Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = synergistic effects of carbon emission reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2743 KiB  
Article
Unlocking Synergies: How Digital Infrastructure Reshapes the Pollution-Carbon Reduction Nexus at the Chinese Prefecture-Level Cities
by Zhe Ji, Yuqi Chang and Fengxiu Zhou
Sustainability 2025, 17(15), 7066; https://doi.org/10.3390/su17157066 - 4 Aug 2025
Viewed by 229
Abstract
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, [...] Read more.
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, this study employs a multiperiod difference-in-differences (DID) approach, leveraging smart city pilot policies as a quasinatural experiment, to assess how digital infrastructure affects urban synergistic pollution-carbon mitigation (SPCM). The empirical results show that digital infrastructure increases the urban SPCM index by 1.5%, indicating statistically significant effects. Compared with energy and income effects, digital infrastructure can influence this synergistic effect through indirect channels such as the energy effect, economic agglomeration effect, and income effect, with the economic agglomeration effect accounting for a larger share of the total effect. Additionally, fixed-asset investment has a nonlinear moderating effect on this relationship, with diminishing marginal returns on emission reduction when investment exceeds a threshold. Heterogeneity tests reveal greater impacts in eastern, nonresource-based, and environmentally regulated cities. This study expands the theory of collaborative environmental governance from the perspective of new infrastructure, providing a theoretical foundation for establishing a long-term digital technology-driven mechanism for SPCM. Full article
Show Figures

Figure 1

15 pages, 12959 KiB  
Article
Sodium Oxide-Fluxed Aluminothermic Reduction of Manganese Ore with Synergistic Effects of C and Si Reductants: SEM Study and Phase Stability Calculations
by Theresa Coetsee and Frederik De Bruin
Reactions 2025, 6(3), 40; https://doi.org/10.3390/reactions6030040 - 28 Jul 2025
Viewed by 239
Abstract
Aluminothermic reduction is an alternative processing route for the circular economy because Al is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if the electricity input is sourced from non-fossil fuel energy sources. This circular processing option attracts increased research [...] Read more.
Aluminothermic reduction is an alternative processing route for the circular economy because Al is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if the electricity input is sourced from non-fossil fuel energy sources. This circular processing option attracts increased research attention in the aluminothermic production of manganese and silicon alloys. The Al2O3 product must be recycled through hydrometallurgical processing, with leaching as the first step. Recent work has shown that the NaAlO2 compound is easily leached in water. In this work, a suitable slag formulation is applied in the aluminothermic reduction of manganese ore to form a Na2O-based slag of high Al2O3 solubility to effect good alloy–slag separation. The synergistic effect of carbon and silicon reductants with aluminium is illustrated and compared to the test result with only carbon reductant. The addition of small amounts of carbon reductant to MnO2-containing ore ensures rapid pre-reduction to MnO, facilitating aluminothermic reduction. At 1350 °C, a loosely sintered mass formed when carbon was added alone. The alloy and slag chemical analyses are compared to the thermochemistry predicted phase chemistry. The alloy consists of 66% Mn, 22–28% Fe, 2–9% Si, 0.4–1.4% Al, and 2.2–3.5% C. The higher %Si alloy is formed by adding Si metal. Although the product slag has a higher Al2O3 content (52–55% Al2O3) compared to the target slag (39% Al2O3), the fluidity of the slags appears sufficient for good alloy separation. Full article
Show Figures

