Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = synthetic graphite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6124 KiB  
Article
Extraction of Alumina and Alumina-Based Cermets from Iron-Lean Red Muds Using Carbothermic Reduction of Silica and Iron Oxides
by Rita Khanna, Dmitry Zinoveev, Yuri Konyukhov, Kejiang Li, Nikita Maslennikov, Igor Burmistrov, Jumat Kargin, Maksim Kravchenko and Partha Sarathy Mukherjee
Sustainability 2025, 17(15), 6802; https://doi.org/10.3390/su17156802 - 26 Jul 2025
Viewed by 393
Abstract
A novel strategy has been developed for extracting value-added resources from iron-lean, high-alumina- and -silica-containing red muds (RMs). With little or no recycling, such RMs are generally destined for waste dumps. Detailed results are presented on the carbothermic reduction of 100% RM (29.3 [...] Read more.
A novel strategy has been developed for extracting value-added resources from iron-lean, high-alumina- and -silica-containing red muds (RMs). With little or no recycling, such RMs are generally destined for waste dumps. Detailed results are presented on the carbothermic reduction of 100% RM (29.3 wt.% Fe2O3, 22.2 wt.% Al2O3, 20.0 wt.% SiO2, 1.2 wt.% CaO, 12.2 wt.% Na2O) and its 2:1 blends with Fe2O3 and red mill scale (MS). Synthetic graphite was used as the reductant. Carbothermic reduction of RM and blends was carried out in a Tamman resistance furnace at 1650 °C for 20 min in an Ar atmosphere. Reduction residues were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), elemental mapping and X-ray diffraction (XRD). Small amounts of Fe3Si alloys, alumina, SiC and other oxide-based residuals were detected in the carbothermic residue of 100% RM. A number of large metallic droplets of Fe–Si alloys were observed for RM/Fe2O3 blends; no aluminium was detected in these metallic droplets. A clear segregation of alumina was observed as a separate phase. For the RM/red MS blends, a number of metallic Fe–Si droplets were seen embedded in an alumina matrix in the form of a cermet. This study has shown the regeneration of alumina and the formation of alumina-based cermets, Fe–Si alloys and SiC during carbothermic reduction of RM and its blends. This innovative recycling strategy could be used for extracting value-added resources from iron-lean RMs, thereby enhancing process productivity, cost-effectiveness of alumina regeneration, waste utilization and sustainable developments in the field. Full article
(This article belongs to the Special Issue Sustainable Materials, Waste Management, and Recycling)
Show Figures

Figure 1

21 pages, 4516 KiB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 568
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

18 pages, 3398 KiB  
Article
Synthesis of Nylon 6,6 with Pyrene Chain-End for Compatibilization with Graphite and Enhancement of Thermal and Mechanical Properties
by Veronica Balzano, Annaluisa Mariconda, Maria Rosaria Acocella, Marialuigia Raimondo, Assunta D’Amato, Pasquale Longo, Liberata Guadagno and Raffaele Longo
Polymers 2025, 17(13), 1735; https://doi.org/10.3390/polym17131735 - 22 Jun 2025
Viewed by 470
Abstract
The possibility of reinforcing polymeric matrices with multifunctional fillers for improving structural and functional properties is widely exploited. The compatibility between the filler and the polymeric matrix is crucial, especially for high filler content. In this paper, polymeric matrices of Nylon 6,6 with [...] Read more.
The possibility of reinforcing polymeric matrices with multifunctional fillers for improving structural and functional properties is widely exploited. The compatibility between the filler and the polymeric matrix is crucial, especially for high filler content. In this paper, polymeric matrices of Nylon 6,6 with pyrene chains were successfully synthesized to improve the compatibility with carbonaceous fillers. The compatibility was proven using graphite as a carbonaceous filler. The different properties, including thermal stability, crystallinity, morphology, and local mechanical properties, have been evaluated for various filler contents, and the results have been compared to those of synthetic Nylon 6,6 without pyrene chain terminals. XRD results highlighted that the compatibilization of the composite matrix may lead to an intercalation of the polymeric chains among the graphite layers. This phenomenon leads to the protection of the polymer from thermal degradation, as highlighted by the thermogravimetric analysis (i.e., for a filler content of 20%, the beginning degradation temperature goes from 357 °C for the non-compatibilized matrix to 401 °C for the compatibilized one and the residual at 750 °C goes from 33% to 67%, respectively. A significant improvement in the interphase properties, as proven via Atomic Force Microscopy in Harmonix mode, leads to a considerable increase in local mechanical modulus values. Specifically, the compatibilization of the matrix hosting the graphite leads to a less pronounced difference in modulus values, with more frequent reinforcements that are quantitatively similar along the sample surface. This results from a significantly improved filler distribution with respect to the composite with the non-compatibilized matrix. The present study shows how the thermoplastic/filler compatibilization can sensitively enhance thermal and mechanical properties of the thermoplastic composite, widening its potential use for various high-performance applications, such as in the transport field, e.g., for automotive components (engine parts, gears, bushings, washers), and electrical and electronics applications (heat sinks, casing for electronic devices, and insulating materials). Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

