the thermal behaviors of Li-ion batteries reported in the existing
literature, a difference in the highest temperature position at various operational temper-
atures or currents exists in most large-format Li-ion batteries. In this study, this thermal
characteristic and the uneven temperature distribution in the battery plane are collectively
referred to as the battery temperature inconsistency, which was analyzed by establishing
an electrothermal model. Specifically, the characteristic of inhomogeneous temperature
distribution was analyzed by calculating the heat-generation rate at various measurement
points and comparing the temperature prediction accuracy of the model with and without
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consideration of thermal interplay. The results illustrate that the heat-generation rate at
various measurement points and the nonuniformity between various measurement points
would be likely to increase as the operating temperature decreases. In addition, the thermal
model incorporating the effect of the two tabs yields superior prediction accuracy. These
indicate that this characteristic is primarily attributable to the uneven heat generation and
the impact of the two tabs. Regarding the evolution of the temperature field, this study
compares the changes in the maximum temperature rise between the positive tab (mea-
surement point Mp) and main battery body (measurement point Mc) at various operating
temperatures, whose results suggest that the operating temperature has a greater impact
on measurement point Mc. Subsequently, the resistance change at measurement points
Mp and Mc was calculated, and the same conclusion was obtained. The main reason is
that, as a complex electrochemical system, the resistance of the main battery body strongly
depends on the operating temperature. In conclusion, obtaining the thermal dynamic of
Li-ion batteries ahead of time provides a strong guideline for designing the BTMS, and
the electrothermal model is also expected to be used for the BTMS to mitigate temperature
inconsistency during operation.

In our future work, the physical mechanism of the electrothermal model will be further
improved to increase the performance of tracking the thermal behaviors of the battery. The
electrothermal model will be tested on larger cells to establish the scale of inconsistency
effects with increasing cell size. The detailed thermal dynamics of large-format Li-ion
batteries and the limitations of the electrothermal model will also be further explored at
extreme temperatures.
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