Figure 1

22 pages, 11876 KiB  
Article
Revealing Ecosystem Carbon Sequestration Service Flows Through the Meta-Coupling Framework: Evidence from Henan Province and the Surrounding Regions in China
by Wenfeng Ji, Siyuan Liu, Yi Yang, Mengxue Liu, Hejie Wei and Ling Li
Land 2025, 14(8), 1522; https://doi.org/10.3390/land14081522 - 24 Jul 2025
Viewed by 255
Abstract
Research on ecosystem carbon sequestration services and ecological compensation is crucial for advancing carbon neutrality. As a public good, ecosystem carbon sequestration services inherently lead to externalities. Therefore, it is essential to consider externalities in the flow of sequestration services. However, few studies [...] Read more.
Research on ecosystem carbon sequestration services and ecological compensation is crucial for advancing carbon neutrality. As a public good, ecosystem carbon sequestration services inherently lead to externalities. Therefore, it is essential to consider externalities in the flow of sequestration services. However, few studies have examined intra- and inter-regional ecosystem carbon sequestration flows, making regional ecosystem carbon sequestration flows less comprehensive. Against this background, the research objectives of this paper are as follows. The flow of carbon sequestration services between Henan Province and out-of-province regions is studied. In addition, this study clarifies the beneficiary and supply areas of carbon sink services in Henan Province and the neighboring regions at the prefecture-level city scale to obtain a more systematic, comprehensive, and actual flow of carbon sequestration services for scientific and effective eco-compensation and to promote regional synergistic emission reductions. The research methodologies used in this paper are as follows. First, this study adopts a meta-coupling framework, designating Henan Province as the focal system, the Central Urban Agglomeration as the adjacent system, and eight surrounding provinces as remote systems. Regional carbon sequestration was assessed using net primary productivity (NEP), while carbon emissions were evaluated based on per capita carbon emissions and population density. A carbon balance analysis integrated carbon sequestration and emissions. Hotspot analysis identified areas of carbon sequestration service supply and associated benefits. Ecological radiation force formulas were used to quantify service flows, and compensation values were estimated considering the government’s payment capacity and willingness. A three-dimensional evaluation system—incorporating technology, talent, and fiscal capacity—was developed to propose a diversified ecological compensation scheme by comparing supply and beneficiary areas. By modeling the ecosystem carbon sequestration service flow, the main results of this paper are as follows: (1) Within Henan Province, Luoyang and Nanyang provided 521,300 tons and 515,600 tons of carbon sinks to eight cities (e.g., Jiaozuo, Zhengzhou, and Kaifeng), warranting an ecological compensation of CNY 262.817 million and CNY 263.259 million, respectively. (2) Henan exported 3.0739 million tons of carbon sinks to external provinces, corresponding to a compensation value of CNY 1756.079 million. Conversely, regions such as Changzhi, Xiangyang, and Jinzhong contributed 657,200 tons of carbon sinks to Henan, requiring a compensation of CNY 189.921 million. (3) Henan thus achieved a net ecological compensation of CNY 1566.158 million through carbon sink flows. (4) In addition to monetary compensation, beneficiary areas may also contribute through technology transfer, financial investment, and talent support. The findings support the following conclusions: (1) it is necessary to consider the externalities of ecosystem services, and (2) the meta-coupling framework enables a comprehensive assessment of carbon sequestration service flows, providing actionable insights for improving ecosystem governance in Henan Province and comparable regions. Full article
(This article belongs to the Special Issue Land Resource Assessment (Second Edition))
Show Figures

Figure 1

29 pages, 27846 KiB  
Review
Recycling and Mineral Evolution of Multi-Industrial Solid Waste in Green and Low-Carbon Cement: A Review
by Zishu Yue and Wei Zhang
Minerals 2025, 15(7), 740; https://doi.org/10.3390/min15070740 - 15 Jul 2025
Viewed by 275
Abstract
The accelerated industrialization in China has precipitated a dramatic surge in solid waste generation, causing severe land resource depletion and posing substantial environmental contamination risks. Simultaneously, the cement industry has become characterized by the intensive consumption of natural resources and high carbon emissions. [...] Read more.
The accelerated industrialization in China has precipitated a dramatic surge in solid waste generation, causing severe land resource depletion and posing substantial environmental contamination risks. Simultaneously, the cement industry has become characterized by the intensive consumption of natural resources and high carbon emissions. This review aims to investigate the current technological advances in utilizing industrial solid waste for cement production, with a focus on promoting resource recycling, phase transformations during hydration, and environmental management. The feasibility of incorporating coal-based solid waste, metallurgical slags, tailings, industrial byproduct gypsum, and municipal solid waste incineration into active mixed material for cement is discussed. This waste is utilized by replacing conventional raw materials or serving as active mixed material due to their content of oxygenated salt minerals and oxide minerals. The results indicate that the formation of hydration products can be increased, the mechanical strength of cement can be improved, and a notable reduction in CO2 emissions can be achieved through the appropriate selection and proportioning of mineral components in industrial solid waste. Further research is recommended to explore the synergistic effects of multi-waste combinations and to develop economically efficient pretreatment methods, with an emphasis on balancing the strength, durability, and environmental performance of cement. This study provides practical insights into the environmentally friendly and efficient recycling of industrial solid waste and supports the realization of carbon peak and carbon neutrality goals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