22 pages, 10121 KiB  
Article
Exploring the Characteristics of Carbon Structures Obtained from LignoBoost Lignin
by Adina Coroabă, Irina Apostol, Ioan Andrei Dascălu, Adrian Bele, Narcisa Laura Marangoci, Florica Doroftei, Cristina Mariana Uritu and Iuliana Spiridon
Polymers 2025, 17(9), 1221; https://doi.org/10.3390/polym17091221 - 29 Apr 2025
Viewed by 538
Abstract
In the present study, carbon structures from LignoBoost lignin were synthetized using HNO3/H2SO4 one-pot hydrothermal treatment, followed by a thermal treatment. The obtained compounds were characterized using different techniques, such as FTIR, DVS, DLS, XRD, fluorescence imaging and [...] Read more.
In the present study, carbon structures from LignoBoost lignin were synthetized using HNO3/H2SO4 one-pot hydrothermal treatment, followed by a thermal treatment. The obtained compounds were characterized using different techniques, such as FTIR, DVS, DLS, XRD, fluorescence imaging and STEM. The formed LCMs presented graphitized structure with quasi-spherical shapes. All obtained materials presented negative values of zeta potential due to the charge from the hydroxyl and carboxyl groups, as confirmed by XPS analysis. All the data obtained sustained the heterogeneous composition of the lignin-based carbon materials, which arise from the complex structure of lignin. Fluorescence imaging demonstrated the potential of the materials as optical imaging agents. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 3614 KiB  
Article
Preparation of Cl-Doped g-C3N4 Photocatalyst and Its Photocatalytic Degradation of Rhodamine B
by Jing Zhang, Lixia Wang, Yang Li, Yuhong Huang, Renbin Song, Chen Cheng, Qian Luo, Ruiqi Zhai, Yijie Meng, Peixin Zhang, Qiang Ma and Yingjie Zhang
Molecules 2025, 30(9), 1910; https://doi.org/10.3390/molecules30091910 - 25 Apr 2025
Viewed by 798
Abstract
The increasing global demand for clean water is driving the development of advanced wastewater treatment technologies. Graphitic carbon nitride (g-C3N4) has emerged as an efficient photocatalyst for degrading organic pollutants, such as synthetic dyes, due to its exceptional thermo-chemical [...] Read more.
The increasing global demand for clean water is driving the development of advanced wastewater treatment technologies. Graphitic carbon nitride (g-C3N4) has emerged as an efficient photocatalyst for degrading organic pollutants, such as synthetic dyes, due to its exceptional thermo-chemical stability. However, its application is limited by an insufficient specific surface area, low photocatalytic efficiency, and an unclear degradation mechanism. In this study, we aimed to enhance g-C3N4 by doping it with elemental chlorine, resulting in a series of Cl-C3N4 photocatalysts with varying doping ratios, prepared via thermal polymerization. The photocatalytic activity of g-C3N4 was assessed by measuring the degradation rate of RhB. A comprehensive characterization of the Cl-C3N4 composites was conducted using SEM, XRD, XPS, PL, DRS, BET, EPR, and electrochemical measurements. Our results indicated that the optimized 1:2 Cl-C3N4 photocatalyst exhibited exceptional performance, achieving 99.93% RhB removal within 80 min of irradiation. TOC mineralization reached 91.73% after 150 min, and 88.12% removal of antibiotics was maintained after four cycles, demonstrating the excellent stability of the 1:2 Cl-C3N4 photocatalyst. Mechanistic investigations revealed that superoxide radicals (·O2) and singlet oxygen (1O2) were the primary reactive oxygen species responsible for the degradation of RhB in the chlorine-doped g-C3N4 photocatalytic system. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 10560 KiB  
Article
Properties of Sunflower Straw Biochar Activated Using Potassium Hydroxide
by Siyu Chang, Lei Wang and Lihong Yao
Molecules 2025, 30(6), 1332; https://doi.org/10.3390/molecules30061332 - 16 Mar 2025
Cited by 1 | Viewed by 940
Abstract
Biochar is a kind of carbon material with a wide range of sources; it has attracted considerable attention because of its abundant resources and low cost. Potassium hydroxide (KOH) is a strong alkali activator that can effectively change the surface chemical properties and [...] Read more.
Biochar is a kind of carbon material with a wide range of sources; it has attracted considerable attention because of its abundant resources and low cost. Potassium hydroxide (KOH) is a strong alkali activator that can effectively change the surface chemical properties and microstructure of biochar. Biochar activated by KOH has a large specific surface area (SSA) and a rich pore structure. Herein, sunflower straw was used as a raw material and KOH as an activator to investigate the preparation of sunflower straw biochar activated by KOH. The effects of synthetic conditions on the performance and structure of the resulting biochar materials were comprehensively analyzed. The final activation conditions were as follows: the impregnation ratio, activation time, and activation temperature were 2:1, 2 h, and 900 °C, respectively. The composition and structure of the prepared biochar were characterized. It was observed by SEM that the surface of the activated biochar became rougher. FTIR, XRD, XPS, and Raman characterization showed that the aromaticity and graphitization degree of the activated biochar increased. The activation process of biochar was analyzed via multiple techniques, aiming to lay the foundation for the wide application of biochar materials. Full article
Show Figures