35 pages, 2044 KiB  
Review
Overview of Sustainable Maritime Transport Optimization and Operations
by Lang Xu and Yalan Chen
Sustainability 2025, 17(14), 6460; https://doi.org/10.3390/su17146460 - 15 Jul 2025
Viewed by 687
Abstract
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, [...] Read more.
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, this study systematically examines representative studies from the past decade, focusing on three dimensions, technology, management, and policy, using data sourced from the Web of Science (WOS) database. Building on this analysis, potential avenues for future research are suggested. Research indicates that the technological field centers on the integrated application of alternative fuels, improvements in energy efficiency, and low-carbon technologies in the shipping and port sectors. At the management level, green investment decisions, speed optimization, and berth scheduling are emphasized as core strategies for enhancing corporate sustainable performance. From a policy perspective, attention is placed on the synergistic effects between market-based measures (MBMs) and governmental incentive policies. Existing studies primarily rely on multi-objective optimization models to achieve a balance between emission reductions and economic benefits. Technological innovation is considered a key pathway to decarbonization, while support from governments and organizations is recognized as crucial for ensuring sustainable development. Future research trends involve leveraging blockchain, big data, and artificial intelligence to optimize and streamline sustainable maritime transport operations, as well as establishing a collaborative governance framework guided by environmental objectives. This study contributes to refining the existing theoretical framework and offers several promising research directions for both academia and industry practitioners. Full article
(This article belongs to the Special Issue The Optimization of Sustainable Maritime Transportation System)
Show Figures

Figure 1

22 pages, 1415 KiB  
Article
GCT–CET Integrated Flexible Load Control Method for IES
by Yaoxian Liu, Yuanyuan Wang, Yiqi Yang, Kaixin Zhang, Yue Sun, Cong Hou, Zhonghao Dongye and Jingwen Chen
Energies 2025, 18(14), 3667; https://doi.org/10.3390/en18143667 - 11 Jul 2025
Viewed by 348
Abstract
Under the “dual carbon” goals, the low-carbon economic dispatch of integrated energy systems (IES) faces multiple challenges, including suboptimal economic efficiency, excessive carbon emissions, and limited renewable energy integration. While traditional green certificate trading (GCT) enhances renewable energy adoption, its emission reduction effect [...] Read more.
Under the “dual carbon” goals, the low-carbon economic dispatch of integrated energy systems (IES) faces multiple challenges, including suboptimal economic efficiency, excessive carbon emissions, and limited renewable energy integration. While traditional green certificate trading (GCT) enhances renewable energy adoption, its emission reduction effect remains inadequate. Conversely, standalone carbon emission trading (CET) effectively curbs emissions but often at the expense of increased operational costs, making it difficult to achieve both economic and environmental objectives simultaneously. To address these limitations, this study proposes an innovative green certificate trading–tiered carbon emission trading (GCT–CET) synergistic mechanism integrated with demand-side flexible load optimization, developing a low-carbon dispatch model designed to minimize total system costs. Simulation experiments conducted with the CPLEX solver demonstrate that, compared to individual GCT or CET implementations, the proposed coordinated mechanism effectively combines renewable energy incentives (through GCT) with stringent emission control (via stepped CET), resulting in a 47.8% reduction in carbon emissions and a 5.4% decrease in total costs. Furthermore, the participation of flexible loads enhances supply–demand balancing, presenting a transformative solution for achieving high-efficiency and low-carbon operation in IES. Full article
(This article belongs to the Special Issue Low-Carbon Energy System Management in Sustainable Cities)
Show Figures