Figure 1

19 pages, 13112 KiB  
Article
The Effect of Mold Flux Wetting Conditions with Varying Crucible Materials on Crystallization
by Muhammad Anwarul Nazim, Arezoo Emdadi, Todd Sander and Ronald O’Malley
Materials 2025, 18(5), 1174; https://doi.org/10.3390/ma18051174 - 6 Mar 2025
Viewed by 954
Abstract
Understanding mold flux crystallization is essential for assessing heat transfer during steel casting. The complexity of the mold gap presents challenges in identifying the optimal testing method and nucleation type. This study investigates how variations in wetting properties influence nucleation dynamics, in particular [...] Read more.
Understanding mold flux crystallization is essential for assessing heat transfer during steel casting. The complexity of the mold gap presents challenges in identifying the optimal testing method and nucleation type. This study investigates how variations in wetting properties influence nucleation dynamics, in particular the wetting behaviors of mold flux in platinum and graphite crucibles and how they affect crystallization temperatures and solidification mechanisms. Advanced analytical techniques, including confocal laser scanning microscopy (CLSM), and differential scanning calorimetry (DSC) were employed to analyze nucleation under different conditions, with calibration using synthetic slag, Li2SO4, and thermodynamic equilibrium simulations. The findings highlight the crucial role of crucible materials in modifying nucleation energy barriers and undercooling requirements. These insights enhance the understanding of mold flux behavior, contributing to the refinement of testing methodologies and the optimization of heat transfer and solidification processes in continuous casting. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