Figure 1

15 pages, 795 KiB  
Article
Optimal Dispatch of Power Grids Considering Carbon Trading and Green Certificate Trading
by Xin Shen, Xuncheng Zhu, Yuan Yuan, Zhao Luo, Xiaoshun Zhang and Yuqin Liu
Technologies 2025, 13(7), 294; https://doi.org/10.3390/technologies13070294 - 9 Jul 2025
Viewed by 278
Abstract
In the context of the intensifying global climate crisis, the power industry, as a significant carbon emitter, urgently needs to promote low-carbon transformation using market mechanisms. In this paper, a multi-objective stochastic optimization scheduling framework for regional power grids integrating carbon trading (CET) [...] Read more.
In the context of the intensifying global climate crisis, the power industry, as a significant carbon emitter, urgently needs to promote low-carbon transformation using market mechanisms. In this paper, a multi-objective stochastic optimization scheduling framework for regional power grids integrating carbon trading (CET) and green certificate trading (GCT) is proposed to coordinate the conflict between economic benefits and environmental objectives. By building a deterministic optimization model, the goal of maximizing power generation profit and minimizing carbon emissions is combined in a weighted form, and the power balance, carbon quota constraint, and the proportion of renewable energy are introduced. To deal with the uncertainty of power demand, carbon baseline, and the green certificate ratio, Monte Carlo simulation was further used to generate random parameter scenarios, and the CPLEX solver was used to optimize scheduling schemes iteratively. The simulation results show that when the proportion of green certificates increases from 0.35 to 0.45, the proportion of renewable energy generation increases by 4%, the output of coal power decreases by 12–15%, and the carbon emission decreases by 3–4.5%. At the same time, the tightening of carbon quotas (coefficient increased from 0.78 to 0.84) promoted the output of gas units to increase by 70 MWh, verifying the synergistic emission reduction effect of the “total control + market incentive” policy. Economic–environmental tradeoff analysis shows that high-cost inputs are positively correlated with the proportion of renewable energy, and carbon emissions are significantly negatively correlated with the proportion of green certificates (correlation coefficient −0.79). This study emphasizes that dynamic adjustments of carbon quota and green certificate targets can avoid diminishing marginal emission reduction efficiency, while the independent carbon price mechanism needs to enhance its linkage with economic targets through policy design. This framework provides theoretical support and a practical path for decision-makers to design a flexible market mechanism and build a multi-energy complementary system of “coal power base load protection, gas peak regulation, and renewable energy supplement”. Full article
Show Figures

Figure 1

35 pages, 1595 KiB  
Article
Analysis of the Synergies of Air Pollutant and Greenhouse Gas Emission Reduction in Typical Chemical Enterprises
by Qi Gong, Yatfei Chan, Yijia Xia, Weiqi Tang and Weichun Ma
Sustainability 2025, 17(14), 6263; https://doi.org/10.3390/su17146263 - 8 Jul 2025
Viewed by 295
Abstract
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. [...] Read more.
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. The localized air pollutant levels and greenhouse gas emissions of the three enterprises were calculated. The synergistic effects between the end-of-pipe emission reductions for air pollutants and greenhouse gas emissions were analyzed using the pollutant reduction synergistic and cross-elasticity coefficients, including technology comparisons (e.g., acrylonitrile gas incineration (AOGI) technology vs. traditional flare). Based on these data, we used the SimaPro software and the CML-IA model to conduct a life cycle environmental impact assessment regarding the production and upstream processes of their unit products. By combining the life cycle method and the scenario simulation method, we predicted the trends in the environmental impacts of the three chemical enterprises after the implementation of low-carbon development policies in the chemical industry in 2030. We also quantified the synergistic effects of localized air pollutant and greenhouse gas (GHG) emission reductions within the low-carbon development scenario by using cross-elasticity coefficients based on life cycle environmental impacts. The research results show that, for every ton of air pollutant reduced through end-of-pipe treatment measures, the HS Chlor-Alkali enterprise would increase its maximum CO2 emissions, amounting to about 80 tons. For SK Ethylene, the synergistic coefficient for VOC reduction and CO2 emissions when using AOGI thermal incineration technology is superior to that for traditional flare thermal incineration. The activities of the three enterprises had an impact on several environmental indicators, particularly the fossil fuel resource depletion potential, accounting for 69.48%, 53.94%, and 34.23% of their total environmental impact loads, respectively. The scenario simulations indicate that, in a low-carbon development scenario, the overall environmental impact loads of SH Petrochemical (refining sector), SK Ethylene, and HS Chlor-Alkali would decrease by 3~5%. This result suggests that optimizing the upstream power structure, using “green hydrogen” instead of “grey hydrogen” in hydrogenation units within refining enterprises, and reducing the consumption of electricity and steam in the production processes of ethylene and chlor-alkali are effective measures in reducing carbon emissions in the chemical industry. The quantification of the synergies based on life cycle environmental impacts revealed that there are relatively strong synergies for air pollutant and GHG emission reductions in the oil-refining industry, while the chlor-alkali industry has the weakest synergies. Full article
Show Figures