19 pages, 7714 KiB  
Article
Production of Soft Magnetic Materials Fe-Si and Fe-Si-Al from Blends of Red Muds and Several Additives: Resources for Advanced Electrical Devices
by Rita Khanna, Yuri Konyukhov, Dmitri Zinoveev, Kejiang Li, Nikita Maslennikov, Igor Burmistrov, Jumat Kargin, Maksim Kravchenko and Partha Sarathy Mukherjee
Sustainability 2025, 17(5), 1795; https://doi.org/10.3390/su17051795 - 20 Feb 2025
Cited by 1 | Viewed by 818
Abstract
The present study developed a novel approach for transforming red mud (RM) into soft magnetic materials (SMMs) for applications in advanced electrical devices in the form of Fe-Si and Fe-Si-Al alloys. A total of ten blends were prepared based on two RMs, three [...] Read more.
The present study developed a novel approach for transforming red mud (RM) into soft magnetic materials (SMMs) for applications in advanced electrical devices in the form of Fe-Si and Fe-Si-Al alloys. A total of ten blends were prepared based on two RMs, three iron oxide additives (Fe2O3, black and red mill scales), alumina and carbonaceous reductants in a range of proportions. Carbothermic reduction of the blends was carried out in a vertical Tamman resistance furnace at 1600–1650 °C for 30 min in an argon atmosphere; synthetic graphite was used as a reductant. Reaction products were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray fluorescence (XRF) and X-ray diffraction (XRD). Significant amounts of Fe-rich metallic droplets/regions of different grain sizes (0.5 to 500 μm) were produced in these studies. The formation of Fe-Si alloys with Si contents from 3.9 to 6.7 wt.% was achieved in 8 out of 10 blends; the optimal levels of Si for SMMs ranged from 3.2 to 6.5 wt.%. There was clear evidence for the formation of Fe-Si-Al (up to 1.8 wt.% Al) alloys in 4 out of 10 blends. In addition to lowering operating challenges associated with RM processing, blending of RMs with iron oxide additives and alumina presents a novel recycling approach for converting RMs into valuable SMMs for possible emerging applications in renewable energy, storage, electrical vehicles and other fields. Along with reducing RM stockpiles across the globe, this approach is expected to improve resource efficiency, mitigating environmental impacts while generating economic benefits. Full article
Show Figures

Figure 1

9 pages, 3086 KiB  
Article
Synthesis and Optical Properties of N-Arylnaphtho- and Anthra[2,3-d]oxazol-2-amines
by Yuki Murata, Masato Kawakubo, Ayumi Maruyama, Mio Matsumura and Shuji Yasuike
Molecules 2025, 30(2), 319; https://doi.org/10.3390/molecules30020319 - 15 Jan 2025
Viewed by 854
Abstract
Oxazole, a versatile and significant heteroarene, serves as a bridge between synthetic organic chemistry and applications in the medicinal, pharmaceutical, and industrial fields. Polycyclic aromatic compounds with amino groups substituted at the 2-position of an oxazole, such as 2-aminonaphthoxazoles, are expected to be [...] Read more.
Oxazole, a versatile and significant heteroarene, serves as a bridge between synthetic organic chemistry and applications in the medicinal, pharmaceutical, and industrial fields. Polycyclic aromatic compounds with amino groups substituted at the 2-position of an oxazole, such as 2-aminonaphthoxazoles, are expected to be functional probes, but their synthetic methods are extremely limited. Herein, we describe electrochemical reactions of 3-amino-2-naphthol or 3-amino-2-anthracenol and isothiocyanates in DMSO, using a graphite electrode as an anode and a platinum electrode as a cathode in the presence of potassium iodide (KI), which afford N-arylnaphtho- and N-arylanthra[2,3-d]oxazol-2-amines via cyclodesulfurization. This reaction is the first example of synthesis of 2-aminoxazole-based polycyclic compounds using an electrochemical reaction. An examination of the spectroscopic properties of polycyclic oxazoles revealed that the λabs value of the tetracyclic oxazoles was redshifted relative to that of the tricyclic oxazoles. Moreover, synthesized naphthalene/anthracene-fused tricyclic and tetracyclic oxazoles exhibited extended π-conjugated skeletons and fluoresced in the 340–430 nm region in chloroform. Full article
Show Figures