Figure 1

23 pages, 4276 KiB  
Article
Water Saving and Carbon Reduction (CO2) Synergistic Effect and Their Spatiotemporal Distribution Patterns
by Jing Zhao, Hanting Li, Zhiying Liu, Yaoqing Jiang and Wenbin Mu
Water 2025, 17(13), 1847; https://doi.org/10.3390/w17131847 - 21 Jun 2025
Viewed by 385
Abstract
Under the dual constraints of rigid water resource management systems and China’s “dual carbon” national strategy, water resource management authorities face pressing practical demands for the coordinated governance of water conservation and carbon dioxide emission reduction. This study comprehensively compiles nationwide data on [...] Read more.
Under the dual constraints of rigid water resource management systems and China’s “dual carbon” national strategy, water resource management authorities face pressing practical demands for the coordinated governance of water conservation and carbon dioxide emission reduction. This study comprehensively compiles nationwide data on water supply/consumption, energy use, water intensity, and CO2 emissions across Chinese provinces. Employing a non-radial directional distance function (NDDF) model with multiple inputs and outputs, we quantitatively assess provincial water saving and carbon reduction performance during 2000–2021; measure synergistic effects; and systematically examine the spatiotemporal evolution, correlation patterns, and convergence trends of three key indicators: standalone water saving performance, standalone carbon reduction performance, and their synergistic performance—essentially addressing whether “1 + 1 > 2” holds true. Furthermore, we analyze the spatial convergence and clustering characteristics of synergistic effect across regions, delving into the underlying causes of inter-regional disparities in water–carbon synergy. Key findings reveal the following: ① Temporally, standalone water saving and carbon reduction performance generally improved, though the water saving metrics initially declined before stabilizing into sustained growth, ultimately outpacing carbon reduction gains. Synergistic performance consistently surpassed standalone measures, with most regions demonstrating accelerating synergistic enhancement over time. Nationally, water–carbon synergy exhibited early volatile declines followed by steady growth, though the growth rate gradually decelerated. ② Spatially, high-value synergy clusters migrated from the western to eastern regions and the northern to southern zones before stabilizing geographically. The synergy effect demonstrates measurable convergence overall, yet with pronounced regional heterogeneity, manifesting a distinct “high southeast–low northwest” agglomeration pattern. Strategic interventions should prioritize water–carbon nexus domains, leverage spatial convergence trends and clustering intensities, and systematically unlock synergistic potential. Full article
(This article belongs to the Special Issue China Water Forum 2024)
Show Figures