Figure 1

24 pages, 4584 KiB  
Review
Graphitic Carbon Nitride for Photocatalytic Hydrogen Production from Water Splitting: Nano-Morphological Control and Electronic Band Tailoring
by Yongbo Fan, Xinye Chang, Weijia Wang and Huiqing Fan
Nanomaterials 2025, 15(1), 45; https://doi.org/10.3390/nano15010045 - 30 Dec 2024
Cited by 11 | Viewed by 1901
Abstract
Semiconductor polymeric graphitic carbon nitride (g-C3N4) photocatalysts have garnered significant and rapidly increasing interest in the realm of visible light-driven hydrogen evolution reactions. This interest stems from their straightforward synthesis, ease of functionalization, appealing electronic band structure, high physicochemical [...] Read more.
Semiconductor polymeric graphitic carbon nitride (g-C3N4) photocatalysts have garnered significant and rapidly increasing interest in the realm of visible light-driven hydrogen evolution reactions. This interest stems from their straightforward synthesis, ease of functionalization, appealing electronic band structure, high physicochemical and thermal stability, and robust photocatalytic activity. This review starts with the basic principle of photocatalysis and the development history, synthetic strategy, and structural properties of g-C3N4 materials, followed by the rational design and engineering of g-C3N4 from the perspectives of nano-morphological control and electronic band tailoring. Some representative results, including experimental and theoretical calculations, are listed to show the advantages of optimizing the above two characteristics for performance improvement in photocatalytic hydrogen evolution from water splitting. The existing opportunities and challenges of g-C3N4 photocatalysts are outlined to illuminate the developmental trajectory of this field. This paper provides guidance for the preparation of g-C3N4 and to better understand the current state of the art for future research directions. Full article
(This article belongs to the Special Issue Hydrogen Production and Evolution Based on Nanocatalysts)
Show Figures

Figure 1

15 pages, 3667 KiB  
Article
Intercalation of Large Flake Graphite with Fuming Nitric Acid
by Vladimir A. Shulyak, Nikolai S. Morozov, Vera S. Makhina, Kristina E. Klyukova, Alexandra V. Gracheva, Sergei N. Chebotarev and Viktor V. Avdeev
C 2024, 10(4), 108; https://doi.org/10.3390/c10040108 - 20 Dec 2024
Cited by 1 | Viewed by 1688
Abstract
In this work, the possibilities of introducing nitric acid molecules with a solution concentration of 75–98% into graphite matrices in the form of synthetic quasi-monocrystal graphite and natural graphite of four different farcical compositions were determined in order to identify factors of the [...] Read more.
In this work, the possibilities of introducing nitric acid molecules with a solution concentration of 75–98% into graphite matrices in the form of synthetic quasi-monocrystal graphite and natural graphite of four different farcical compositions were determined in order to identify factors of the acid concentration and graphite size on the production process and properties of graphite foil. The actual stage of graphite intercalation in the resulting compound was determined by X-ray diffraction analysis (XRD). The differences in the temporal patterns of the intercalation process for different intercalation stages (from 2 to 5) are demonstrated. The obtained acid solutions were used in the manufacturing of flexible graphite foil from natural graphite of four different particle size distributions. The mass characteristics of the intermediate and final products were determined as the graphite was treated with these solutions. The actual difference in the characteristics of the raw materials and intermediate synthetic products was recorded by measuring the electrical conductivity of the final material, graphite foil. Analysis of the results has shown that a decrease in the acid concentration of a solution leads to an increase in the intercalation stage. Weight gains due to the formation of oxygen-containing groups and the introduction of water and acid were reduced by this effect, whereas the yield of the final product (thermally expanded graphite) increased. Foil made of thermally expanded graphite obtained from intercalated compounds of high stages had greater electrical conductivity. An improvement in the conductive properties of the material implies that there should be fewer defects in its structure. Full article
(This article belongs to the Special Issue Carbon Functionalization: From Synthesis to Applications)
Show Figures