Figure 1

31 pages, 4569 KiB  
Article
Digital Economy, Green Finance, and Carbon Emissions: Evidence from China
by Weibo Jin, Yiming Wang, Yi Yan, Hongyan Zhou, Longyu Xu, Yi Zhang, Yao Xu and Yuqi Zhang
Sustainability 2025, 17(12), 5625; https://doi.org/10.3390/su17125625 - 18 Jun 2025
Viewed by 718
Abstract
This paper investigates the role of the digital economy in reducing carbon emissions, with a particular focus on the moderating and threshold effects of green finance. An analysis of data from 30 Chinese provinces shows that the digital economy significantly reduces carbon emission [...] Read more.
This paper investigates the role of the digital economy in reducing carbon emissions, with a particular focus on the moderating and threshold effects of green finance. An analysis of data from 30 Chinese provinces shows that the digital economy significantly reduces carbon emission intensity by restructuring energy consumption and promoting green technological innovation. Green finance plays a crucial moderating role by alleviating financial barriers to digital transformation and supporting the implementation of emission-reducing technologies. The study reveals a nonlinear relationship, with green finance exhibiting a “strong initial, weak subsequent” threshold effect. At the same time, the digital economy’s impact on carbon reduction strengthens over time as technological development progresses. These findings contribute to understanding how digitalisation and green finance can work synergistically to drive sustainable low-carbon development. Full article
Show Figures

Figure 1

23 pages, 2243 KiB  
Article
The Last Mile of China’s Low-Carbon Movement: Amplifying Climate Policy Through Cadre Performance Evaluation System
by Yongzhou Chen and Qiuzhi Ye
Sustainability 2025, 17(12), 5232; https://doi.org/10.3390/su17125232 - 6 Jun 2025
Viewed by 699
Abstract
Climate governance operates across multiple administrative tiers, and enhancing the vertical coherence of policies has become a critical determinant of successful climate governance. This study employs data from 1578 counties in China from 2008 to 2022 to explore the synergistic effects between the [...] Read more.
Climate governance operates across multiple administrative tiers, and enhancing the vertical coherence of policies has become a critical determinant of successful climate governance. This study employs data from 1578 counties in China from 2008 to 2022 to explore the synergistic effects between the Low Carbon City Policy (LCCP) and the Cadre Performance Evaluation System Transformation (CPEST). The study reveals that the CPEST has the potential to enhance the carbon reduction effects of the LCCP, yet it has not fully realized a synergistic effect. Further analysis indicates that although the timing arrangement is beneficial, it alone is insufficient to generate a synergistic effect. A synergistic impact only materializes when the objectives of the CPEST and LCCP are aligned, resulting in a carbon reduction effect that is approximately 1.5 times greater than the simple sum of their individual impacts. Mechanism analysis indicates that the combination of the LCCP and CPEST reduces carbon emissions primarily through four pathways: environmental investment, environmental penalties, green technology innovation, and upgrading of industrial structure. The effects of this combined approach are greater than those achieved through separate implementation. Heterogeneity analysis reveals that the combination of the LCCP and CPEST has a more pronounced effect in resource-based cities, old industrial bases, and regions with strong promotion incentives. The research findings provide both theoretical support and empirical evidence for enhancing vertical coordination in climate governance. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

26 pages, 1487 KiB  
Article
The Impact of Smart City Construction on PM2.5 Concentrations: Empirical Analysis from Chinese Counties
by Chenxue Li, Yuxin Duan, Zhicheng Zhou and Shen Zhong
Sustainability 2025, 17(11), 5100; https://doi.org/10.3390/su17115100 - 2 Jun 2025
Viewed by 594
Abstract
Fine particulate matter (PM2.5) pollution poses a major threat to human physical and mental health. Smart cities (SCs) provide innovative paths for PM2.5 pollution prevention and control through Internet of Things (IoT) monitoring, intelligent transportation optimization, and other technological means. [...] Read more.
Fine particulate matter (PM2.5) pollution poses a major threat to human physical and mental health. Smart cities (SCs) provide innovative paths for PM2.5 pollution prevention and control through Internet of Things (IoT) monitoring, intelligent transportation optimization, and other technological means. Based on the panel data of 2,141 counties in China between 2006 and 2021, this paper constructs a difference-in-differences with multiple time periods (MDID) to systematically assess the impact of SC on PM2.5 concentration and analyze its mechanism of action by combining the satellite remote sensing PM2.5 concentration (PM2.5C) and the list of smart city pilots. This study finds the following: (1) SC significantly reduced the PM2.5 concentration in the test area by about 3.58%. This conclusion was verified through rigorous robustness testing; (2) SC can effectively reduce PM2.5C through the innovation effect; (3) High-quality economic development can strengthen the emission reduction effect of SC on PM2.5C; (4) The environmental benefits of SC show significant spatial heterogeneity, with the largest PM2.5 reductions occurring in the western regions (4.3% reduction), followed by regions with mature digital infrastructure and cities in high administrative level cities. The results of this study provide a reference for the regional differentiated implementation of the “14th Five-Year Plan for the Development of Innovative Smarter Cities”, and make targeted recommendations for the synergistic management of air quality under the “dual-carbon” goal. Full article
Show Figures