Figure 1

12 pages, 2455 KiB  
Article
Effect of Mechanically Exfoliated Graphite Flakes on Morphological, Mechanical, and Thermal Properties of Epoxy
by Ayşenur Gül and Ali Reza Kamali
J. Compos. Sci. 2024, 8(11), 466; https://doi.org/10.3390/jcs8110466 - 11 Nov 2024
Cited by 1 | Viewed by 1710
Abstract
Carbon-reinforced polymer composites form an important category of advanced materials, and there is an increasing demand to enhance their performance using more convenient and scalable processes at low costs. In the present study, graphitic flakes were prepared by the mechanical exfoliation of synthetic [...] Read more.
Carbon-reinforced polymer composites form an important category of advanced materials, and there is an increasing demand to enhance their performance using more convenient and scalable processes at low costs. In the present study, graphitic flakes were prepared by the mechanical exfoliation of synthetic graphite electrodes and utilized as an abundant and potentially low-cost filler to fabricate epoxy-based composites with different additive ratios of 1–10 wt.%. The morphological, structural, thermal, and mechanical properties of these composites were investigated. It was found that the thermal conductivity of the composites increases by adding graphite, and this increase mainly depends on the ratio of the graphite additive. The addition of graphite was found to have a diverse effect on the mechanical properties of the composites: the tensile strength of the composites decreases with the addition of graphite, whilst their compressive strength and elastic modulus are enhanced. The results demonstrate that incorporating 5 wt% of commercially available graphite into epoxy not only raises the thermal conductivity of the material from 0.223 to 0.485 W/m·K, but also enhances its compressive strength from 66 MPa to 72 MPa. The diverse influence of graphite provides opportunities to prepare epoxy composites with desirable properties for different applications. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

12 pages, 7188 KiB  
Article
Early Diagnosis of Tumorigenesis via Ratiometric Carbon Dots with Deep-Red Emissive Fluorescence Based on NAD+ Dependence
by Lan Cui, Weishuang Lou, Mengyao Sun, Xin Wei, Shuoye Yang, Lu Zhang and Lingbo Qu
Molecules 2024, 29(22), 5308; https://doi.org/10.3390/molecules29225308 - 11 Nov 2024
Cited by 1 | Viewed by 1249
Abstract
The early diagnosis of tumorigenesis is crucial for clinical treatment, but the resolution and sensitivity of conventional short-wavelength biomarkers are not ideal because of the complicated interference in living tissue. Herein, a nicotinamide adenine dinucleotide (NAD+)-responsive probe with deep-red emissive ratiometric [...] Read more.
The early diagnosis of tumorigenesis is crucial for clinical treatment, but the resolution and sensitivity of conventional short-wavelength biomarkers are not ideal because of the complicated interference in living tissue. Herein, a nicotinamide adenine dinucleotide (NAD+)-responsive probe with deep-red emissive ratiometric fluorescence was synthetized as a promising target for energy metabolism patterns during tumorigenesis. Interestingly, the solvents H3PO4 and 2,2′-dithiodibenzoic acid enhanced the red emission (640 and 680 nm) of o-phenylenediamine-based carbon dots (CDs), leading to the formation of a nanoscale graphite-like skeleton covered with -P=O, -CONH-, -COOH and -NH2 on their surfaces. Meanwhile, this method exhibited high sensitivity to the discriminating target NAD+, with a detection limit of 63 μM due to the inner filter effect and fluorescence resonance energy transfer process between NAD+ and CDs, which is superior to the reported capillary electrophoresis and liquid chromatographic detection methods (the reported detection limit was about 0.2 mM) in complex biological samples and even cancer cells. Encouragingly, NAD+ significantly promoted nucleus-targeting fluorescence and cell migration compared to GSH and pH stimulation, which were gradually eliminated in human hepatocellular carcinoma (HepG2) cells after 2-deoxy-d-Glucose inhibited the glycolytic phenotype. The proposed method holds great potential for the temporal and spatial resolution of NAD+-dependent tumor diagnosis in complex living systems. Full article
Show Figures