Figure 1

15 pages, 1921 KiB  
Article
Self-Sufficient Carbon Emission Reduction in Resource-Based Cities: Evidence of Green Technology Innovation
by Yaping Wang, Hongxiao Zhao, Dan Wang and Yu Cheng
Sustainability 2025, 17(11), 5075; https://doi.org/10.3390/su17115075 - 1 Jun 2025
Viewed by 433
Abstract
Green technology innovation (GTI) is crucial for achieving synergistic development in reducing pollution and carbon emissions (CEs). The spatio-temporal evolutionary aspects of carbon emission intensity (CEI) in resource-based cities (RBCs) and the heterogeneity of the carbon emission reduction effects of GTI from zoning, [...] Read more.
Green technology innovation (GTI) is crucial for achieving synergistic development in reducing pollution and carbon emissions (CEs). The spatio-temporal evolutionary aspects of carbon emission intensity (CEI) in resource-based cities (RBCs) and the heterogeneity of the carbon emission reduction effects of GTI from zoning, grading, and classification perspectives are investigated using kernel density estimation, Markov chains, and panel regression models. Our results are as follows: the CEI of RBCs displays a fluctuating downwards trend from 2006 to 2022. Spatially, the main feature is that the north is higher than the south. Second, GTI has significantly reduced the CEI of RBCs through structural optimization, energy savings, and efficiency improvement, as verified in different development stages and dominant resource types. In addition, national high-tech zones (NHTZs) have significantly contributed to reducing CEI in RBCs. The proposed countermeasures include increasing investment in GTI, establishing an exchange platform for GTI, and implementing differentiated policies according to local conditions, which are important for constructing an ecological civilization in RBCs. Full article
Show Figures

Figure 1

24 pages, 2212 KiB  
Article
Analysis of the Interactive Response Relationships Between Agricultural Pollution Reduction and Carbon Emission Mitigation and Agricultural Economic Development: A Case Study of Henan Province, China
by Hanghang Fan, Ling Li, Xingming Li, Yongjie Yu, Yong Wu, Donghao Li, Jianwei Liu and Xiuli Wang
Agriculture 2025, 15(11), 1163; https://doi.org/10.3390/agriculture15111163 - 28 May 2025
Cited by 1 | Viewed by 434
Abstract
Ensuring the synergistic advancement of agricultural pollution reduction and carbon emission mitigation, along with sustainable development, is crucial for achieving the ‘dual carbon’ target and modernizing agriculture. To ensure sustainable agricultural development, this study employs a coupling coordination model to explore the synergistic [...] Read more.
Ensuring the synergistic advancement of agricultural pollution reduction and carbon emission mitigation, along with sustainable development, is crucial for achieving the ‘dual carbon’ target and modernizing agriculture. To ensure sustainable agricultural development, this study employs a coupling coordination model to explore the synergistic effects of pollution reduction and carbon emission mitigation in Henan Province, considering the agricultural carbon emissions (ACEs), agricultural non-point source pollution (ANP), and the gross value of agricultural output (GVAO) of 18 cities in Henan from 2010 to 2022 as endogenous variables. A panel vector autoregression (PVAR) model is utilized to analyze the interactive responses between agricultural pollution reduction and carbon emission mitigation and agricultural economic development. The results indicate that the degree of synergy between ACE and ANP in Henan Province has shown a trend towards higher values and a diminishing polarization phenomenon between 2010 and 2022, with most regions having degrees of synergy at higher levels. Furthermore, the interactive response relationships between agricultural pollution reduction and carbon emission mitigation and agricultural economic development reveals that the GVAO in Henan Province has a significant positive impact on both ACE and ANP, and that agricultural pollution reduction and carbon emission mitigation are constrained by agricultural economic development, with no significant bidirectional causal relationship observed overall and a lack of positive interaction in the long term. Finally, ACE, ANP, and GVAO in Henan Province exhibit a strong self-reinforcing mechanism, particularly ACE and GVAO, which show a pronounced self-growth trend. Overall, Henan Province should fully utilize the synergistic effects of agricultural pollution reduction and carbon emission mitigation to achieve coordinated progress in agricultural pollution reduction and carbon emission mitigation, as well as green and sustainable development of the agricultural economy. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

19 pages, 12530 KiB  
Article
Synergistic Ozone-Ultrasonication Pretreatment for Enhanced Algal Bioresource Recovery: Optimization and Detoxification
by Tianyin Huang, Yefeng Zhu, Junjun Liu, Xinyi Zhou, Bingdang Wu, Jinlong Zhuang and Jingjing Yang
Water 2025, 17(11), 1614; https://doi.org/10.3390/w17111614 - 26 May 2025
Viewed by 452
Abstract
Although algae possess a high capacity for carbon sequestration, the recalcitrant multilayered cell wall structure and residual microcystin toxicity associated with Microcystis aeruginosa significantly hinder the efficient recovery of algal biomass resources. This study developed a synergistic ozone-ultrasonication (O3-US) pretreatment strategy, [...] Read more.
Although algae possess a high capacity for carbon sequestration, the recalcitrant multilayered cell wall structure and residual microcystin toxicity associated with Microcystis aeruginosa significantly hinder the efficient recovery of algal biomass resources. This study developed a synergistic ozone-ultrasonication (O3-US) pretreatment strategy, systematically comparing its cell-disruption efficacy with standalone O3 or US, using harvested algal biomass from natural aquatic systems dominated by Microcystis aeruginosa. The synergistic effects revealed were: (1) O3-mediated oxidation of extracellular polymeric substances and cell wall matrices, (2) the release of ultrasound-induced cavitation-enhancing intracellular components, and (3) an improvement in the O3 mass transfer by hydrodynamic shear forces. Through response surface methodology optimization, the O3-US process achieved maximal performance at 0.14 gO3/gTSS, with a 4 W/mL ultrasonic intensity, and a 20 min duration. Remarkably, the released protein was 289.2 mg/gTSS, which was 4.3-fold and 1.9-fold, respectively, more than that released in O3 pretreatment and US pretreatment, while the polysaccharide was 87.5 mg/gTSS, increased by 2.4-fold and 3.1-fold respectively, compared to O3 alone and US alone. The released solubilized chemical oxygen demand (SCOD) was 1037.1 mg/gTSS, increased by 43.3% and 216.1%, respectively, relative to O3 alone and US alone. DNA quantification further validated the synergistic cell disruption caused by O3-US. Fluorescence excitation-emission matrix (EEM) spectroscopy identified biodegradable aromatic proteins (Regions I-II) and soluble microbial byproducts (Region IV) as dominant organic fractions, demonstrating enhanced bioavailability. The hybrid process reduced energy consumption by 33.3% in ultrasonic intensity and 60% in duration versus US alone, while achieving 94.5% microcystin-LR (MC-LR) degradation, which showed a 96.6% risk reduction compared to ultrasonic treatment. This work establishes an efficient, low-energy, and safe pretreatment technology for algal resource recovery, synergistically enhancing intracellular resource release while mitigating cyanotoxin hazards in algal biomass valorization. Full article
(This article belongs to the Special Issue Microalgae Control and Utilization: Challenges and Perspectives)
Show Figures

Graphical abstract

Back to TopTop