Figure 1

12 pages, 5284 KiB  
Article
The Input of Nanoclays to the Synergistic Flammability Reduction in Flexible Foamed Polyurethane/Ground Tire Rubber Composites
by Aleksander Hejna, Paulina Kosmela, Adam Olszewski and Wiktoria Żukowska
Materials 2024, 17(21), 5344; https://doi.org/10.3390/ma17215344 - 31 Oct 2024
Viewed by 1305
Abstract
Currently, postulated trends and law regulations tend to direct polymer technology toward sustainability and environmentally friendly solutions. These approaches are expressed by keeping materials in a loop aimed at the circular economy and by reducing the environmental burdens related to the production and [...] Read more.
Currently, postulated trends and law regulations tend to direct polymer technology toward sustainability and environmentally friendly solutions. These approaches are expressed by keeping materials in a loop aimed at the circular economy and by reducing the environmental burdens related to the production and use of polymers and polymer-based materials. The application of recycled or waste-based materials often deals efficiently with the first issue but at the expense of the final products’ performance, which requires various additives, often synthetic and petroleum-based, with limited sustainability. Therefore, a significant portion of research is often required to address the drawbacks induced by the application of secondary raw materials. Herein, the presented study aimed to investigate the fire performance of polymer composites containing highly flammable matrix polyurethane (PU) foam and filler ground tire rubber (GTR) originating from car tire recycling. Due to the nature of both phases and potential applications in the construction and building or automotive sectors, the flammability of these composites should be reduced. Nevertheless, this issue has hardly been analyzed in literature and dominantly in our previous works. Herein, the presented work provided the next step and investigated the input of nanoclays to the synergistic flammability reduction in flexible, foamed PU/GTR composites. Hybrid compositions of organophosphorus FRs with expandable graphite (EG) in varying proportions and with the addition of surface-modified nanoclays were examined. Changes in the parameters obtained during cone calorimeter tests were determined, discussed, and evaluated with the fire performance index and flame retardancy index, two parameters whose goal is to quantify the overall fire performance of polymer-based materials. Full article
Show Figures

Figure 1

16 pages, 6703 KiB  
Article
The Effect of Fractional Composition on the Graphite Matrices’ Porosity
by Mariya D. Gritskevich, Alexandra V. Gracheva, Mariya S. Filippova, Maxim S. Konstantinov, Rashit R. Aitbaev, Nikolai S. Morozov, Sergei N. Chebotarev and Viktor V. Avdeev
Materials 2024, 17(21), 5171; https://doi.org/10.3390/ma17215171 - 24 Oct 2024
Viewed by 1152
Abstract
Synthetic graphite of complex fractional composition was mixed with phenolic resin as a binder and pore-forming component. The mixtures were pressed and subsequently heat-treated to obtain porous matrices. The structural transformations of phenolic resin by heating up to 900 °C in oxygen and [...] Read more.
Synthetic graphite of complex fractional composition was mixed with phenolic resin as a binder and pore-forming component. The mixtures were pressed and subsequently heat-treated to obtain porous matrices. The structural transformations of phenolic resin by heating up to 900 °C in oxygen and inert gas media were studied and the patterns of amorphization of fixed carbon formed on the walls of the pore system during carbonization were investigated. We found regularities in the changes in matrix volume density in the function of the open porosity and the average pore diameter. It is shown that, in order to obtain graphitized carbon matrices with a density of 1 g/cm3 and an open porosity of at least 50%, it is necessary to introduce no more than 20% of phenolic resin into the molding powder with an equal content of 60, 100 and 250 μm graphite fractions. This allows for high intensity and completeness of bulk silicon infiltration. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

Back to TopTop